hmm教程

2018年TI杯手势识别

2018年TI杯大学生电子设计竞赛手势识别装置(D题) 2018年7月23日

手势识别装置(D题) 【本科组】 摘要 手势识别作为人机交互的重要组成部分,其研究发展影响着人机交互的自然性和灵活性。 为了满足手势识别的设计要求,本次设计使用以测量电路为核心的系统。主要由五个模块组成,包括测量电路模块、传感器模块、显示模块、控制模块、电源模块组成。控制模块采用的是独立按键和MSP430F5529单片机,用以控制工作模式(训练和判决);测量电路模块采用的是MSP430F5529单片机;传感器模块采用的是FDC2214电容传感器;显示模块采用12864LCD液晶显示屏;电源模块采用220V转5V的USB接口输出模块。本装置通过FDC2214电容传感器和MSP430F5529单片机测量频率值,再通过频率值判断手势,并显示在LCD液晶显示屏上。 关键词:手势识别MSP430F5529FDC2214 12864LCD

目录 一、系统方案 (1) 1.测量电路模块的选择 (1) 2.显示模块的选择 (1) 3.传感器模块 (1) 4.电源模块 (2) 5.方案确定 (2) 二、理论分析与计算 (2) 1.理论分析 (2) 2.计算 (2) 三、电路与程序设计 (3) 1.电路设计 (3) (1)系统总体框图 (3) (2)控制模块系统框图 (4) 2.程序设计 (4) (1)程序流程图 (4) (2)判决的流程图 (4) 四、测试方案与测试结果 (5) 1.测试方案 (5) (1)硬件测试 (5) (2)软件仿真测试 (5) (3)硬件软件联调 (5) 2.测试条件与仪器 (5) 五、测试结果 (6) 1.测试结果 (6) 2.误差分析 (6) 六、心得 (6) 七、参考文献 (7) 附录:电路原理图 (8) 一、

基于STM32的手势识别控制器的设计

0 引言 操作控制器作为一种人机交互设备有着广泛的应用,比如在日常生活中,各种家电玩具的遥控器、触摸屏等,在工业生产领域各种仪器仪表设备的操作、设置和校验等。传统的操作控制器主要是通过人机接触的方式进行操作,比如按键,触摸屏等,这种操作方式容易产生静电,对于敏感的精密仪器设备影响较大,产生干扰[1]。有些设备会安置在高温高压或者有辐射的环境中,人机接触会给人体带来伤害,安全性低。市面上有些仪器仪表配有手持操作设备可以通过无线通信的方式进行操作,这种方式成本高,手持操作设备携带不方便。本文基于ARM 处理器芯片和光学数组式传感器设计了一种非接触的手势识别操作器,可将手势动作转化为控制信号,对于目标设备进行操作,安全便捷,可靠性高,具有广泛的应用场景[2]。 1 系统总体设计 本文设计的手势识别操作控制器系统总体分为三大模块,如图1所示,分别是手势检测模块,系统控制模块,和信号传输模块。 手势检测模块的主要任务是实时感应监测范围内的手 势活动,将感应到的手势活动信息转化为电信号并传输给控制系统模块。控制系统模块的功能是根据接收到的手势检测模块的电信号,经过处理识别具体的手势动作并转化为数字信号生成控制信息,通过信号传输模块对于目标设备进行操作[3]。 2 系统硬件设计 2.1 手势检测模块 手势识别传感器模块采用了采用原相科技(Pixart)公司的PAJ7620U2芯片,芯片结构如图2所示,该芯片内部集成了光学数组式传感器,以使复杂的手势和光标模式输出,可以检测出九种手势动作,支持上、下、左、右、前、后、顺时针旋转、逆时针旋转和挥动的手势动作识别,以及支持物体接近检测等功能。芯片结构功能如图所示,该芯片具体积小、灵敏度高、支持中断输出、兼容3.3V/5V 系统、使用方便等特点。 手势检测模块电路设计如图3所示,通过两个3.3V 超低压差稳压芯片,给PAJ7620芯片供电,外部分供电电源使用5V。IIC 通信时钟线IIC_SCL、IIC 通信数据线IIC_SDA 和中断输出引脚配有4.7引上拉电阻用于稳定信号输出。PAJ7620内部自带LED 驱动器,传感器感应阵列、目标信息提取阵列和手势识别阵列。PAJ7620工作时通过内部LED 驱动 器,驱动红外LED 向外发射红外线信号,当传感器阵列在有效的距离中探测到物体时,目标信息提取阵列会对探测目标进行特征原始数据的 获取,获取的数据会存在寄存器中,同时手势识 are operated by recognizing gesture movements. The application shows that the design is easy to operate, small size, high security, and can be widely used in scenarios.Key words : gesture recognition; sensor; STM32; operator 图1 系统结构图

基于FDC2214的手势识别系统设计与实现

? 159 ? ELECTRONICS WORLD ? 技术交流 系统采用了STM32作为核心控制芯片,使用FDC2214芯片获取电容值,通过滤波后,与样本数据对比,找到最短的k 个样本,判断其类型数量,达到识别手势的目的。 1.总体设计 系统总体设计框架如图1所示,采用了STM32F103ZET6作为核心控制芯片,而核心检测芯片则采用的是TI 公司的FDC2214来处理极板与手之间的容值。得到的数据通过卡尔曼滤波和knn 算法来判断出不同手势之间的区别。 以独立按键来调节菜单和录入手势模板,通过oled 显示屏做出反馈并显示结果。 将手势录入一边,系统会自动处理好数据,再进入判决模式就 可以识别手势。 图1 系统总体设计框架 2.系统硬件设计 2.1 控制部分 本系统的控制核心采用了STM32单片机,它具有72M 主频,64K RAM 和512K ROM ,拥有多达14个定时器,自带PWM ,ADC ,DA,实时时钟等功能。非常满足作为嵌入式系统的控制需求。2.2 检测部分 电容检测部分是整个系统中最为重要的一部分,它决定了系统的识别率高低与否,整个系统的数据采样与检测都是建立在电容检测芯片的准确性上,因此选取TI 公司的FDC2214芯片来做为电容检测芯片,这是一种非接触式电容传感器,还有一个重要特性就是采用了EMI (抗电磁干扰)架构,因此它可以屏蔽高噪声环境干扰,在复杂环境确保传感器数据的准确性(周孟强,刘会衡,基于FDC2214手势识别装置的设计与实现:电子制作,2019)。2.3 极板部分 极板采用的是三层结构,最下面一层使用亚克力板,主要用作 的oled 显示屏,它小巧精致,分辨率高,相比液晶屏幕它更加节能,非常适合作为系统的显示模块。 输入部分由4个独立按键组成。4个独立按键分别作为切换键,确认键,返回键和系统复位键。 2.5 供电部分 电源部分采用了两块锂电池作为电源,使用稳压模块将电压降为5v 并后接入整个系统。 3.系统软件设计 软件系统流程图如图3所示。3.1 数据滤波算法设计数据滤波是去除噪音干扰的有 基于FDC2214的手势识别系统设计与实现 杨凌职业技术学院 陈 阳 图2 极板实物图支撑。中间一层使用铝箔胶带作为极板的金属层。最上面一层采用硬质透明塑料膜,有防止手直接和铝箔接触和保护极板的作用(郭霞,谭亚丽,申淼,基于FDC2214的手势识别系统:传感器与微系统,2018)。这样的设计好处在于可以很方便的自行调整和更换极板上的铝箔来达到不同的检测要求。2.4 人机交互部分 人机交互部分由显示部分和按键输入组成,分别采用oled 显示屏和独立按键组成。 显示部分采用了0.96 英寸 图3 系统软件流程图 效方法,本系统采用卡尔曼滤波算法,这是一种当下使用非常广泛的滤波算法,它有计算量小,易于计算机实现等特点(张辉,卜雯意,施豪,基于FDC2214电容传感器的手势识别装置的设计与实现:巢湖学院学报,2018 )。将极板上采集的数据进行实时的处理,将数据中 图4 系统整机实物图的噪音清除,把误差降到最小。3.2 数据分类算法 kNN (k 最近邻算法)是一种数据分类方法,在学习模式下,将多次手势进行采样并滤波后,获取其特征向量作为样本数据,之后进入判定模式,系统会实时采样当数据稳定后,得到其特征向量,计算其特征向量与样 本数据之间的欧氏距离,找到相 距最短的k 个样本,判断其类型,即可识别手势(张硕,基于KNN 算法的空间手势识别研究与应用:吉林大学,2017)。 表1 石头,剪刀,布手势测试结果 手势实测结果石头石头正确石头石头正确石头石头正确石头石头正确石头石头正确剪刀剪刀正确剪刀剪刀正确剪刀剪刀正确剪刀剪刀正确剪刀剪刀正确布布正确布布正确布布正确布布正确布布 正确 正确率:100%

相关主题
相关文档
最新文档