2020年北京各区高三一模数学分类---解析几何
2020北京各区一模数学试题分类汇编--解析几何(原卷版)

1 / 122020北京各区一模数学试题分类汇编—解析几何(2020海淀一模)已知双曲线2221(0)y x b b-=>则b 的值为( )A. 1B. 2C. 3D. 4(2020海淀一模) 已知点P (1,2)在抛物线C 2:2y px =上,则抛物线C 的准线方程为___.(2020西城一模) 设双曲线2221(0)4x y b b -=>的一条渐近线方程为y x =,则该双曲线的离心率为____________.(2020西城一模) 设()()2141A B -,,,,则以线段AB 为直径的圆的方程是( )A. 22(3)2x y -+=B. 22(3)8x y -+=C. 22(3)2x y ++=D. 22(3)8x y ++=(2020东城一模) 若顶点在原点的抛物线经过四个点(1,1),1(2,)2,(2,1),(4,2)中的2个点,则该抛物线的标准方程可以是________.(2020东城一模) 已知圆C 与直线y x =-及40x y +-=的相切,圆心在直线y x =上,则圆C 的方程为( )2 / 12A. ()()22112x y -+-= B. ()()22112x y -++= C. ()()22114x y ++-= D. ()()22114x y +++=(2020东城一模) 已知曲线C 的方程为221x y a b-=,则“a b >”是“曲线C 为焦点在x 轴上的椭圆”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(2020东城一模) 抛物线24x y =的准线与y 轴的交点的坐标为( )A. 1(0,)2-B. (0,1)-C. (0,2)-D. (0,4)-(2020丰台一模) 已知双曲线M :2213y x -=的渐近线是边长为1的菱形OABC 的边OA ,OC 所在直线.若椭圆N :22221x y a b+=(0a b >>)经过A ,C 两点,且点B 是椭圆N 的一个焦点,则a =______.(2020丰台一模) 过抛物线C :22y px =(0p >)的焦点F 作倾斜角为60︒的直线与抛物线C 交于两个不同的点A ,B (点A 在x 轴上方),则AFBF的值为( ) A.13B.43D. 33 / 12(2020丰台一模) 圆()2212x y -+=的圆心到直线10x y ++=的距离为( )A. 2C. 1D.2(2020朝阳区一模) 已知抛物线C :22(0)y px p =>的焦点为F ,准线为l ,点A 是抛物线C 上一点,AD l ⊥于D .若4AF =,60DAF ∠=︒,则抛物线C 的方程为( )A. 28y x =B. 24y x =C. 22y x =D. 2y x =(2020朝阳区一模) 在ABC 中,AB BC =,120ABC ∠=︒.若以A ,B 为焦点的双曲线经过点C ,则该双曲线的离心率为( )A.B.2C.12D.(2020朝阳区一模) 数学中有许多寓意美好的曲线,曲线22322:()4C x y x y +=被称为“四叶玫瑰线”(如图所示).4 / 12给出下列三个结论:①曲线C 关于直线y x =对称;②曲线C 上任意一点到原点的距离都不超过1;的正方形,使得曲线C 在此正方形区域内(含边界). 其中,正确结论的序号是________.(2020石景山一模) 圆2228130+--+=x y x y 的圆心到直线10ax y +-=的距离为1,则a =( )A. 43-B. 34-C.D. 2(2020石景山一模)已知F 是抛物线C :24y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN =______.(2020怀柔一模) 已知抛物线22y px =的焦点与双曲线2214x y -=的右顶点重合,则抛物线的焦点坐标为__________;准线方程为___________.(2020怀柔一模)6.已知圆C 与圆(x -1)2+y 2=1关于原点对称,则圆C 的方程为( ) A. x 2+y 2=1 B. x 2+(y +1)2=1 C. x 2+(y -1)2=1 D. (x +1)2+y 2=15 / 12(2020密云一模) 如果直线1ax by +=与圆22:1C x y +=相交,则点(),M a b 与圆C 的位置关系是( )A. 点M 在圆C 上B. 点M 在圆C 外C. 点M 在圆C 内D. 上述三种情况都有可能(2020密云一模) 已知斜率为k 的直线l 与抛物线2:4C y x =交于A ,B 两点,线段AB 的中点为()()1,0M m m >,则斜率k 的取值范围是( )A. (,1)-∞B. (,1]-∞C. (1,)+∞D. [1,)+∞(2020密云一模) 双曲线221y x -=的焦点坐标是_______________,渐近线方程是_______________.(2020顺义区一模) 直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,当AOB ∆的面积达到最大时,k =________.(2020顺义区一模) 抛物线()220y px p =>的焦点是双曲线22x y p -=的一个焦点,则p =( )A. B. 8 C. 4 D. 1(2020延庆一模) 已知双曲线221169x y C -=:的右焦点为F ,过原点O 的直线与双曲线C 交于,A B 两点,且60AFB ∠=︒,则BOF 的面积为( )6 / 12A.B.C.32D.92(2020延庆一模) 经过点()2,0M -且与圆221x y +=相切的直线l 的方程是____________.(2020海淀一模) 已知椭圆C :22221(0)x y a b a b+=>>12(,0),(,0),(0,)A a A a B b -,12A BA ∆的面积为2.(I)求椭圆C 的方程;(II)设M 是椭圆C 上一点,且不与顶点重合,若直线1A B 与直线2A M 交于点P ,直线1A M 与直线2A B 交于点Q .求证:△BPQ 为等腰三角形.(2020西城一模) 设椭圆22:12x E y +=,直线1l 经过点()0M m ,,直线2l 经过点()0N n ,,直线1l 直线2l ,且直线12l l ,分别与椭圆E 相交于A B ,两点和C D ,两点.7 / 12(Ⅰ)若M N ,分别为椭圆E 的左、右焦点,且直线1l x ⊥轴,求四边形ABCD 的面积;(Ⅱ)若直线1l 的斜率存在且不为0,四边形ABCD 为平行四边形,求证:0m n +=; (Ⅲ)在(Ⅱ)的条件下,判断四边形ABCD 能否为矩形,说明理由.(2020东城一模) 已知椭圆22:36C x y +=的右焦点为F . (1)求点F 的坐标和椭圆C 的离心率;(2)直线():0l y kx m k =+≠过点F ,且与椭圆C 交于P ,Q 两点,如果点P 关于x 轴的对称点为'P ,判断直线'P Q 是否经过x 轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.8 / 12(2020丰台一模) 已知椭圆C :22221y x a b +=(0a b >>)的离心率为2,点1,0P 在椭圆C 上,直线0y y =与椭圆C 交于不同的两点A ,B. (1)求椭圆C 的方程;(2)直线PA ,PB 分别交y 轴于M ,N 两点,问:x 轴上是否存在点Q ,使得2OQN OQM π∠+∠=?若存在,求出点Q 的坐标;若不存在,请说明理由.9 / 12(2020朝阳区一模) 已知椭圆2222:1(0)x y C a b a b+=>>,圆222:O x y r +=(O 为坐标原点).过点(0,)b 且斜率为1的直线与圆O 交于点(1,2),与椭圆C 的另一个交点的横坐标为85-. (1)求椭圆C 的方程和圆O 的方程;(2)过圆O 上的动点P 作两条互相垂直的直线1l ,2l ,若直线1l 的斜率为(0)k k ≠且1l 与椭圆C 相切,试判断直线2l 与椭圆C 的位置关系,并说明理由.(2020石景山一模) 已知椭圆C :22221x y a b +=(0a b >>)的右焦点为()1,0F,离心率为2.直线l 过点F 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (1)求椭圆C 的方程;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值;(3)延长线段OM 与椭圆C 交于点P ,若四边形OAPB 为平行四边形,求此时直线l 的斜率.10 / 12(2020怀柔一模)已知椭圆()222210x y a b a b +=>>,离心率为2.(1)求椭圆的方程;(2)设,A B 是椭圆上关于坐标原点对称的两点,且点A 在第一象限,AE x ⊥轴,垂足为E ,连接BE 并延长交椭圆于点D ,证明:ABD ∆是直角三角形.(2020密云一模)已知椭圆2222:1(0)x y C a b a b +=>>()0,1A .11 / 12 (1)求椭圆C 的标准方程;(2)点P 是椭圆上异于短轴端点A ,B 的任意一点,过点P 作PQ y ⊥轴于Q ,线段PQ 的中点为M .直线AM 与直线1y =-交于点N ,D 为线段BN 的中点,设O 为坐标原点,试判断以OD 为直径的圆与点M 的位置关系.(2020顺义区一模)已知椭圆C :223412x y +=.(1)求椭圆C 的离心率;(2)设,A B 分别为椭圆C 的左右顶点,点P 在椭圆C 上,直线AP ,BP 分别与直线4x =相交于点M ,N .当点P 运动时,以M ,N 为直径的圆是否经过x 轴上的定点?试证明你的结论.(2020延庆一模)已知椭圆22221(0)x ya ba bG+=>>:的左焦点为(),F且经过点(),,C A B分别是G的右顶点和上顶点,过原点O的直线l与G交于,P Q两点(点Q在第一象限),且与线段AB交于点M.(1)求椭圆G的标准方程;(2)若3PQ=,求直线l的方程;(3)若BOP△的面积是BMQ的面积的4倍,求直线l的方程.12/ 12。
2020届北京市大兴区高三第一次模拟考试数学试题(解析版)

2020届北京市大兴区高三第一次模拟考试数学试题一、单选题1.在复平面内,复数21i+对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【解析】利用复数的运算法则、几何意义即可得出. 【详解】在复平面内,复数21i +=()()()2111i i i -+-=1﹣i 对应的点(1,﹣1)位于第四象限. 故选D . 【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题. 2.已知集合{|2}A x x k k ==∈Z ,,{|22}B x x =-≤≤,则A B =I ( ) A .[11]-, B .[22]-, C .{02},D .{202}-,, 【答案】D【解析】直接根据交集运算,即可得答案; 【详解】Q {|2}A x x k k ==∈Z ,,{|22}B x x =-≤≤,∴{202}A B =-I ,,,故选:D. 【点睛】本题考查集合的交运算,考查运算求解能力,属于基础题.3.已知等差数列{}n a 的前n 项和为n S ,20a =,41a =,则4S 等于( ) A .12B .1C .2D .3【答案】B【解析】根据数列的通项公式可求得1,a d 的值,再代入前n 项和公式,即可得答案; 【详解】Q 1111,0,231,1,2a a d a d d ⎧=-⎪+=⎧⎪⇒⎨⎨+=⎩⎪=⎪⎩∴4143141222S ⋅=-⋅+⋅=,故选:B. 【点睛】本题考查等差数列的通项公式和前n 项和公式,考查运算求解能力,属于基础题. 4.下列函数中,在区间(0,)+∞上单调递增且存在零点的是( ) A .e x y = B.1y =C .12log y x =-D .2(1)y x =-【答案】C【解析】根据函数的零点为方程的根,结合解析式判断函数的单调性,即可得答案; 【详解】对A ,Q 方程e 0x =无解,∴e x y =不存在零点,故A 错误; 对B ,Q10=无解,∴1y =不存在零点,故B 错误;对D ,2(1)y x =-在(0,1)单调递减,在(1,)+∞单调递增,∴2(1)y x =-在(0,)+∞不具有单调性,故D 错误; 故选:C. 【点睛】本题考查通过函数的解析式研究函数的零点和单调性,考查转化与化归思想,属于基础题.5.在(2)n x -的展开式中,只有第三项的二项式系数最大,则含x 项的系数等于( ) A .32- B .24- C .8 D .4【答案】A【解析】根据展开式的第三项的二项式系数最大可得4n =,再由二项式展开式的通项公式,即可得答案; 【详解】 由题意得4n =,∴414(2),0,,4r rr r T C x r -+=-=L , 当3r =时,3344(2)32T C x x =⋅⋅-=-,∴含x 项的系数等于32-,故选:A. 【点睛】本题考查二项式定理的运用,考查逻辑推理能力、运算求解能力,求解时注意二项式系数与系数的区别.6.若抛物线24y x =上一点M 到其焦点的距离等于2,则M 到其顶点O 的距离等于( )A B .2C .D .3【答案】C【解析】设点11(,)M x y ,根据焦半径公式可求得M 的坐标,再利用两点间的距离公式,即可得答案; 【详解】设点11(,)M x y ,F 为抛物线的焦点,Q 11||121MF x x =+=⇒=,∴214y =,∴||MO ==,故选:C. 【点睛】本题考查抛物线的焦半径公式,考查运算求解能力,属于基础题.7.已知数列{}n a 是等比数列,它的前n 项和为n S ,则“对任意*n ∈N ,0n a >”是“数列{}n S 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【解析】根据1(2)n n n a S S n -=-≥这一关系,即可得答案; 【详解】Q 1(2)n n n a S S n -=-≥,∴0n a >10n n S S -⇒->,∴1n n S S ->,∴“数列{}n S 为递增数列”,若“数列{}n S 为递增数列”,则1100n n n n n S S S S a -->⇒->⇒>,∴“对任意*n ∈N ,0n a >”是“数列{}n S 为递增数列”的充分必要条件,故选:C. 【点睛】本题考查n a 与n S 的关系、充分必要条件的判断,考查转化与化归思想,考查逻辑推理能力、运算求解能力.8.某四棱锥的三视图如图所示,如果方格纸上小正方形的边长为1,那么该几何体的最长棱的棱长为( )A .3B .10C .13D .17【答案】D【解析】根据几何体的三视图可得,该几何体是四棱锥A BCDE -,再计算各条棱的长度,即可得答案; 【详解】根据几何体的三视图可得,该几何体是四棱锥A BCDE -∴13AB AD ==10AC =,17AE =2BE DE ==,5BC =,1CD =, ∴该几何体的最长棱的棱长为17AE =故选:D. 【点睛】本题考查利用三视图还原几何体的直观图、棱长的计算,考查空间想象能力、运算求解能力,求解时注意准确还原几何体的直观图是关键.9.已知函数π()sin()6f x x ω=+(0)>ω.若关于x 的方程()1f x =在区间[0π],上有且仅有两个不相等的实根,则ω的最大整数值为( ) A .3 B .4 C .5 D .6【答案】B【解析】利用换元法求出π6x ω+的取值范围,再根据三角函数的图象得到ω的不等式,即可得答案; 【详解】 令π6t x ω=+,Q [0π]x ∈,,∴ππ666x πωωπ≤+≤+, Q sin y t =的图象如图所示,Q 关于x 的方程()1f x =在区间[0π],上有且仅有两个不相等的实根, ∴sin 1y t ==在π[,]66πωπ+上有且仅有两个不相等的实根,∴5π175********ππωπω≤+≤⇒≤≤, ∴ω的最大整数值为4,故选:B. 【点睛】本题考查利用换元法和图象法解三角方程,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意换元后新元的取值范围.10.如图,假定两点P ,Q 以相同的初速度运动.点Q 沿直线CD 作匀速运动,CQ x =;点P 沿线段AB (长度为710单位)运动,它在任何一点的速度值等于它尚未经过的距离(PB y =).令P 与Q 同时分别从A ,C 出发,那么,定义x 为y 的纳皮尔对数,用现在的数学符号表示x 与y 的对应关系就是7710110()exy =,其中e 为自然对数的底.当点P 从线段AB 的三等分点移动到中点时,经过的时间为( )A .ln 2B .ln3C .3ln 2D .4ln 3【答案】D【解析】设P 运动点三等分点的时间为1t ,此时Q 运动的距离为1x ,P 运动点中点的时间为2t ,此时Q 运动的距离为2x ,再利用Q 做匀速运动,利用路程除以速度可得时间. 【详解】设P 运动点三等分点的时间为1t ,此时Q 运动的距离为1x ,P 运动点中点的时间为2t ,此时Q 运动的距离为2x ,Q 两点P ,Q 以相同的初速度运动,设点Q 的运动速度为710v =,∴177710211010()3e x ⋅=,277710111010()2ex⋅=, ∴711210log 3ex =,721110log 2ex =, ∴214ln 3x x t v -==, 故选:D. 【点睛】本题考查数学中的新定义问题、对数的运算法则,考查函数与方程思想、转化与化归思想、,考查逻辑推理能力、运算求解能力,求解时注意对数运算法则的运用.二、填空题11.已知向量(11)a =-r ,,(2)b t =r ,, 若//a b r r,则t =_______;【答案】2-【解析】根据向量平行,向量坐标交叉相乘相等,即可得答案; 【详解】Q //a b r r,∴1122t t -⨯=⨯⇒=-,故答案为:2t =-. 【点睛】本题考查向量平行的坐标运算,考查运算求解能力,属于基础题.12.若函数22()cos sin f x x x =-在区间[0]m ,上单调减区间,则m 的一个值可以是_______; 【答案】4π(答案不唯一,只要π02m <≤)【解析】由题意可得'()0f x ≤在区间[0]m ,上恒成立,即可得答案; 【详解】Q ()cos 2f x x =,∴'()2sin 2f x x =-,∴'()2sin 20f x x =-≤在区间[0]m ,上恒成立, ∴sin 20x ≥在区间[0]m ,上恒成立, ∴取4m π=,显然sin 20x ≥恒成立,故答案为:4π. 【点睛】本题考查余弦二倍角公式、三角函数的图象与性质,考查运算求解能力,求解时注意结合三角函数的图象进行求解.13.若对任意0x >,关于x 的不等式1a x x+≤恒成立,则实数a 的范围是_______;【答案】(2]-∞,【解析】求出函数1x x+的最小值,即可得到答案; 【详解】Q 0x >,∴12x x+≥,等号成立当且仅当1x =, ∴2a ≤,故答案为:(2]-∞,. 【点睛】本题考查不等式恒成立问题求参数的取值范围,考查运算求解能力.14.在直角坐标系xOy 中,双曲线22221x y a b-=(00a b >>,)的离心率2e >,其渐近线与圆22(2)4x y +-= 交x 轴上方于A B ,两点,有下列三个结论: ①||||OA OB OA OB →→→→-<+ ; ②||OA OB →→-存在最大值; ③ ||6OA OB →→+>.则正确结论的序号为_______. 【答案】①③【解析】根据双曲线离心率的范围可得两条渐近线夹角的范围,再根据直线与圆的位置关系及弦长,即可得答案; 【详解】Q 21()23c b be a a a==+>⇒>,∴60AOB ∠<o ,对①,根据向量加法的平行四边形法则,结合60AOB ∠<o ,可得||||OA OB OA OB →→→→-<+成立,故①正确;对②,||||OA OB AB →→-=u u u r ,由于60AOB ∠<o ,∴AOB ∠没有最大值,∴||AB u u u r 没有最大值, 故②错误;对③,当60AOB ∠=o 时,||||22cos303OA OB ==⋅=o∴21||12122362OA OB OA OB →→+=++⋅⋅⋅=u u u r u u u r ,又Q 60AOB ∠<o ,∴2||36OA OB →→+>, ∴||6OA OB →→+>,故③正确;故答案为:①③. 【点睛】本题考查向量与双曲线的交会、向量的数量积和模的运算,考查数形结合思想,考查逻辑推理能力、运算求解能力.三、双空题15.已知()()A a r B b s ,,,为函数2log y x =图象上两点,其中a b >.已知直线AB 的斜率等于2,且||AB =a b -=_______;ab=______; 【答案】1 4【解析】根据斜率公式和两点间的距离公式,即可求得答案; 【详解】Q 直线AB 的斜率等于2,且||AB =∴且22log log 2b ab a-=-,解得:||1b a -=,Q a b >,∴1a b -=;∴22log log 24b a ab a b-=⇒=-;故答案为:1;4. 【点睛】本题考查直线的斜率公式和两点间的距离公式,考查转化与化归思想,考查逻辑推理能力运算求解能力,求解时注意对数的运算法则的应用.四、解答题16.在ABC ∆中,1c =,2π3A =,且ABC ∆的面积为2. (1)求a 的值;(2)若D 为BC 上一点,且 ,求sin ADB ∠的值. 从①1AD =,②π6CAD ∠=这两个条件中任选一个,补充在上面问题中并作答.【答案】(1)a =(2)选①,sin ADB ∠=;选②,sin ADB ∠=. 【解析】(1)利用三角形的面积公式得1sin 2ABC S bc A ∆=,再利用余弦定理,即可得答案;(2)①当1AD =时,由正弦定理sin sin b BC B BAC =∠,可求得sin 7B =,再由ADB B ∠=∠,可求得答案;②当30︒∠=CAD 时,由余弦定理和诱导公式,可求得答案; 【详解】(1) 由于 1c =,2π3A =,1sin 2ABC S bc A ∆=, 所以2b =,由余弦定理 2222cos a b c bc A =+-,解得a =(2)①当1AD =时, 在ABC ∆中,由正弦定理sin sin b BCB BAC=∠,即2sin B=,所以sin B =. 因为1AD AB ==,所以ADB B ∠=∠. 所以sin sin ADB B ∠=,即sin ADB ∠=. ②当30︒∠=CAD 时, 在ABC ∆中,由余弦定理知,222cos2AB BC AC B AB BC +-===⋅.因为120A ︒=,所以90DAB ︒∠=, 所以π2B ADB ∠+∠=, 所以sin cos ADB B ∠= ,即sin ADB ∠=. 【点睛】本题考查正余弦定理、三角形面积公式、诱导公式等知识的综合运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.17.为了调查各校学生体质健康达标情况,某机构M 采用分层抽样的方法从A 校抽取了m 名学生进行体育测试,成绩按照以下区间分为七组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],并得到如下频率分布直方图.根据规定,测试成绩低于60分为体质不达标.已知本次测试中不达标学生共有20人.(1)求m 的值;(2)现从A 校全体同学中随机抽取2人,以频率作为概率,记X 表示成绩不低于90分的人数,求X 的分布列及数学期望;(3)另一机构N 也对该校学生做同样的体质达标测试,并用简单随机抽样方法抽取了100名学生,经测试有20名学生成绩低于60分.计算两家机构测试成绩的不达标率,你认为用哪一个值作为对该校学生体质不达标率的估计较为合理,说明理由. 【答案】(1)200m =;(2)分布列详见解析,数学期望为0.2;(3)用机构M 测试的不达标率0.1估计A 校不达标率较为合理,理由详见解析.【解析】(1)由频率分布直方图知,(0.0020.0020.006)1020m ⨯++⨯=,解方程可得m 的值;(2)由图知,每位学生成绩不低于90分的频率为0.0110=0.1⨯,由已知X 的所有可能取值为012,,,再根据二项分布,即可得答案; (3)机构M 抽测的不达标率为200.1200= ,机构N 抽测的不达标率为200.2100=,再从样本能否较好反映总体的分布情况说明理由. 【详解】(1)由频率分布直方图知,(0.0020.0020.006)1020m ⨯++⨯=, 解得200m =.(2)由图知,每位学生成绩不低于90分的频率为0.0110=0.1⨯ , 由已知,X 的所有可能取值为012,,, 则022(0)(10.1)0.81P X C ==⋅-=, 12(1)0.1(10.1)0.18P X C ==⋅⋅-=,222(2)0.10.01P X C ==⋅=.所以X 的分布列为X 0 1 2 P 0.810.180.01所以=00.81+10.1820.010.2EX ⨯⨯+⨯=. (3)机构M 抽测的不达标率为200.1200= , 机构N 抽测的不达标率为200.2100=. (以下答案不唯一,只要写出理由即可)①用机构M 测试的不达标率0.1估计A 校不达标率较为合理.理由:机构M 选取样本时使用了分层抽样方法,样本量也大于机构N ,样本更有代表性,所以,能较好反映了总体的分布. ②没有充足的理由否认机构N 的成绩更合理.理由:尽管机构N 的样本量比机构M 少,但由于样本的随机性,不能排除样本较好的反映了总体的分布,所以,没有充足的理由否认机构N 的成绩更合理. 【点睛】本题考查频率分布直方图、二项分布、样本与总体的关系,考查数据处理能力,求解时注意在说理由时要根据统计的相关知识来回答.18.如图,在三棱柱111ABC A B C -中,1AB AC BC AA ===,160BCC ∠=o,11ABC BCC B ⊥平面平面,D 是BC 的中点,E 是棱11A B 上一动点.(1)若E 是棱11A B 的中点,证明://DE 平面11ACC A ; (2)求二面角1C CA B --的余弦值;(3)是否存在点E ,使得1DE BC ⊥,若存在,求出E 的坐标,若不存在,说明理由.【答案】(1)详见解析;(2)5;(3)不存在,理由详见解析. 【解析】(1)取11A C 中点为P ,连结CP EP ,,证明//CP DE ,再利用线面平行判定定理,即可证得结论;(2)先证明1DC DA DB ,,两两垂直,再建立如图所示的空间直角坐标系D xyz -,求出平面1ACC 的法向量(131)n =-,,r ,平面ABC 的法向量为1(003)DC =,,uuu u r,再利用向量的夹角公式,即可得答案;(3)设111(01)A E A B λλ=≤≤uuu r uuu u r ,由10DE BC ⋅=u u u r u u u u r,解得2λ=与假设矛盾,从而得到结论. 【详解】(1)证明:取11A C 中点为P ,连结CP EP ,, 在111A B C ∆中,因为E P 、为1111A B AC 、的中点,所以11//EP B C 且1112EP B C =. 又因为D 是BC 的中点,12CD BC =, 所以//EP BC 且EP CD =, 所以CDEP 为平行四边形 所以//CP DE .又因为DE ⊄平面11ACC A , .CP ⊂平面11ACC A ,所以//DE 平面11ACC A . (2)连结1C D AD 、,因为ABC ∆是等边三角形,D 是BC 的中点, 所以AD BC ⊥,因为11BC AA CC ==,160BCC ∠=o,所以1C D BC ⊥.因为平面ABC ⊥平面11BCC B , 平面ABC I 平面11BCC B BC =,1C D ⊂平面11BCC B ,所以1C D ⊥平面ABC , 所以1DC DA DB ,,两两垂直. 如图,建立空间直角坐标系D xyz -,则(300)A ,,,(010)C -,,,1(003)C ,,, 1(013)CC =u u u u r ,,,(310)CA =u u u r,, 设平面1ACC 的法向量为()n x y z =,,r, 则100CC n CA n ⎧⋅=⎪⎨⋅=⎪⎩u u u u u ru r u r r , 即3030y z x y ⎧=⎪+=, 令1x =,则3y =1z =,所以(131)n =,,r. 平面ABC 的法向量为1(003DC =,,uuu u r, 1115cos ||||DC n DC n DC n ⋅<>==⋅,uuu u r ruuu u r r uuu u r r .又因为二面角11C CA B --为锐二面角,所以二面角11C CA B --.(3)11A ,11(10)A B =uuu u r, 设111(01)A E A B λλ=≤≤uuu r uuu u r,则1(0)A E λ=,,uuu r,所以1E λ+,,1DE λ=+,uuu r,所以1(01BC =-,uuu r,假设1DE BC ⊥,则10DE BC ⋅=u u u r u u u u r,解得2λ=,这与已知01λ≤≤矛盾.∴不存在点E . 【点睛】本题考查线面平行判定定理的运用、向量法求二面角的大小及利用向量证明直线垂直,考查转化与化归思想,考查空间想象能力、运算求解能力.19.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,且经过点(2,0),一条直线l 与椭圆C 交于P ,Q 两点,以PQ 为直径的圆经过坐标原点O . (1)求椭圆C 的标准方程; (2)求证:2211||||OP OQ +为定值.【答案】(1)22143x y +=;(2)详见解析. 【解析】(1)因为椭圆经过点(2,0),所以2a =,再根据离心率,即可求得椭圆的方程;(2)①若直线l 的斜率存在时,11(,)P x y ,22(,)Q x y ,:l y kx m =+,与椭圆方程联立,由OP OQ ⊥可得12120x x y y +=,从而得到,k m 的关系,结合点到直线的距离公式,可证明结论;②若直线l 的斜率不存在,则有1OP k =±,可证结论也成立. 【详解】(1)因为椭圆经过点(2,0),所以2a =, 又因为12c a =,则1c =,由222b a c =-,得23b =, 所以椭圆的标准方程为22143x y +=.(2)①若直线l 的斜率存在时,设:l y kx m =+,与椭圆方程联立得:22143y kx mx y =+⎧⎪⎨+=⎪⎩,有222(34)84120k x kmx m +++-=, 由题意,>0∆,设11(,)P x y ,22(,)Q x y ,所以122843km x x k +=-+,212241243m x x k -=+. 因为以PQ 为直径的圆过原点O ,由OP OQ ⊥,得 12120x x y y +=, 即1212()0()x x kx m kx m +++=,整理得,2212(1)7k m +=, 而22222222211||||||||||||||||||OP OQ PQ OP OQ OP OQ OP OQ ++== 设h 为O 到l 的距离,则 ||||||OP OQ PQ h ⋅=⋅所以222111||||OP OQ h +=,而h =,所以2211||||OP OQ +=221712k m +=. ②若直线l 的斜率不存在,则有1OP k =±, 不妨设1OP k =,设11(,)P x y ,有11x y =,代入椭圆方程22143x y +=得,21127x =,2224||||7OP OQ ==,即2211772||||2412OP OQ +=⨯=,综上22117||||12OP OQ +=.【点睛】本题考查椭圆标准方程的求解、离心率的概念、椭圆中的定值问题,考查函数与方程思想,考查逻辑推理能力、运算求解能力,求解时注意对斜率进行讨论. 20.已知函数()ln 1axf x x x =-+. (1)若1a =,求曲线()y f x =在点(1(1))f ,处的切线方程; (2)求证:函数()f x 有且只有一个零点. 【答案】(1)3450x y --=;(2)详见解析.【解析】(1)对函数进行求导,求出切线的斜率和切点坐标,即可得答案; (2)函数的定义域为(0,)+∞,要使函数()f x 有且只有一个零点,只需方程(1)ln 0x x ax +-=有且只有一个根,即只需关于x 的方程(1)ln 0x xa x+-=在(0)+∞,上有且只有一个解,利用导数可得函数(1)ln ()x xg x a x+=-在(0)+∞,单调递增,再利用零点存在定理,即可得答案; 【详解】(1)当1a =时,函数()ln 1xf x x x =-+,0x >,1(1)2f =-, 222111()(1)(1)x x f x x x x x ++'=-=++,3(1)4k f '==,所以函数()y f x =在点(1(1))f ,处的切线方程是3450x y --=. (2)函数的定义域为(0,)+∞,要使函数()f x 有且只有一个零点,只需方程(1)ln 0x x ax +-=有且只有一个根,即只需关于x 的方程(1)ln 0x xa x+-=在(0)+∞,上有且只有一个解. 设函数(1)ln ()x xg x a x+=-, 则21ln ()x xg x x +-'=,令()1ln h x x x =+-,则11()1x h x x x-'=-=, 由()0h x '=,得1x =.由于min ()(1)20h x h ==>, 所以()0g x '>,所以(1)ln ()x xg x a x+=-在(0,)+∞上单调递增, 又(1)g a =-,(e )eaa a g =,①当0a =时, (1)0g =,函数()g x 在(0,)+∞有且只有一个零点,②当0a ≠时,由于2(1)(e )0eaa a g g =-<,所以存在唯一零点.综上所述,对任意的a ∈R 函数()y f x =有且只有一个零点. 【点睛】本题考查导数的几何意义、利用导数证明函数的零点个数,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力,求解时注意对函数进行二次求导的运用.21.已知数列1210a a a L ,,,满足:对任意的{1,2,3,4,5,6,7,8,9,10}i j ∈,,若i j ≠,则i j a a ≠,且{1,2,3,4,5,6,7,8,9,10}i a ∈,设集合12{|1,2,3,4,5,6,7,8}i i i A a a a i ++=++=,集合A 中元素最小值记为()m A ,集合A 中元素最大值记为()n A .(1)对于数列:10612783954,,,,,,,,,,写出集合A 及()()m A n A ,; (2)求证:()m A 不可能为18;(3)求()m A 的最大值以及()n A 的最小值.【答案】(1){17,9,10,18,20}A =,()9m A =,()20n A =;(2)详见解析;(3)()m A 的最大值为17, ()n A 的最小值为16.【解析】(1)由题意易得{17,9,10,18,20}A =,()9m A =,()20n A =.(2)利用反证法,假设()18m A ≥,可推出11a =,101a =这一集合元素互异性的矛盾; (3)首先求()m A ,由(2)知()18m A <,而()17m A =是可能的;再证明:()n A 的最小值为16. 【详解】(1)由题意易得{17,9,10,18,20}A =,()9m A =,()20n A =. (2)证明:假设()18m A ≥,设S =12345678910()()()55a a a a a a a a a a +++++++++=, 则10553()S m A a =+≥=10318a ⨯+,即101a ≤,因为1(1,2,3,,10)i a i =L ≥,所以101a =,同理,设S =12345678910()()()55a a a a a a a a a a +++++++++=,可以推出11a =,i a (1,2,,10)i =L 中有两个元素为1,与题设矛盾,故假设不成立,()m A 不可能为18.(3)()m A 的最大值为17,()n A 的最小值为16.①首先求()m A ,由(2)知()18m A <,而()17m A =是可能的. 当()17m A =时,设S =12345678910()()()55a a a a a a a a a a +++++++++= 则10553()S m A a =+≥=10317a ⨯+即104a ≤,又S =12345678910()()()55a a a a a a a a a a +++++++++= 得77553()51S m A a a =+=+≥,即74a ≤. 同理可得:4(1,4,7,10)i a i =≤. 对于数列:1,6,10,2,7,8,3,9,5,4此时{17,18,19,20}A =,()17()20m A n A ==,,满足题意. 所以()m A 的最大值为17; ②现证明:()n A 的最小值为16.先证明()15n A ≤为不可能的,假设()15n A ≤. 设S =12345678910()()()55a a a a a a a a a a +++++++++=,可得11553()315n A a a +⨯+≤≤,即110a ≥,元素最大值为10,所以110a =. 又12345678910()()()55a a a a a a a a a a +++++++++=443()315n A a a +⨯+≤≤, 同理可以推出410a =,矛盾,假设不成立,所以()16n A ≥. 数列为:7,6,2,8,3,4,9,1,5,10时,{13,14,15,16}A =,()13()16m A n A ==,,A 中元素的最大值为16.所以()n A 的最小值为16. 【点睛】本题考查集合的新定义和反证法的运用,考查反证法的证明,考查逻辑推理能力、运算求解能力,属于难题.。
2020年北京各区高三一模数学试题分类汇编(一)

2020年北京各区高三一模数学试题分类汇编(一)复数(2020海淀一模)(1)在复平面内,复数i(2i)-对应的点位于(A )第一象限 (B )第二象限 (C )第三象限(D )第四象限(2020西城一模)2.若复数z =(3−i)(1+i),则|z|= (A)2√2(B)2√5(C)√10(D)20(2020东城一模)(3) 已知21i ()1ia +a =-∈R ,则a =(A) 1 (B) 0 (C) 1- (D)2-(2020朝阳一模)(11)若复数21iz =+,则||z =________. (2020石景山一模) 2. 在复平面内,复数5+6i , 3-2i 对应的点分别为A,B.若C 为线段AB 的中点,则点C对应的复数是 A. 8+4iB. 2+8iC. 4+2iD. 1+4i(2020丰台一模)3. 若复数z 满足i 1iz=+,则z 对应的点位于(A )第一象限(B )第二象限(C )第三象限(D )第四象限(2020西城5月诊断)02.若复数z 满足i 1i z ⋅=-+,则在复平面内z 对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限集合(2020海淀一模)(2)已知集合{ |0 3 }A x x =<<,A B ={ 1 },则集合B 可以是(2020西城一模)1.设集合A ={x|x <3},B ={x|x <0,或x >2},则A ∩B = (A)(−∞,0)(B)(2,3) (C)(−∞,0)∪(2,3)(D)(−∞,3)(2020东城一模)(1) 已知集合{}1>0A x x =-,{}1012B =-,,,,那么A B =(A){}10-, (B) {}01, (C) {}1012-,,, (D) {}2(2020朝阳一模)(1)已知集合{}1,3,5A =,{}|(1)(4)0B x x x =∈--<Z ,则AB =(A ){ 1 2 }, (B ){ 1 3 }, (C ){ 0 1 2 },, (D ){ 1 2 3 },,(A ){}3(B ){}1,3 (C ){}1,2,3,5 (D ){}1,2,3,4,5(2020石景山一模)1. 设集合}4321{,,,=P ,},3|||{R x x x Q ∈≤=,则Q P ⋂等于 A. {}1 B. {}1,23,C. {}34,D. {}3,2,1,0,1,2,3---(2020西城5月诊断)01.设集合{}3A x x =<,{}2,B x x k k ==∈Z ,则AB =(A ){}0,2 (B ){}2,2-(C ){}2,0,2-(D ){}2,1,0,1,2--(2020丰台一模)1.若集合{|12}A x x =∈-<<Z ,2{20}B x x x =-=,则AB =(A ){0} (B ){01},(C ){012},,(D ){1012}-,,,(2020石景山一模)15. 石景山区为了支援边远山区的教育事业,组织了一支由13名一线中小学教师组成的支教团队,记者采访其中某队员时询问这个团队的人员构成情况,此队员回答:①有中学高级教师;②中学教师不多于小学教师;③小学高级教师少于中学中级教师;④小学中级教师少于小学高级教师;⑤支教队伍的职称只有小学中级、小学高级、中学中级、中学高级;⑥无论是否把我计算在内,以上条件都成立.由此队员的叙述可以推测出他的学段及职称分别是_______、_______.计数原理(2020朝阳一模)(6)现有甲、乙、丙、丁、戊5种在线教学软件,若某学校要从中随机选取3种作为教师“停课不停学”的教学工具,则其中甲、乙、丙至多有2种被选取的概率为 (A )23 (B ) 25 (C ) 35 (D ) 910(2020石景山一模)5. 将4位志愿者分配到博物馆的3个不同场馆服务,每个场馆至少1人,不同的分配 方案有( )种 A. 36B. 64C. 72D. 81二项式定理(2020海淀一模)(5)在61(2)x x-的展开式中,常数项为(A )120- (B )120(C )160- (D )160(2020西城一模)11.在(x +1x )6的展开式中,常数项为.(用数字作答)(2020东城一模)(12) 在62()x x+的展开式中常数项为 . (用数字作答)三角函数与解三角形(2020海淀一模)(6)如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚动到圆M '时,圆M '与直线l 相切于点B ,点A 运动到点A ',线段AB 的长度为3π2,则点M '到直线BA '的距离为 (A )1 (B )32 (C )22(D )12(2020西城一模)9.已知函数f(x)=sinx1+2sinx 的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有 ①绕着x 轴上一点旋转180°; ②沿x 轴正方向平移; ③以x 轴为轴作轴对称;④以x 轴的某一条垂线为轴作轴对称. (A)①③(B)③④(C)②③(D)②④(2020东城一模)(7)在平面直角坐标系中,动点M 在单位圆上按逆时针方向作匀速圆周运动,每12分钟转动一周.若点M 的初始位置坐标为(,)1322,则运动到3分钟时,动点M 所处位置的坐标是 (A)(,)3122 (B) (,)-1322(C) (,)-3122(D) (,)--3122(2020朝阳一模)(8)已知函数()=3sin()(>0)f x ωxφω的图象上相邻两个最高点的距离为π,则“6ϕπ=”是“()f x 的图象关于直线3x π=对称”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(2020石景山一模)(2020丰台一模)9. 将函数()sin (0)f x x ωω=>的图象向左平移π2个单位长度后得到函数()g x 的图象,且(0)1g =,下列说法错误..的是 (A )()g x 为偶函数(B )π()02g -=(C )当5ω=时,()g x 在π[0]2,上有3个零点(D )若()g x 在π[]50,上单调递减,则ω的最大值为9(2020西城5月诊断)05.在ABC ∆中,若::4:5:6a b c =,则其最大内角的余弦值为(A )18(B )14(C )310 (D )35(2020西城5月诊断)13.设函数2()sin 22cos f x x x =+,则函数()f x 的最小正周期为____;若对于任意x ∈R ,都有()f x m ≤成立,则实数m 的最小值为____.(2020西城一模)14.函数f(x)=sin(2x +π4)的最小正周期为 ;若函数f(x)在区间(0,α)上单调递增,则α的最大值为.(2020海淀一模)(14)在△ABC中,AB =4B π∠=,点D 在边BC 上,23ADC π∠=,2CD =,则AD = ;△ACD 的面积为 . (2020东城一模)(14)ABC 是等边三角形,点D 在边AC 的延长线上,且3AD CD =,BD =则CD = ,sin ABD ∠= .(2020海淀一模)(17)(本小题共14分)已知函数212()2cos sin f x x x ωω=+. (Ⅰ)求(0)f 的值;(Ⅱ)从①11ω=,22ω=; ②11ω=,21ω=这两个条件中任选一个,作为题目的已知条件,求函数()f x 在[2π-,7.函数()cos 6f x x πω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π,则()f x 满足A. 在0,3π⎛⎫⎪⎝⎭上单调递增B. 图象关于直线6x π=对称C. 32f π⎛⎫= ⎪⎝⎭D. 当512x π=时有最小值1-]6π上的最小值,并直接写出函数()f x 的一个周期. 注:如果选择两个条件分别解答,按第一个解答计分。
2020届北京市东城区高三一模考试数学试题及答案

绝密★启用前2020届北京市东城区高三一模考试数学试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上一、单选题1.已知集合{}10A x x =->,{}1,0,1,2B =-,那么A B =()A .{}1,0-B .{}0,1C .1,0,1,2D .{}2答案:D先化简集合A ,再利用交集的定义求解. 解:∵{}1A x x =>,{}1,0,1,2B =-, ∴{}2A B ⋂=. 故选:D. 点评:本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.2.函数()f x =() A .(]1,2- B .[)2,+∞C .()[),11,-∞-+∞D .()[),12,-∞-+∞答案:B首先根据()f x =2201x x -≥+,再解不等式即可. 解:函数()f x =,令2201x x -≥+,得20x -≥, 解得2x ≥,所以()f x 的定义域为[)2,+∞.故选:B 点评:本题主要考查函数的定义域,属于简单题.3.已知()211i a R ai=-∈+,则a =() A .1B .0C .1-D .2-答案:A利用复数的除法得出211ai i+=-,进而可求得实数a 的值. 解:211i ai=-+,()()()21211111i ai i i i i +∴+===+--+,因此,1a =. 故选:A. 点评:本题考查利用复数相等求参数,考查复数除法法则的应用,考查计算能力,属于基础题.4.若双曲线()222:10y C x b b-=>的一条渐近线与直线21y x =+平行,则b 的值为()A .1 BC D .2答案:D求出双曲线C 中斜率为正数的渐近线方程,根据该直线与直线21y x =+平行可求得b 的值. 解:双曲线()222:10y C x b b-=>的一条渐近线y bx =与直线21y x =+平行,可得2b =.故选:D. 点评:本题考查利用双曲线的渐近线与直线平行求参数,考查计算能力,属于基础题.5.如图所示,某三棱锥的正(主)视图、俯视图、侧(左)视图均为直角三角形,则该三棱锥的体积为()A .4B .6C .8D .12答案:A利用三视图作出几何体的直观图,然后利用锥体的体积公式可求得该几何体的体积. 解:由三视图知,几何体是一个三棱锥1D BCD ,根据三棱锥的三视图的数据,设出三棱锥两两垂直的三条侧棱分别是4DC =,3BC =,12DD =,因此,三棱锥的体积是11432432⨯⨯⨯⨯=. 故选:A. 点评:本题考查利用三视图计算几何体的体积,解答的关键就是结合三视图还原几何体,考查空间想象能力与计算能力,属于基础题.6.已知1x <-,那么在下列不等式中,不成立的是() A .210x ->B .12x x+<- C .sin 0x x -> D .cos 0x x +>答案:D利用作差法可判断A 、B 选项的正误,利用正弦、余弦值的有界性可判断C 、D 选项的正误.综合可得出结论. 解:1x <-,则()()21110x x x -=-+>,()22112120x x x x x x x+++++==<,又sin x 、[]cos 1,1x ∈-,sin 0x x ∴->,cos 0x x +<.可得:ABC 成立,D 不成立. 故选:D. 点评:本题考查不等式正误的判断,一般利用作差法来进行判断,同时也要注意正弦、余弦有界性的应用,考查推理能力,属于中等题.7.在平面直角坐标系中,动点M 在单位圆上按逆时针方向作匀速圆周运动,每12分钟转动一周.若点M 的初始位置坐标为12⎛ ⎝⎭,则运动到3分钟时,动点M 所处位置的坐标是()A .12⎫⎪⎪⎝⎭B .1,22⎛-⎝⎭C .221⎛⎫-⎪ ⎪⎝⎭D .12⎛⎫- ⎪ ⎪⎝⎭答案:C计算出运动3分钟时动点M 转动的角,再利用诱导公式可求得结果. 解:每12分钟转动一周,则运动到3分钟时,转过的角为32122ππ⨯=.设点M 的初始位置的坐标为()cos ,sin αα,则1cos 2α=,sin 2α=, 运动到3分钟时动点M 所处位置的坐标是cos ,sin 22M ππαα⎛⎫⎛⎫⎛⎫'++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由诱导公式可得3cos sin 2παα⎛⎫+=-=- ⎪⎝⎭,1sin cos 22παα⎛⎫+== ⎪⎝⎭, 所以,点M '的坐标为3,21⎛⎫- ⎪ ⎪⎝⎭.故选:C.点评:本题考查点的坐标的求解,考查了诱导公式的应用,考查计算能力,属于基础题.8.已知三角形ABC ,那么“AB AC AB AC +>-”是“三角形ABC 为锐角三角形”的() A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件答案:B在不等式AB AC AB AC +>-两边平方并化简得0AB AC ⋅>,判断出角A 的属性,再结合充分条件、必要条件的定义判断即可. 解:三角形ABC 中,“AB AC AB AC +>-”0AB AC ⇒⋅>,可得A 为锐角,此时三角形ABC 不一定为锐角三角形.三角形ABC 为锐角三角形A ⇒为锐角.∴三角形ABC ,那么“AB AC AB AC +>-”是“三角形ABC 为锐角三角形”的必要不充分条件. 故选:B. 点评:本题考查必要而不充分条件的判断,同时也考查了平面向量数量积的应用,考查推理能力,属于中等题.9.设O 为坐标原点,点1,0A ,动点P 在抛物线22y x =上,且位于第一象限,M 是线段PA 的中点,则直线OM 的斜率的范围为() A .(]0,1 B.⎛ ⎝⎭ C.⎛ ⎝⎦ D.⎫+∞⎪⎪⎣⎭答案:C设点2,2y P y ⎛⎫⎪⎝⎭,可得出线段PA 的中点M 的坐标,利用基本不等式可求得直线OM 的斜率的取值范围. 解:设2,2y P y ⎛⎫ ⎪⎝⎭,0y >,所以PA 的中点22,42y y M ⎛⎫+ ⎪⎝⎭, 所以222222224OMyy k y y y y ===+++,因为2y y +≥102y y<≤=+,所以0,2OM k ⎛∈ ⎝⎦, 故选:C. 点评:本题考查直线斜率取值范围的计算,涉及基本不等式的应用,考查计算能力,属于中等题. 10.假设存在两个物种,前者有充足的食物和生存空间,而后者仅以前者为食物,则我们称前者为被捕食者,后者为捕食者.现在我们来研究捕食者与被捕食者之间理想状态下的数学模型.假设捕食者的数量以()x t 表示,被捕食者的数量以()y t 表示.如图描述的是这两个物种随时间变化的数量关系,其中箭头方向为时间增加的方向.下列说法正确的是()A .若在1t 、2t 时刻满足:()()12y t y t =,则()()12x t x t =B .如果()y t 数量是先上升后下降的,那么()x t 的数量一定也是先上升后下降C .被捕食者数量与捕食者数量不会同时到达最大值或最小值D .被捕食者数量与捕食者数量总和达到最大值时,被捕食者的数量也会达到最大值 答案:C根据图形可判断A 选项的正误;根据曲线上半段中()y t 和()x t 的变化趋势可判断B 选项的正误;根据捕食者和被捕食者的最值情况可判断C 选项的正误;取()10x t =,()100y t =可判断D 选项的正误. 解:由图可知,曲线中纵坐标相等时横坐标未必相等,故A 不正确;在曲线上半段中观察到()y t 是先上升后下降,而()x t 是不断变小的,故B 不正确;捕食者数量最大时是在图象最右端,最小值是在图象最左端,此时都不是被捕食者的数量的最值处, 同样当被捕食者的数量最大即图象最上端和最小即图象最下端时,也不是捕食者数量取最值的时候,所以被捕食者数量和捕食者数量不会同时达到最大和最小值,故C 正确; 当捕食者数量最大时在图象最右端,()()25,30x t ∈,()()0,50y t ∈,此时二者总和()()()25,80x t y t +∈,由图象可知存在点()10x t =,()100y t =,()()110x t y t +=,所以并不是被捕食者数量与捕食者数量总和达到最大值时,被捕食者数量也会达到最大值,故D 错误,故选:C. 点评:本题考查函数图象的性质,考查数据分析能力,比较抽象,属于中等题. 二、填空题11.已知向量(),1a m =,()1,2b =-,()2,3c =,若a b -与c 共线,则实数m =______. 答案:3求出向量a b -的坐标,利用共线向量的坐标表示可得出关于m 的等式,进而可求得m 的值. 解:向量(),1a m =,()1,2b =-,()2,3c =,()1,3a b m ∴-=-,a b -与c 共线,1323m -∴=,解得实数3m =. 故答案为:3. 点评:本题考查利用向量共线求参数,考查计算能力,属于基础题. 12.在622()x x+的展开式中,常数项为_____.(用数字作答) 答案:60根据二项式展开式的通项公式,利用x 项的指数为0,即可求出常数项. 解: 在622()x x+的展开式中,通项公式为: 66316622()2r r r r r r r T C x C x x--+== 令6302r r -=∴=所以展开式的常数项为:226260C = 故答案为:60 点评:本题考查了二项式定理的通项公式,考查了学生概念理解,数学运算的能力,属于基础题. 13.圆心在x 轴上,且与直线1:l y x =和2:2l y x =-都相切的圆的方程为______.答案:()22112x y -+=设所求圆的方程为()()2220x a y r r -+=>,根据圆与直线1l 、2l 都相切可求得a 、r 的值,由此可得出所求圆的方程. 解:设所求圆的方程为()()2220x a y r r -+=>,因为圆()()2220x a y r r -+=>与直线1:l y x =和2:2l y x =-r ==,解得1a =,22r,所以圆的方程为()22112x y -+=.故答案为:()22112x y -+=. 点评:本题考查圆的方程的求解,同时也考查了直线与圆相切的处理,考查计算能力,属于中等题.14.设函数()()1,0,22,0.x a a xa x x f x x --⎧+<=⎨+≥⎩给出下列四个结论:①对0a ∀>,t R ∃∈,使得()f x t =无解;②对0t ∀>,a R ∃∈,使得()f x t =有两解;③当0a <时,0t ∀>,使得()f x t =有解;④当2a >时,t R ∃∈,使得()f x t =有三解.其中,所有正确结论的序号是______. 答案:③④取3a =,由一次函数的单调性和基本不等式,可得函数()f x 的值域,可判断①的正误;取0a =,判断函数()f x 的单调性,即可判断②;考虑0a <时,求得函数()f x 的值域,即可判断③;当2a >时,结合一次函数的单调性和基本不等式,以及函数()f x 的图象,即可判断④.综合可得出结论. 解:对于①,可取3a =,则()()3331,0,22,0.x xx x f x x --⎧+<=⎨+≥⎩, 当0x <时,()()()31,3f x x =+∈-∞;当0x ≥时,()3333222222x x x x f x ----=+≥⋅=,当且仅当3x =时,取得等号, 故3a =时,()f x 的值域为R ,t R ∀∈,()f x t =都有解,故①错误;对于②可取0a =时,()0,022,0x xx f x x -<⎧=⎨+≥⎩,可得()f x 在(0,)+∞上单调递增, 对0t ∀>,()f x t =至多一解,故②错误;对于③,当0a <时,0x <时,()()1f x a x =+单调递减,可得()f x a >; 又0x ≥时,0x a ->,即有21x a ->.可得222x a a x --+>,则()f x 的值域为(),a +∞,0t ∀>,()f x t =都有解,故③正确;对于④,当2a >时,0x <时,()()1f x a x =+递增,可得()f x a <;当0x ≥时,()222x a a x f x --=+≥,当且仅当x a =时,取得等号,由图象可得,当23t <<时,()f x t =有三解,故④正确. 故答案为:③④.点评:本题考查分段函数的应用,主要考查方程根的个数问题,注意运用反例法判断命题不正确,考查推理能力,属于中等题. 三、双空题15.ABC 是等边三角形,点D 在边AC 的延长线上,且3AD CD =,27BD =,则CD =______;sin ABD ∠=______.答案:2321由3AD CD =可得2AC CD =,在BCD 中利用余弦定理可求得CD 的长,在ABD △中,利用正弦定理可求得sin ABD ∠的值. 解:如图所示,等边ABC 中,3AD CD =,所以2AC CD =.又7BD =2222cos BD BC CD BC CD BCD =+-⋅⋅∠,即(()22227222cos120CD CD CD CD +-⋅⋅⋅=,解得2CD =,所以6AD =;由sin sin AD BD ABD A =∠∠,即67sin sin 60ABD =∠,解得321sin 14ABD ∠=. 故答案为:2;32114. 点评:本题考查利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题. 四、解答题16.如图,在四棱锥P ABCD -中,PD ⊥面ABCD ,底面ABCD 为平行四边形,AB AC ⊥,1AB AC ==,1PD =.(Ⅰ)求证://AD 平面PBC ;(Ⅱ)求二面角D PC B --的余弦值的大小. 答案:(Ⅰ)证明见解析;(Ⅱ)3-. (Ⅰ)根据四边形ABCD 是平行四边形得出//AD BC ,再利用线面平行的判定定理可证得//AD 平面PBC ;(Ⅱ)过D 作平行于AC 的直线Dx ,以D 为坐标原点,DC 、DP 所在直线分别为y 轴、z 轴建立空间直角坐标系,利用空间向量法可求得二面角D PC B --的余弦值. 解: (Ⅰ)证明:底面ABCD 为平行四边形,//AD BC ∴,BC ⊂平面PBC ,AD ⊄平面PBC ,//AD ∴平面PBC ;(Ⅱ)解:过D 作平行于AC 的直线Dx ,AB AC ⊥,Dx DC ⊥,又PD ⊥面ABCD ,∴以D 为坐标原点,建立如图所示空间直角坐标系D xyz -.则()0,1,0C 、()0,0,1P 、()1,2,0B ,()1,1,0CB =,()0,1,1CP =-,设平面PCB 的一个法向量为(),,n x y z =,由00n CB x y n CP y z ⎧⋅=+=⎨⋅=-+=⎩,取1y =,得()1,1,1n =-.取平面PCD 的一个法向量()1,0,0m =,则cos ,31m n m n m n⋅<>===-⨯⋅.由图可知,二面角D PC B --为钝角,∴二面角D PC B --的余弦值为3-点评:本题考查线面平行的证明,同时也考查了利用空间向量法求解二面角的余弦值,考查推理能力与计算能力,属于中等题.17.已知函数()()2sin 22cos 066f x a x x a ππ⎛⎫⎛⎫=--+> ⎪ ⎪⎝⎭⎝⎭,且满足_______. (Ⅰ)求函数()f x 的解析式及最小正周期;(Ⅱ)若关于x 的方程()1f x =在区间[]0,m 上有两个不同解,求实数m 的取值范围.从①()f x 的最大值为1,②()f x 的图象与直线3y =-的两个相邻交点的距离等于π,③()f x 的图象过点,06π⎛⎫⎪⎝⎭.这三个条件中选择一个,补充在上面问题中并作答. 答案:满足①或②或③;(Ⅰ)()2sin 216f x x π⎛⎫=-- ⎪⎝⎭,最小正周期为π;(Ⅱ)47,33ππ⎡⎫⎪⎢⎣⎭; (Ⅰ)利用三角恒等变换思想化简函数()y f x =的解析式,根据①或②或③中的条件求得1a =,可得出()2sin 216f x x π⎛⎫=-- ⎪⎝⎭,利用正弦型函数的周期公式可求得函数的最小正周期;(Ⅱ)令()1f x =,得sin 216x π⎛⎫-= ⎪⎝⎭,解得3x k ππ=+,k Z ∈,可得出方程()1f x =在区间[]0,m 上的实数根,进而可得出实数m 的取值范围. 解:(Ⅰ)函数()2sin 22cos 66f x a x x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭sin 2cos 2163a x x ππ⎛⎫⎛⎫=--+- ⎪ ⎪⎝⎭⎝⎭sin 2cos 21662a x x πππ⎛⎫⎛⎫=---+- ⎪ ⎪⎝⎭⎝⎭sin 2sin 2166a x x ππ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭()1sin 216a x π⎛⎫=+-- ⎪⎝⎭,若满足①()f x 的最大值为1,则12a +=,解得1a =,所以()2sin 216f x x π⎛⎫=-- ⎪⎝⎭,则函数()f x 的最小正周期为22T ππ==; (Ⅱ)令()1f x =,得sin 216x π⎛⎫-= ⎪⎝⎭,解得2262x k πππ-=+,k Z ∈,即3x k ππ=+,k Z ∈;若关于x 的方程()1f x =在区间[]0,m 上有两个不同解,则3x π=或43π; 所以实数m 的取值范围是47,33ππ⎡⎫⎪⎢⎣⎭. 若满足②,()f x 的图象与直线3y =-的两个相邻交点的距离等于π, 且()f x 的最小正周期为22T ππ==,所以()113a -+-=-,解得1a =; 以下解法均相同.若满足③,()f x 的图象过点,06π⎛⎫⎪⎝⎭,则()1sin 1066f a ππ⎛⎫=+-= ⎪⎝⎭,解得1a =;以下解法均相同. 点评:本题考查利用正弦型函数的基本性质求函数解析式,同时也考查了利用正弦型函数方程的根的个数求参数,考查计算能力,属于中等题.18.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,预计2020年北斗全球系统建设将全面完成.如图是在室外开放的环境下,北斗二代和北斗三代定位模块,分别定位的50个点位的横、纵坐标误差的值,其中“⋅”表示北斗二代定位模块的误差的值,“+”表示北斗三代定位模块的误差的值.(单位:米)(Ⅰ)从北斗二代定位的50个点位中随机抽取一个,求此点横坐标误差的值大于10米的概率; (Ⅱ)从图中A ,B ,C ,D 四个点位中随机选出两个,记X 为其中纵坐标误差的值小于4-的点位的个数,求X 的分布列和数学期望;(Ⅲ)试比较北斗二代和北斗三代定位模块纵坐标误差的方差的大小.(结论不要求证明) 答案:(Ⅰ)0.06;(Ⅱ)分布列见解析,1;(Ⅲ)北斗二代定位模块纵坐标误差的方差大于北斗三代.(Ⅰ)通过图象观察,在北斗二代定位的50个点中,横坐标误差的绝对值大于10米有3个点,由古典概率的计算公式可得所求值;(Ⅱ)通过图象可得,A ,B ,C ,D 四个点位中纵坐标误差值小于4-的有两个点:C ,D ,则X 的所有可能取值为0,1,2,分别求得它们的概率,作出分布列,计算期望即可;(Ⅲ)通过观察它们的极差,即可判断它们的方差的大小.解:(Ⅰ)由图可得,在北斗二代定位的50个点中,横坐标误差的绝对值大于10米有3个点,所以从中随机选出一点,此点横坐标误差的绝对值大于10米的概率为30.06 50=;(Ⅱ)由图可得,A,B,C,D四个点位中纵坐标误差值小于4-的有两个点:C,D,所以X的所有可能取值为0,1,2,()022416CP XC===,()112224213C CP XC===,()2224126CP XC===,所以X的分布列为所以X的期望为()1210121636E X=⨯+⨯+⨯=;(Ⅲ)北斗二代定位模块纵坐标误差的方差大于北斗三代.点评:本题考查古典概率的求法,以及随机变量的分布列和期望的求法,方差的大小的判断,考查数形结合思想和运算能力、推理能力,属于中档题.19.已知椭圆E:22221x ya b+=(0a b>>),它的上,下顶点分别为A,B,左,右焦点分别为1F,2F ,若四边形12AF BF 为正方形,且面积为2.(Ⅰ)求椭圆E 的标准方程;(Ⅱ)设存在斜率不为零且平行的两条直线1l ,2l ,它们与椭圆E 分别交于点C ,D ,M ,N ,且四边形CDMN 是菱形,求出该菱形周长的最大值.答案:(Ⅰ)2212x y +=;(Ⅱ)(Ⅰ)由题意可得22212222b c c b a b c=⎧⎪⎪⋅⋅=⎨⎪=+⎪⎩,解出即可;(Ⅱ)设1l 的方程为1y kx m =+,2l 的方程为2y kx m =+,联立直线与椭圆方程并消元得韦达定理的结论,根据弦长公式可求得CD ,MN ,由四边形CDMN 为菱形可得0MC ND ⋅=,可得2213220m k --=,再根据基本不等式即可求出最值.解:解:(Ⅰ)∵四边形12AF BF 为正方形,且面积为2,∴22212222b cc b a b c =⎧⎪⎪⋅⋅=⎨⎪=+⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆的标准方程2212x y +=;(Ⅱ)设1l 的方程为1y kx m =+,()11,C x y ,()22,D x y , 设2l 的方程为2y kx m =+,()33,M x y ,()44,N x y ,联立12222y kx m x y =+⎧⎨+=⎩可得()22211124220k x km x m +++-=, 由>0∆可得()()22221116412220k m km-+->,化简可得221210k m +->,①1122412km x x k -=++,211222212m x x k-+=,12CD x x-===,同理可得MN =, ∵四边形CDMN 为菱形,∴CD MN =,∴2212m m =,又∵12m m ≠,∴12m m =-,∴1l ,2l 关于原点对称,又椭圆关于原点对称, ∴,C M 关于原点对称,,D N 也关于原点对称,∴3131x x y y =-⎧⎨=-⎩且4242x x y y =-⎧⎨=-⎩,∴()112,2MC x y =,()222,2ND x y =, ∵四边形CDMN 为菱形,可得0MC ND ⋅=, 即12120x x y y +=,即()()1211210x x kx m kx m +++=, 即()()2121122110kx xkm x x m ++++=,可得()221111222224012121m km km m k kk -+=--++++=⋅, 化简可得2213220m k --=,∴菱形CDMN的周长为4l CD ==28312k=+()222122142312k k k +++≤=+ 当且仅当222214k k +=+,即212k =时等号成立, 此时211m =,满足①,∴菱形CDMN 的周长的最大值为 点评:本题主要考查直线与椭圆的位置关系的应用,考查椭圆的几何性质,考查一元二次方程根与系数的应用,考查基本不等式的应用,考查转化与划归思想,考查计算能力,属于难题. 20.已知函数()()ln f x x x ax =-(a R ∈).(Ⅰ)若1a =,求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)若()f x 有两个极值点,求实数a 的取值范围; (Ⅲ)若1a >,求()f x 在区间(]0,2a 上的最小值.答案:(Ⅰ)y x =-;(Ⅱ)10,2⎛⎫ ⎪⎝⎭;(Ⅲ)()22ln 22a a a ⎡⎤-⎣⎦.由题意得()1ln 2f x x ax '=+-;(Ⅰ)当1a =时,求得()11f '=-,()11f =-,根据点斜式方程即可求出切线方程;(Ⅱ)由题意得1ln 2xa x +=两个不等的正根,令()1ln x g x x +=,则()2ln x g x x -'=,由此可得函数()g x 的单调性,由此可求出答案;(Ⅲ)由题意可得()12f x a x''=-,由二阶导的取值符号可得到f x 的单调性,得到()()max 1ln 202f x f a a ⎛⎫''==-< ⎪⎝⎭,由此可求出函数()f x 在(]0,2a 上单调递减,从而求出最值.解:解:∵()()ln f x x x ax =-, ∴()1ln 2f x x ax '=+-;(Ⅰ)当1a =时,()11f '=-,()11f =-,∴曲线()y f x =在点()()1,1f 处的切线方程为()()11y x --=--, 即y x =-;(Ⅱ)∵若()f x 有两个极值点,∴()1ln 20f x x ax '=+-=有两个不等的正根,即1ln 2xa x+=两个不等的正根, 令()1ln xg x x +=,0x >,()2ln x g x x-'=, 令()01g x x ='⇒=,当()0,1x ∈时0g x,此时()g x 单调递增,01g e ⎛⎫=∴ ⎪⎝⎭()(,1)g x ∈-∞;当()1,x ∈+∞时0g x ,此时()g x 单调递减,()(0,1)g x ∈∴函数()g x 在1x =处取得极大值,也是最大值()11g =,因为1ln 2xa x+=两个不等的正根, ∴021a <<,得102a <<, ∴实数a 的取值范围是10,2⎛⎫ ⎪⎝⎭;(Ⅲ)∵()()ln f x x x ax =-,∴()1ln 2f x x ax '=+-,()12f x a x''=-, ∵1a >,(]0,2x a ∈,令()102f x x a''=⇒=, 当10,2x a ⎛⎫∈ ⎪⎝⎭时,()0f x ''>,此时f x 单调递增,当1,2x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ''<,此时f x 单调递减,故()()max 1ln 202f x f a a ⎛⎫''==-< ⎪⎝⎭, ∴()f x 在(]0,2a 上单调递减,故()f x 在(]0,2a 上的最小值为()()222ln 22f a a a a ⎡⎤=-⎣⎦.点评:本题主要考查利用导数研究函数的单调性与最值,考查利用导数求曲线的切线方程,考查计算能力,考查转化与化归思想,属于难题.21.数列A :1x ,2x ,3x ,…,n x ,…,对于给定的t (1t >,t +∈N ),记满足不等式:()*n t x t x t n -≥-(n +∀∈N ,n t ≠)的*t 构成的集合为()T t .(Ⅰ)若数列2:n A x n =,写出集合()2T ; (Ⅱ)如果()T t (t +∈N ,1t >)均为相同的单元素集合,求证:数列1x ,2x ,…,n x ,…为等差数列;(Ⅲ)如果()T t (t +∈N ,1t >)为单元素集合,那么数列1x ,2x ,…,n x ,…还是等差数列吗?如果是等差数列,请给出证明;如果不是等差数列,请给出反例.答案:(Ⅰ)[]3,5;(Ⅱ)证明见解析;(Ⅲ)是等差数列,证明见解析.(Ⅰ)由题意得,()2*42n tn -≥-,分1n =和2n >两类讨论解出不等式,再根据()2T 的定义即可求出;(Ⅱ)由题意,若()T t 中均只有同一个元素,不妨设为a ,当1n t =+时,由题意可得1t t x x a +-≥,当1n t =-时,有1t t x x a --≤,则1t t x x a +-=成立,从而得出证明;(Ⅲ)不妨设(){}T i a =,(){}T j b =,1i j <<,a b ,由题意可得()j i x x a j i -≥-,()j i x x b j i -≤-,则()()j i a j i x x b j i -≤-≤-,则a b ≤;设(){}i T i t =,则23n t t t ≤≤≤≤,则i j t t ≤,首先证2t =时的情况,不妨设21x x >,由212x x t -≤,()2T 为单元素集,则212x x t -=;再证332t x x =-,由3t 和2t 的定义可证323x x t -=,则3322t x x t =->,则存在正整数4m ≥使得()222m m t x x -=-,而()()2112332m m m i i i i i x x x x t m t --==-=-≥>-∑∑,得出矛盾,从而32t t =,同理可证2345t t t t ====,由此可得结论. 解:(Ⅰ)解:由题意得,()2T 为满足不等式()*22n n x x t-≥-的*t 构成的集合,∵数列2:n A x n =, ∴()2*42n t n -≥-,即()()()*222n n n t ≥--+,当1n =时,上式可化为*3t ≤,当2n >时,上式可化为*2n t +≥,得*5t ≥,∴()[],235T =;(Ⅱ)证:对于数列A :1x ,2x ,3x ,…,n x ,…,若()T t 中均只有同一个元素,不妨设为a ,下面证明数列A 为等差数列,当1n t =+时,有1t t x x a +-≥,①当1n t =-时,有1t t x x a --≤,②∵①②两式对任意大于1的整数均成立,∴1t t x x a +-=成立,∴数列1x ,2x ,…,n x ,…为等差数列;(Ⅲ)解:对于数列A :1x ,2x ,…,n x ,…,不妨设(){}T i a =,(){}T j b =,1i j <<,a b ,由(){}T i a =,知()j i x x a j i -≥-,由(){}T j b =,知:()i j x x b i j -≥-,即()j i x x b j i -≤-,∴()()j i a j i x x b j i -≤-≤-,∴a b ≤;设(){}i T i t =,则23n t t t ≤≤≤≤,这说明1i j <<,则i j t t ≤,∵对于数列A ,()T t 中均只有一个元素,首先证2t =时的情况,不妨设21x x >,∵212x x t -≤,又()2T 为单元素集,∴212x x t -=,再证332t x x =-,证明如下:由3t 的定义可知:332t x x ≥-,3132x x t -≥,∴31332max 2,x x t x x -⎧⎫=-⎨⎬⎩⎭, 由2t 的定义可知32221x x t x x -≥=-, ∴32213133222x x x x x x t x x -+--≥-≥=,∴323x x t -=, ∵32t t >,∴3322t x x t =->,则存在正整数()4m m ≥,使得()222m m t x x -=-,③∵212323431k k x x t x x t x x x x --=≤-≤≤-≤≤-≤, ∴()()2112332m m m i i i i i x x x x t m t --==-=-≥>-∑∑,这与③矛盾,∴32t t =,同理可证2345t t t t ====,即232314x x x x x x =-=--⋅⋅⋅, ∴数列1x ,2x ,…,n x ,…还是等差数列.点评:本题主要考查数列的新定义问题,考查定义法证明等差数列,考查计算能力与推理能力,考查分类讨论思想,考查转化与化归思想,属于难题.。
2020届北京市密云区高三下学期第一次阶段性测试(一模)数学试题解析

绝密★启用前2020届北京市密云区高三下学期第一次阶段性测试(一模)数学试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上 一、单选题1.已知集合{}|0M x x =>,{|11}N x x =-≤≤,则M N =I ( ) A .[1,)-+∞ B .()0,1C .(]0,1D .[]0,1答案:C根据交集计算即可. 解:{}|0M x x =>Q ,{|11}N x x =-≤≤,(0,1]M N ∴=I ,故选:C 点评:本题主要考查了交集的运算,属于容易题. 2.已知复数21iz i=+,则z =( )A .1i +B .1i -CD .2答案:C根据复数模的性质即可求解. 解:21i z i=+Q , |2||1|i z i ∴===+, 故选:C 点评:本题主要考查了复数模的性质,属于容易题.3.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( )根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 解:因为数列{}n a 是等差数列,1356a a a ++=, 所以336a =,即32a =, 又76a =,所以73173a a d -==-,1320a a d =-=, 故1777()212a a S +== 故选:B 点评:本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题. 4.已知平面向量()4,2a →=,(),3b x →=,//a b →→,则实数x 的值等于( ) A .6 B .1C .32D .32-答案:A根据向量平行的坐标表示即可求解. 解:()4,2a →=Q ,(),3b x →=,//a b →→,432x ∴⨯=,即6x =, 故选:A 点评:本题主要考查了向量平行的坐标运算,属于容易题. 5.已知x ,y R ∈,则“x y <”是“1xy<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件答案:Dx y <,不能得到1x <, 1x<成立也不能推出x y <,即可得到答案.因为x ,y R ∈,当x y <时,不妨取11,2x y =-=-,21xy=>, 故x y <时,1xy<不成立, 当1xy<时,不妨取2,1x y ==-,则x y <不成立, 综上可知,“x y <”是“1xy<”的既不充分也不必要条件, 故选:D 点评:本题主要考查了充分条件,必要条件的判定,属于容易题.6.如果直线1ax by +=与圆22:1C x y +=相交,则点(),M a b 与圆C 的位置关系是( ) A .点M 在圆C 上 B .点M 在圆C 外 C .点M 在圆C 内 D .上述三种情况都有可能答案:B根据圆心到直线的距离小于半径可得,a b 满足的条件,利用(),M a b 与圆心的距离判断即可. 解:Q 直线1ax by +=与圆22:1C x y +=相交,∴圆心(0,0)到直线1ax by +=的距离1d =<,1>.也就是点(,)M a b 到圆C 的圆心的距离大于半径. 即点(,)M a b 与圆C 的位置关系是点M 在圆C 外. 故选:B 点评:7.函数()()sin ωϕ=+f x x 的部分图象如图所示,则()f x 的单调递增区间为( )A .51,,44k k k Z ππ⎡⎤-+-+⎢⎥⎦∈⎣B .512,2,44k k k Z ππ⎡⎤-+-+∈⎢⎥⎣⎦C .51,,44k k k Z ⎡⎤-+-+∈⎢⎥⎣⎦D .512,2,44k k k Z ⎡⎤-+-+∈⎢⎥⎣⎦答案:D由图象可以求出周期,得到ω,根据图象过点3(,1)4-可求ϕ,根据正弦型函数的性质求出单调增区间即可. 解:由图象知51=1244T -=, 所以2T =,22πωπ==, 又图象过点3(,1)4-,所以31sin()4πϕ-=+, 故ϕ可取34π, 所以3()sin()4f x x ππ=+ 令322,242k x k k Z ππππππ-≤+≤+∈,解得5122,44k x k k Z -≤≤-∈所以函数的单调递增区间为512,2,44k k k Z ⎡⎤-+-+∈⎢⎥⎣⎦故选:D . 点评:本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题.A .8B .83C .822+D .842+答案:D根据三视图还原几何体为四棱锥,即可求出几何体的表面积. 解:由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2, 所以1122222222284222S =⨯+⨯⨯⨯+⨯⨯⨯=+ 故选:D 点评:本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.9.已知斜率为k 的直线l 与抛物线2:4C y x =交于A ,B 两点,线段AB 的中点为()()1,0M m m >,则斜率k 的取值范围是( )A .(,1)-∞B .(,1]-∞C .(1,)+∞D .[1,)+∞答案:C设1(A x ,1)y ,2(B x ,2)y ,设直线l 的方程为:y kx b =+,与抛物线方程联立,由△0>得1kb <,利用韦达定理结合已知条件得22k b k -=,2m k=,代入上式即可求出k 的取值范围.设直线l 的方程为:y kx b =+, 1(A x ,1)y ,2(B x ,2)y ,联立方程24y kx b y x=+⎧⎨=⎩,消去y 得:222(24)0k x kb x b +-+=, ∴△222(24)40kb k b =-->,1kb ∴<,且12242kb x x k -+=,2122b x x k=, 12124()2y y k x x b k+=++=, Q 线段AB 的中点为(1M ,)(0)m m >,∴122422kb x x k -+==,1242y y m k+==, 22k b k -∴=,2m k=,0m >Q ,0k ∴>,把22k b k-= 代入1kb <,得221k -<,21k ∴>,1k ∴>,故选:C 点评:本题主要考查了直线与抛物线的位置关系,考查了韦达定理的应用,属于中档题. 10.在正方体1AC 中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,如图所示,下列说法不正确...的是( )A .点F 的轨迹是一条线段B .1A F 与BE 是异面直线C .1A F 与1DE 不可能平行 D .三棱锥1F ABD -的体积为定值。
2020年北京市东城区高考数学一模试卷 (解析版)

2020年高考数学一模试卷一、选择题1.已知集合A={x|x﹣1>0},B={﹣1,0,1,2},那么A∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1,2}D.{2}2.函数的定义域为()A.(﹣1,2]B.[2,+∞)C.(﹣∞,﹣1)∪[1,+∞)D.(﹣∞,﹣1)∪[2,+∞)3.已知,则a=()A.1B.0C.﹣1D.﹣24.若双曲线的一条渐近线与直线y=2x+1平行,则b的值为()A.1B.C.D.25.如图所示,某三棱锥的正(主)视图、俯视图、侧(左)视图均为直角三角形,则该三棱锥的体积为()A.4B.6C.8D.126.已知x<﹣1,那么在下列不等式中,不成立的是()A.x2﹣1>0B.C.sin x﹣x>0D.cos x+x>07.在平面直角坐标系中,动点M在单位圆上按逆时针方向作匀速圆周运动,每12分钟转动一周.若点M的初始位置坐标为,则运动到3分钟时,动点M所处位置的坐标是()A.B.C.D.8.已知三角形ABC,那么“”是“三角形ABC为锐角三角形”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.设O为坐标原点,点A(1,0),动点P在抛物线y2=2x上,且位于第一象限,M是线段PA的中点,则直线OM的斜率的范围为()A.(0,1]B.C.D.10.假设存在两个物种,前者有充足的食物和生存空间,而后者仅以前者为食物,则我们称前者为被捕食者,后者为捕食者.现在我们来研究捕食者与被捕食者之间理想状态下的数学模型.假设捕食者的数量以x(t)表示,被捕食者的数量以y(t)表示.如图描述的是这两个物种随时间变化的数量关系,其中箭头方向为时间增加的方向.下列说法正确的是:()A.若在t1,t2时刻满足:y(t1)=y(t2),则x(t1)=x(t2)B.如果y(t)数量是先上升后下降的,那么x(t)的数量一定也是先上升后下降C.被捕食者数量与捕食者数量不会同时到达最大值或最小值D.被捕食者数量与捕食者数量总和达到最大值时,被捕食者的数量也会达到最大值二、填空题共5小题,每小题5分,共25分.11.已知向量(m,1),(1,﹣2),(2,3),若与共线,则实数m =.12.在(x)6的展开式中常数项为.(用数字作答)13.圆心在x轴上,且与直线l1:y=x和l2:y=x﹣2都相切的圆的方程为.14.△ABC是等边三角形,点D在边AC的延长线上,且AD=3CD,,则CD =,sin∠ABD=.15.设函数给出下列四个结论:①对∀a>0,∃t∈R,使得f(x)=t无解;②对∀t>0,∃a∈R,使得f(x)=t有两解;③当a<0时,∀t>0,使得f(x)=t有解;④当a>2时,∃t∈R,使得f(x)=t有三解.其中,所有正确结论的序号是.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在四棱锥P﹣ABCD中,PD⊥面ABCD,底面ABCD为平行四边形,AB⊥AC,AB=AC=1,PD=1.(Ⅰ)求证:AD∥平面PBC;(Ⅱ)求二面角D﹣PC﹣B的余弦值的大小.17.已知函数,且满足_______.(Ⅰ)求函数f(x)的解析式及最小正周期;(Ⅱ)若关于x的方程f(x)=1在区间[0,m]上有两个不同解,求实数m的取值范围.从①f(x)的最大值为1,②f(x)的图象与直线y=﹣3的两个相邻交点的距离等于π,③f(x)的图象过点这三个条件中选择一个,补充在上面问题中并作答.18.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,预计2020年北斗全球系统建设将全面完成.下图是在室外开放的环境下,北斗二代和北斗三代定位模块,分别定位的50个点位的横、纵坐标误差的值,其中“•”表示北斗二代定位模块的误差的值,“+”表示北斗三代定位模块的误差的值.(单位:米)(Ⅰ)从北斗二代定位的50个点位中随机抽取一个,求此点横坐标误差的值大于10米的概率;(Ⅱ)从图中A,B,C,D四个点位中随机选出两个,记X为其中纵坐标误差的值小于﹣4的点位的个数,求X的分布列和数学期望;(Ⅲ)试比较北斗二代和北斗三代定位模块纵坐标误差的方差的大小.(结论不要求证明)19.已知椭圆,它的上,下顶点分别为A,B,左,右焦点分别为F1,F2,若四边形AF1BF2为正方形,且面积为2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设存在斜率不为零且平行的两条直线l1,l2,它们与椭圆E分别交于点C,D,M,N,且四边形CDMN是菱形,求出该菱形周长的最大值.20.已知函数f(x)=x(lnx﹣ax)(a∈R).(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)有两个极值点,求实数a的取值范围;(Ⅲ)若a>1,求f(x)在区间(0,2a]上的最小值.21.数列A:x1,x2,x3,…,x n,…,对于给定的t(t>1,t∈N+),记满足不等式:x n﹣x t≥t*(n﹣t)(∀n∈N+,n≠t)的t*构成的集合为T(t).(Ⅰ)若数列A:x n=n2,写出集合T(2);(Ⅱ)如果T(t)(t∈N+,t>1)均为相同的单元素集合,求证:数列x1,x2,…,x n,…为等差数列;(Ⅲ)如果T(t)(t∈N+,t>1)为单元素集合,那么数列x1,x2,…,x n,…还是等差数列吗?如果是等差数列,请给出证明;如果不是等差数列,请给出反例.参考答案一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|x﹣1>0},B={﹣1,0,1,2},那么A∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1,2}D.{2}【分析】可以求出集合A,然后进行交集的运算即可.解:∵A={x|x>1},B={﹣1,0,1,2},∴A∩B={2}.故选:D.【点评】本题考查了描述法、列举法的定义,交集的运算,考查了计算能力,属于基础题.2.函数的定义域为()A.(﹣1,2]B.[2,+∞)C.(﹣∞,﹣1)∪[1,+∞)D.(﹣∞,﹣1)∪[2,+∞)【分析】根据二次根式被开方数大于或等于0,列不等式求出解集即可.解:函数,令0,得x﹣2≥0,解得x≥2,所以f(x)的定义域为[2,+∞).故选:B.【点评】本题考查了根据二次根式被开方数大于或等于0求函数定义域的问题,是基础题.3.已知,则a=()A.1B.0C.﹣1D.﹣2【分析】把已知等式变形,再由复数代数形式的乘除运算化简,然后利用复数相等的条件求解a值.解:∵,∴2=(1+ai)(1﹣i)=1+a+(a﹣1)i,∴,即a=1.故选:A.【点评】本题考查复数代数形式的乘除运算,考查复数相等的条件,是基础题.4.若双曲线的一条渐近线与直线y=2x+1平行,则b的值为()A.1B.C.D.2【分析】利用双曲线的渐近线方程,得到关系式,求解即可.解:双曲线的一条渐近线y=bx与直线y=2x+1平行,可得b=2.故选:D.【点评】本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.5.如图所示,某三棱锥的正(主)视图、俯视图、侧(左)视图均为直角三角形,则该三棱锥的体积为()A.4B.6C.8D.12【分析】几何体是一个三棱锥,根据三视图的数据,画出直观图,求解体积即可.解:由三视图知,几何体是一个三棱锥,D1﹣BCD,根据三棱锥的三视图的面积,设出三棱锥两两垂直的三条侧棱分别是DC=4,BC=3,DD1=2∴三棱锥的体积是4×3×2=4故选:A.【点评】本题考查由三视图求几何体的体积,考查由三视图还原平面图形,是基础题.6.已知x<﹣1,那么在下列不等式中,不成立的是()A.x2﹣1>0B.C.sin x﹣x>0D.cos x+x>0【分析】根据x<﹣1,利用函数的单调性、不等式的性质、三角函数的单调性即可判断出结论.解:∵x<﹣1,∴x2﹣1>0,x2,又∵sin x,cos x∈[﹣1,1],∴sin x﹣x>0,cos x+x<0.可得:ABC成立,D不成立.故选:D.【点评】本题考查了函数的单调性、不等式的性质、三角函数的单调性,考查了推理能力与计算能力,属于基础题.7.在平面直角坐标系中,动点M在单位圆上按逆时针方向作匀速圆周运动,每12分钟转动一周.若点M的初始位置坐标为,则运动到3分钟时,动点M所处位置的坐标是()A.B.C.D.【分析】根据题意画出图形,结合图形求出3分钟转过的角度,由此计算点M所处位置的坐标.解:每12分钟转动一周,则运动到3分钟时,转过的角为2π;点M的初始位置坐标为,运动到3分钟时动点M所处位置的坐标是M′(,).故选:C.【点评】本题考查了三角函数的定义与应用问题,是基础题.8.已知三角形ABC,那么“”是“三角形ABC为锐角三角形”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】三角形ABC,那么“”⇒•0,可得A为锐角.进而判断出结论.解:三角形ABC,那么“”⇒•0,可得A为锐角.此时三角形ABC不一定为锐角三角形.三角形ABC为锐角三角形⇒A为锐角.∴三角形ABC,那么“”是“三角形ABC为锐角三角形”的必要不充分条件.故选:B.【点评】本题考查了向量数量积运算性质、简易逻辑的判定方法、三角形的分类,考查了推理能力与计算能力,属于基础题.9.设O为坐标原点,点A(1,0),动点P在抛物线y2=2x上,且位于第一象限,M是线段PA的中点,则直线OM的斜率的范围为()A.(0,1]B.C.D.【分析】设P的坐标,看可得PA的中点M的坐标,进而求出OM的斜率,由均值不等式可得其取值范围.解:设P(,y),y>0,所以PA的中点M(,),所以k OM,因为y,所以0,所以k OM∈(0,],故选:C.【点评】本题考查抛物线的性质,及均值不等式的性质,属于中档题.10.假设存在两个物种,前者有充足的食物和生存空间,而后者仅以前者为食物,则我们称前者为被捕食者,后者为捕食者.现在我们来研究捕食者与被捕食者之间理想状态下的数学模型.假设捕食者的数量以x(t)表示,被捕食者的数量以y(t)表示.如图描述的是这两个物种随时间变化的数量关系,其中箭头方向为时间增加的方向.下列说法正确的是:()A.若在t1,t2时刻满足:y(t1)=y(t2),则x(t1)=x(t2)B.如果y(t)数量是先上升后下降的,那么x(t)的数量一定也是先上升后下降C.被捕食者数量与捕食者数量不会同时到达最大值或最小值D.被捕食者数量与捕食者数量总和达到最大值时,被捕食者的数量也会达到最大值【分析】根据图象数形结合,逐一进行分析即可解:由图可知,曲线中纵坐标相等时横坐标未必相等,故A不正确;在曲线上半段中观察到y(t)是先上升后下降,而x(t)是不断变小的,故B不正确;捕食者数量最大时是在图象最右端,最小值是在图象最左端,此时都不是被捕食者的数量的最值处,同样当被捕食者的数量最大即图象最上端和最小即图象最下端时,也不是捕食者数量取最值的时候,所以被捕食者数量和捕食者数量不会同时达到最大和最小值,故C正确;当捕食者数量最大时在图象最右端,x(t)∈(25,30),y(t)∈(0,50),此时二者总和x(t)+y(t)∈(25,80),由图象可知存在点x(t)=10,y(t)=100,x(t)+y(t)=110,所以并不是被捕食者数量与捕食者数量总和达到最大值时,被捕食者数量也会达到最大值,故D错误,故选:C.【点评】本题考查的知识点是函数的图象和性质,本题比较抽象,理解起来有一定的难度.二、填空题共5小题,每小题5分,共25分.11.已知向量(m,1),(1,﹣2),(2,3),若与共线,则实数m =3.【分析】先求出(m﹣1,3),再由与共线,列方程能求出实数m.解:∵向量(m,1),(1,﹣2),(2,3),∴(m﹣1,3),∵与共线,∴,解得实数m=3.故答案为:3.【点评】本题考查实数值的求法,考查平面向量坐标运算法则和向量共线的性质等基础知识,考查运算求解能力,是基础题.12.在(x)6的展开式中常数项为160.(用数字作答)【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.解:在的展开式中的通项公式为T r+1•2r•x6﹣2r,令6﹣2r=0,求得r=3,可得常数项为•23=160,故答案为:160.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.13.圆心在x轴上,且与直线l1:y=x和l2:y=x﹣2都相切的圆的方程为(x﹣1)2+y2.【分析】设所求圆的方程为(x﹣a)2+y2=r2,利用圆与直线l1:y=x和l2:y=x﹣2都相切,即可得出结论.解:设所求圆的方程为(x﹣a)2+y2=r2,因为圆与直线l1:y=x和l2:y=x﹣2都相切,则r,解得a=1,r,所以圆的方程为(x﹣1)2+y2.故答案为:(x﹣1)2+y2.【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,比较基础.14.△ABC是等边三角形,点D在边AC的延长线上,且AD=3CD,,则CD =2,sin∠ABD=.【分析】根据题意画出图形,利用余弦定理求出CD的值,再利用正弦定理求出sin∠ABD 的值.解:如图所示,等边△ABC中,AD=3CD,所以AC=2CD;又,所以BD2=BC2+CD2﹣2BC•CD•cos∠BCD,即(2CD)2+CD2﹣2•2CD•CD•cos120°,解得CD=2,所以AD=6;由,即,解得sin∠ABD.故答案为:2,.【点评】本题考查了正弦、余弦定理的应用问题,也考查了运算求解能力,是基础题.15.设函数给出下列四个结论:①对∀a>0,∃t∈R,使得f(x)=t无解;②对∀t>0,∃a∈R,使得f(x)=t有两解;③当a<0时,∀t>0,使得f(x)=t有解;④当a>2时,∃t∈R,使得f(x)=t有三解.其中,所有正确结论的序号是③④.【分析】可取a=3,由一次函数的单调性和基本不等式,可得f(x)的值域,即可判断①;取a=0,判断f(x)的单调性,即可判断②;考虑a<0时,求得f(x)的值域,即可判断③;当a>2时,结合一次函数的单调性和基本不等式,以及f(x)的图象,即可判断④.解:对于①,可取a=3,则f(x),当x<0时,f(x)=3(x+1)∈(﹣∞,3);当x≥0时,f(x)=2x﹣3+23﹣x≥22,当且仅当x=3时,取得等号,故a=3时,f(x)的值域为R,∀t∈R,f(x)=t都有解,故①错误;对于②可取a=0时,f(x),可得f(x)在R上单调递增,对∀t>0,f(x)=t至多一解,故②错误;对于③,当a<0时,x<0时,f(x)=a(x+1)递减,可得f(x)>a;又x≥0时,x﹣a>0,即有2x﹣a>1,可得2x﹣a+2a﹣x>2,则f(x)的值域为(a,+∞),∀t>0,f(x)=t都有解,故③正确;对于④,当a>2时,x<0时,f(x)=a(x+1)递增,可得f(x)<a;当x≥0时,f (x)=2x﹣a+2a﹣x≥2,当且仅当x=a时,取得等号,由图象可得,当2<t<3时,f(x)=t有三解,故④正确.故答案为:③④.【点评】本题考查分段函数的运用,主要考查方程的解的个数,注意运用反例法判断命题不正确,以及数形结合思想,考查推理能力,属于中档题.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在四棱锥P﹣ABCD中,PD⊥面ABCD,底面ABCD为平行四边形,AB⊥AC,AB=AC=1,PD=1.(Ⅰ)求证:AD∥平面PBC;(Ⅱ)求二面角D﹣PC﹣B的余弦值的大小.【分析】(Ⅰ)由底面ABCD为平行四边形,得AD∥BC,再由直线与平面平行的判定可得AD∥平面PBC;(Ⅱ)过D作平行于AC的直线Dx,以D为坐标原点,建立如图所示空间直角坐标系D ﹣xyz.分别求出平面PCB与平面PCD的一个法向量,由两法向量所成角的余弦值可得二面角D﹣PC﹣B的余弦值.【解答】(Ⅰ)证明:∵底面ABCD为平行四边形,∴AD∥BC,∵BC⊂平面PBC,AD⊄平面PBC,∴AD∥平面PBC;(Ⅱ)解:过D作平行于AC的直线Dx,∵AB⊥AC,∴Dx⊥DC,又PD⊥面ABCD,∴以D为坐标原点,建立如图所示空间直角坐标系D﹣xyz.则C(0,1,0),P(0,0,1),B(1,2,0),(1,1,0),(0,﹣1,1),设平面PCB的一个法向量为,由,取y=1,得;取平面PCD的一个法向量.则cos.由图可知,二面角D﹣PC﹣B为钝角,∴二面角D﹣PC﹣B的余弦值为.【点评】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.17.已知函数,且满足_______.(Ⅰ)求函数f(x)的解析式及最小正周期;(Ⅱ)若关于x的方程f(x)=1在区间[0,m]上有两个不同解,求实数m的取值范围.从①f(x)的最大值为1,②f(x)的图象与直线y=﹣3的两个相邻交点的距离等于π,③f(x)的图象过点这三个条件中选择一个,补充在上面问题中并作答.【分析】(Ⅰ)利用二倍角公式和诱导公式化简函数f(x),若满足①,利用最大值求出a的值,写出f(x)的解析式,求出最小正周期;(Ⅱ)令f(x)=1求得方程的解,根据方程f(x)=1在区间[0,m]上有两个不同解找出这两个解,从而写出实数m的取值范围.若满足②,利用三角函数的图象与性质列出方程求得a的值,以下解法均相同.若满足③,利用f(x)的图象过点,代入求出a的值,以下解法均相同.解:(Ⅰ)函数f(x)=a sin(2x)﹣2cos2(x)=a sin(2x)﹣cos(2x)﹣1=a sin(2x)﹣sin(﹣2x)﹣1=(a+1)sin(2x)﹣1,若满足①f(x)的最大值为1,则a+1=2,解得a=1,所以f(x)=2sin(2x)﹣1;f(x)的最小正周期为Tπ;(Ⅱ)令f(x)=1,得sin(2x)=1,解得2x2kπ,k∈Z;即x kπ,k∈Z;若关于x的方程f(x)=1在区间[0,m]上有两个不同解,则x或;所以实数m的取值范围是[,).若满足②f(x)的图象与直线y=﹣3的两个相邻交点的距离等于π,且f(x)的最小正周期为Tπ,所以﹣(a+1)﹣1=﹣3,解得a=1;以下解法均相同.若满足③f(x)的图象过点,则f()=(a+1)sin1=0,解得a=1;以下解法均相同.【点评】本题考查了利用三角函数的基本性质求解析式问题,也考查了三角函数图象与性质的应用问题,是中档题.18.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,预计2020年北斗全球系统建设将全面完成.下图是在室外开放的环境下,北斗二代和北斗三代定位模块,分别定位的50个点位的横、纵坐标误差的值,其中“•”表示北斗二代定位模块的误差的值,“+”表示北斗三代定位模块的误差的值.(单位:米)(Ⅰ)从北斗二代定位的50个点位中随机抽取一个,求此点横坐标误差的值大于10米的概率;(Ⅱ)从图中A,B,C,D四个点位中随机选出两个,记X为其中纵坐标误差的值小于﹣4的点位的个数,求X的分布列和数学期望;(Ⅲ)试比较北斗二代和北斗三代定位模块纵坐标误差的方差的大小.(结论不要求证明)【分析】(Ⅰ)通过图象观察,在北斗二代定位的50个点中,横坐标误差的绝对值大于10米有3个点,由古典概率的计算公式可得所求值;(Ⅱ)通过图象可得,A,B,C,D四个点位中纵坐标误差值小于﹣4的有两个点:C,D,则X的所有可能取值为0,1,2,分别求得它们的概率,作出分布列,计算期望即可;(Ⅲ)通过观察它们的极差,即可判断它们的方差的大小.解:(Ⅰ)由图可得,在北斗二代定位的50个点中,横坐标误差的绝对值大于10米有3个点,所以从中随机选出一点,此点横坐标误差的绝对值大于10米的概率为0.06;(Ⅱ)由图可得,A,B,C,D四个点位中纵坐标误差值小于﹣4的有两个点:C,D,所以X的所有可能取值为0,1,2,P(X=0),P(X=1),P(X=2),所以X的分布列为X12P所以X的期望为E(X)=0121;(Ⅲ)北斗二代定位模块纵坐标误差的方差大于北斗三代.【点评】本题考查古典概率的求法,以及随机变量的分布列和期望的求法,方差的大小的判断,考查数形结合思想和运算能力、推理能力,属于中档题.19.已知椭圆,它的上,下顶点分别为A,B,左,右焦点分别为F1,F2,若四边形AF1BF2为正方形,且面积为2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设存在斜率不为零且平行的两条直线l1,l2,它们与椭圆E分别交于点C,D,M,N,且四边形CDMN是菱形,求出该菱形周长的最大值.【分析】(Ⅰ)由题意可得b=c,bc=2,求得b,再由a,b,c的关系可得a,进而得到所求椭圆方程;(Ⅱ)设l1的方程为y=kx+m1,C(x1,y1),D(x2,y2),设l2的方程为y=kx+m2,M(x3,y3),N(x4,y4),分别联立直线方程和椭圆方程,运用韦达定理和判别式大于0,以及弦长公式,求得|CD|,|MN|,运用菱形和椭圆的对称性可得l1,l2关于原点对称,结合菱形的对角线垂直和向量数量积为0,可得3m12﹣2k2﹣2=0,设菱形CDMN 的周长为l,运用基本不等式,计算可得所求最大值.解:(Ⅰ)因为四边形AF1BF2为正方形,且面积为2,所以b=c,且•2c•2b=2,解得b=c=1,a2=2,所以椭圆的标准方程:y2=1;(Ⅱ)设l1的方程为y=kx+m1,C(x1,y1),D(x2,y2),设l2的方程为y=kx+m2,M(x3,y3),N(x4,y4),联立可得(1+2k2)x2+4km1x+2m12﹣2=0,由△>0可得16k2m12﹣4(1+2k2)(2m12﹣2)>0,化简可得2k2+1﹣m12>0,①x1+x2,x1x2,|CD|•|x1﹣x2|•••,同理可得|MN|•,因为四边形CDMN为菱形,所以|CD|=|MN|,所以m12=m22,又因为m1≠m2,所以m1=﹣m2,所以l1,l2关于原点对称,又椭圆关于原点对称,所以C,M关于原点对称,D,N也关于原点对称,所以且,(2x1,2y1),(2x2,2y2),因为四边形CDMN为菱形,可得•0,即x1x2+y1y2=0,即x1x2+(kx1+m1)(kx2+m1)=0,即(1+k2)x1x2+km1(x1+x2)+m12=0,可得(1+k2)•km1•m12=0,化简可得3m12﹣2k2﹣2=0,设菱形CDMN的周长为l,则l=4|CD|•4,当且仅当2+2k2=1+4k2,即k2时等号成立,此时m12=1,满足①,所以菱形CDMN的周长的最大值为4.【点评】本题考查椭圆的方程和性质,考查直线和椭圆的位置关系,注意联立直线方程和椭圆方程,运用韦达定理和判别式大于0,主要考查化简运算能力和推理能力,属于难题.20.已知函数f(x)=x(lnx﹣ax)(a∈一、选择题).(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)有两个极值点,求实数a的取值范围;(Ⅲ)若a>1,求f(x)在区间(0,2a]上的最小值.【分析】(Ⅰ)先利用导数的几何意义求出切线的斜率,然后求出切线方程;(Ⅱ)先把f(x)有两个极值点转化为方程2a有两个不等的正根,再利用数形结合求出a的取值范围;(Ⅲ)先利用导函数的符号判断f(x)在区间(0,2a]上的单调性,进而解决其最小值.解:∵f(x)=x(lnx﹣ax),∴f′(x)=1+lnx﹣2ax.(Ⅰ)当a=1时,f′(1)=﹣1,f(1)=﹣1,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣(﹣1)=﹣(x﹣1),即y=﹣x;(Ⅱ)∵若f(x)有两个极值点,∴f′(x)=1+lnx﹣2ax=0有两个不等的正根,即2a两个不等的正根.令g(x),x>0,g′(x),令g′(x)=0⇒x=1,当x∈(0,1)时g′(x)>0,此时g(x)单调递增;当x∈(1,+∞)时g′(x)<0,此时g(x)单调递减;且g(1)=1,故0<2a<1,解得:a∈(0,).(Ⅲ)∵f(x)=x(lnx﹣ax),∴f′(x)=1+lnx﹣2ax,f″(x)2a,∵a>1,x∈(0,2a],令f″(x)=0⇒x,当x∈(0,)时,f″(x)>0,此时f′(x)单调递增;当x∈(,+∞)时,f″(x)<0,此时f′(x)单调递减,故f′(x)max=f′()=﹣ln(2a)<0,∴f(x)在(0,2a]上单调递减,故f(x)在(0,2a]上的最小值为f(2a)=2a[ln(2a)﹣2a2].【点评】本题主要考查曲线的切线方程的求法及导数的综合应用,属于一道有难度的题.21.数列A:x1,x2,x3,…,x n,…,对于给定的t(t>1,t∈N+),记满足不等式:x n﹣x t≥t*(n﹣t)(∀n∈N+,n≠t)的t*构成的集合为T(t).(Ⅰ)若数列A:x n=n2,写出集合T(2);(Ⅱ)如果T(t)(t∈N+,t>1)均为相同的单元素集合,求证:数列x1,x2,…,x n,…为等差数列;(Ⅲ)如果T(t)(t∈N+,t>1)为单元素集合,那么数列x1,x2,…,x n,…还是等差数列吗?如果是等差数列,请给出证明;如果不是等差数列,请给出反例.【分析】(Ⅰ)推导出n2﹣4≥t*(n﹣2)(∀n∈N+,n≠t),当n>2时,上式可化为n+2≥t*,5≥t*,当n=1时,上式可化为3≤t*,由此能求出T(2)为[3,5].(Ⅱ)T(t)(∀t∈N+,t>l)中均只有同一个元素,不妨设为a.当n=t+1时,有x t+1﹣x t≥a,(∀t>1),当n=t﹣1时,有x t﹣x t﹣1≤a(∀t>1),由此能证明数列x1,x2,…,x n,…为等差数列.(Ⅲ)设T(i)={a},T(j)={b},1<i<j,a≠b,由T(i)={a},知x j﹣x i≥a(j ﹣i),由T(j)={b},知:x i﹣x j≥b(i﹣j),即x j﹣x i≤b(j﹣i),从而a(j﹣i)≤x j﹣x i≤b(j﹣i),a≤b.设T(i)={t i},则t2≤t3≤…≤t n≤…,1<i<j,则t i≤t j,推导出t2=t3=t4=t5=…,由此能证明数列x1,x2,…,x n,…还是等差数列.解:(Ⅰ)由于A:,T(2)为满足不等式(n﹣t)(∀n∈N+)的t*构成的集合,∴n2﹣4≥t*(n﹣2)(∀n∈N+,n≠t),当n>2时,上式可化为n+2≥t*,∴5≥t*,当n=1时,上式可化为3≤t*,∴T(2)为[3,5].(Ⅱ)证明:对于数列A:x1,x2,x3,…,x n,…,若T(t)(∀t∈N+,t>l)中均只有同一个元素,不妨设为a,下面证明数列A为等差数列,当n=t+1时,有x t+1﹣x t≥a,(∀t>1),①当n=t﹣1时,有x t﹣x t﹣1≤a(∀t>1),②∵①②两式对任意大于1的整数均成立,∴x t+1﹣x t=a(∀t>1)成立,∴数列x1,x2,…,x n,…为等差数列.(Ⅲ)对于数列A:x1,x2,…,x n,…,不妨设T(i)={a},T(j)={b},1<i<j,a≠b,由T(i)={a},知x j﹣x i≥a(j﹣i),由T(j)={b},知:x i﹣x j≥b(i﹣j),即x j﹣x i≤b(j﹣i),∴a(j﹣i)≤x j﹣x i≤b(j﹣i),∴a≤b.设T(i)={t i},则t2≤t3≤…≤t n≤…,这说明1<i<j,则t i≤t j,∵对于数列A:x1,x2,…,x n,…,T(t)(∀t∈N+,t>1)中均只有一个元素,首先考察t=2时的情况,不妨设x2>x1,∵x2﹣x1≤t2,又T(2)为单元素集,∴x2﹣x1=t2,再证t3=x3﹣x2,证明如下:由t3=x3﹣x2,证明如下:由t3的定义可知:t3≥x3﹣x2,,∴,由t2的定义可知x3﹣x2≥t2=x2﹣x1,∴t3≥x3﹣x2,∴x3﹣x2=t3,∵t3>t2,∴t3=x3﹣x2>t2,则存在正整数m(m≥4),使得(m﹣2)t2=x m﹣x2,③∵x2﹣x1=t2≤x3﹣x2≤t3≤x4﹣x3≤…≤x k﹣x k﹣1≤…∴x m﹣x2(m﹣2)t2,这与③矛盾,∴t3=t2,同理可证t2=t3=t4=t5=…,∴数列x1,x2,…,x n,…还是等差数列.【点评】本题考查集合的求法,考查等差数列的证明,考查等比数列的判断与证明,考查推理论主能力、运算求解能力,考查化归与转化思想,是难题.。
2020年北京市海淀区高三一模数学考试整体评析

2020年北京市海淀区高三一模数学考试整体评析备受期待的海淀一模,随着高三统一开学,在五一小长假后悄然而至,题型与3月的适应性考试基本一致,难度却有了不小的提升,既是对两个月来的居家自主复习的检阅,也为后续的复习指引方向。
其重要意义在于通过本次考试帮助考生明白考试的题型变化与考查重点,清晰看出自己在哪些模块尚有不足,起到查漏补缺的作用,为接下来的深入复习提供方向,本次考试也为后续的二模、甚至高考提供了重要参照。
下面就本次考试试卷进行整体分析:一、试卷结构和题型设置本次考试试卷与适应性考试试卷题量分布一致,采用新的10+5+6出题模式,即10道选择题(每题4分)、5道填空题(每题5分)、6道大题(其中1题15分,5题14分),共21道题,满分150分。
考点覆盖较全面,既有考查基础知识、基础方法直接运用的题目,又有考查知识点综合运用的题目,也有包含易错点的陷阱题目与涉及解题技巧的综合解答题目。
选填题考查难度层次分明,既有基础考点,如集合、复数、函数性质、直线和圆、数列、不等式、三视图、充要条件、解三角形、二项式定理、平面向量、圆锥曲线(双曲线)等侧重定义与基础公式考查的题目;又有能力考查,如选择、填空涉及的函数性质综合问题探究、新定义与对数运算结合的问题。
解答题打破了原有的题型设置次序,由按题型排序转变为按难度排序,与适应性测试一致的是在综合题中引入劣构题,不同之处的是劣构题由数列题变更为三角函数,未出现常规数列大题,压轴题继续保持理科难度。
立体几何(16题)、三角函数(17题)、统计概率(18题)、导数(19题)、圆锥曲线(20题)、创新数列(21题),题型难度设置和学生平时练习的模式基本一致,变化不大,便于考查学生的真实水平。
二、试卷的难度和能力考查总体来说,本套试题继续沿用了6+2+2(“基础-中等-拔高”所占比例)的难度设置,依然重点考查了学生的基础知识和基本技能,综合考查了学生的运算求解能力、逻辑思维能力、抽象概括能力、空间想象能力、分析问题和解决问题的能力。
2020年北京各区高三一模考试数学分类汇编---数学文化

2020年北京各区高三一模考试数学分类汇编----数学文化1.(2020海淀一模)形如221n +(n 是非负整数)的数称为费马数,记为.n F 数学家费马根据0123,,,,F F F F 4F 都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F 不是质数,那5F 的位数是( ) (参考数据: lg 2≈0.3010 )A. 9B. 10C. 11D. 12【答案】B【分析】32521F =+,设322m =,两边取常用对数估算m 的位数即可. 【详解】32521F =+Q ,设322m =,则两边取常用对数得32lg lg 232lg 2320.30109.632m ===⨯=.9.63291010m =≈,故5F 的位数是10,故选:B .【点睛】解决对数运算问题的常用方法:(1)将真数化为底数的指数幂的形式进行化简.(2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.(4)利用常用对数中的lg 2lg51+=简化计算.2.(2020北京市模拟)紫砂壶是中国特有的手工制造陶土工艺品,其制作始于明朝正德年间.紫砂壶的壶型众 多,经典的有西施壶、掇球壶、石瓢壶、潘壶等.其中,石瓢壶的壶体可以近似看成一 个圆台 (即圆锥用平行于底面的平面截去一个锥体得到的).下图给出了一个石瓢壶的相关数据(单位:cm ),那么该壶的容量约为( )A .1003cmB .3200cmC .3003cmD .4003cm【答案】B【解析】设大圆锥的高为h ,所以4610h h -=,解得10h =,故221119651036200333V πππ=⨯⨯-⨯⨯=≈3cm ,故选B . 3.(2020北京市模拟)众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,因而也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”,整个图形是一个圆形,其中黑色阴影区域在y 轴右侧部分的边界为一个半圆.给出以下命题:①在太极图中随机取一点,此点取自黑色阴影部分的概率是12; ②当43a =-时,直线(2)y a x =-与黑色阴影部分有公共点; ③当[0,1]a ∈时,直线(2)y a x =-与黑色阴影部分有两个公共点.其中所有正确结论的序号是( )A .①B .②C .③D .①② 【答案】D【解析】因为阴影部分的面积是圆的面积一半,所以在太极图中随机取一点,此点取自黑色阴影部分的概率的大小为12,故结论①正确;当43a =-时,阴影部分在第一象限内半圆的圆心坐标为(0,1),半径为1,它到直线(2),4380y a x x y =-+-=的距离为1d ==,所以直线与半圆相切,因此直线与黑色阴影部分有公共点,故结论②正确的;当0a =时,直线表示横轴,此时直线与阴影部分有无穷多个交点,故结论③错误的,因此只有结论①②是正确的,故本题选D .4.(2020怀柔一模)“割圆术”是我国古代计算圆周率π的一种方法.在公元263年左右,由魏晋时期的数学家刘徽发明.其原理就是利用圆内接正多边形的面积逐步逼近圆的面积,进而求π.当时刘微就是利用这种方法,把π的近似值计算到3.1415和3.1416之间,这是当时世界上对圆周率π的计算最精确的数据.这种方法的可贵之处就是利用已知的、可求的来逼近未知的、要求的,用有限的来逼近无穷的.为此,刘微把它概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这种方法极其重要,对后世产生了巨大影响,在欧洲,这种方法后来就演变为现在的微积分.根据“割圆术”,若用正二十四边形来估算圆周率π,则π的近似值是( )(精确到0.01)(参考数据sin150.2588≈o )A. 3.05B. 3.10C. 3.11D. 3.14【答案】C 【分析】假设圆的半径为r ,根据以圆心为顶点将正二十四边形分割成全等的24个等腰三角形,顶角为36024o,计算正二十四边形的面积,然后计算圆的面积,可得结果. 【详解】设圆的半径为r ,以圆心为顶点将正二十四边形分割成全等的24个等腰三角形 且顶角为3601524=o o ,所以正二十四边形的面积为2124sin1512sin152⋅⋅⋅⋅=o o r r r 所以2212sin1512sin15 3.11ππ=⇒=≈o o r r ,故选:C【点睛】本题考查分割法使用,考验计算能力与想象能力,属基础题.5.(2020房山一模)党的十八大以来,脱贫工作取得巨大成效,全国农村贫困人口大幅减少.如图的统计图反映了2012﹣2019年我国农村贫困人口和农村贫困发生率的变化情况(注:贫困发生率=贫困人数(人)÷统计人数(人)×100%).根据统计图提供的信息,下列推断不正确的是( )A .2012﹣2019年,全国农村贫困人口逐年递减B .2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年C .2012﹣2019年,全国农村贫困人口数累计减少9348万D .2019年,全国各省份的农村贫困发生率都不可能超过0.6%由2012﹣2019年我国农村贫困人口和农村贫困发生率的变化情况统计图能求出结果.由2012﹣2019年我国农村贫困人口和农村贫困发生率的变化情况统计图得:在A 中,2012﹣2019年,全国农村贫困人口逐年递减,故A 正确;在B 中,2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年,故B 正确;在C 中,2012﹣2019年,全国农村贫困人口数累计减少:9899﹣551=9348万,故C 正确;在D 中,2019年,全国各省份的农村贫困发生率有可能超过0.6%,故D 错误.故选:D .本题考查命题真假的判断,考查统计图的性质等基础知识,考查运算求解能力,是基础题.6.(2020通州一模)中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?” ,将上述问题的所有正整数答案从小到大组成一个数列 {}n a ,则1a = ; n a = . (注:三三数之余二是指此数被3除余2,例如“5”)8,15n-7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】①②
【分析】将 代入 也成立得①正确;利用不等式可得 ,故②正确;联立 得四个交点,满足条件的最小正方形是以 为中点,边长为2的正方形,故③不正确.
【详解】对于①,将 代入 得 成立,故曲线 关于直线 对称,故①正确;
对于②,因为 ,所以 ,所以 ,
所以曲线 上任意一点到原点的距离都不超过 ,故②正确;
A. B. C. D.
【答案】C
【分析】设双曲线的实半轴长,半焦距分别为 ,根据双曲线的定义可得 ,根据余弦定理可得 ,再根据离心率公式即可求得结果.
【详解】设双曲线 实半轴长,半焦距分别为 ,因为 ,所以 ,
因为以 , 为焦点的双曲线经过点 ,所以 , ,
在三角形 中由余弦定理得 ,
所以 ,解得 ,所以 ,
所以 , ,则
因为 ,所以椭圆 的半焦距
设椭圆 的左焦点为 ,则 ,连接 ,由椭圆的定义可得
即 ,解得 ,故答案为:
【点睛】本题主要考查双曲线的基本性质以及椭圆的基本性质,其中利用定义求 是解题的关键,属于中档题.
9.(2020朝阳一模)已知抛物线 : 的焦点为 ,准线为 ,点 是抛物线 上一点, 于 .若 , ,则抛物线 的方程为()
A. B. C. D.【答源自】B【分析】根据抛物线的定义求得 ,然后在直角三角形中利用 可求得 ,从而可得答案.
【详解】根据抛物线的定义可得 ,又 ,所以 ,
所以 ,解得 ,所以抛物线 的方程为 .故选:B
【点睛】本题考查了抛物线的定义,利用定义得 是解题关键,属于基础题.
10.(2020朝阳一模)在 中, , .若以 , 为焦点的双曲线经过点 ,则该双曲线的离心率为()
7.(2020丰台一模)过抛物线C: ( )的焦点F作倾斜角为 的直线与抛物线C交于两个不同的点A,B(点A在x轴上方),则 的值为()
A. B. C. D.3
【答案】D
【分析】根据几何关系以及抛物线的定义得出 ,由直角三角形的边角关系得出 ,再由直线 和抛物线的方程联立,结合韦达定理得出 ,结合 ,对应边成比例,即可得出答案.
2020年北京各区高三一模数学分类----解析几何
一、选填问题:
1.(2020海淀一模)已知双曲线 的离心率为 则b的值为()B
A.1B.2C.3D.4
【答案】B
【详解】由题知 , , , .故选:B.
【点睛】本题考查利用双曲线离心率求双曲线方程.
求双曲线方程的思路: (1)如果已知双曲线的中心在原点,且确定了焦点在 轴上或 轴上,则设出相应形式的标准方程,然后根据条件确定关于 的方程组,解出 ,从而写出双曲线的标准方程(求得的方程可能是一个,也有可能是两个,注意合理取舍,但不要漏解).
所以 ,所以 ,故选:C
【点睛】本题考查了双曲线的定义,考查了余弦定理,考查了双曲线的离心率,属于基础题.
11(2020朝阳一模).数学中有许多寓意美好的曲线,曲线 被称为“四叶玫瑰线”(如图所示).
给出下列三个结论:
①曲线 关于直线 对称;
②曲线 上任意一点到原点的距离都不超过 ;
③存在一个以原点为中心、边长为 的正方形,使得曲线 在此正方形区域内(含边界).
A.1B. C. D.
【答案】C
【分析】线段AB的长度为 即圆滚动了 圈,此时 到达 , ,则点 到直线 的距离可求.
【详解】线段AB的长度为 设圆滚动了 圈,则 即圆滚动了 圈,
此时 到达 , ,则点 到直线 的距离为 .故选:C.
【点睛】本题考查圆的渐开线变式运用.
圆的渐开线性质:(1)渐开线的发生线滚过的距离等于其在基圆滚过的弧长.(2)渐开线上任一点的法线恒与基圆相切.
8.(2020丰台一模)已知双曲线M: 的渐近线是边长为1的菱形 的边 , 所在直线.若椭圆N: ( )经过A,C两点,且点B是椭圆N的一个焦点,则 ______.
【答案】
【分析】由双曲线渐近线的斜率得出 ,进而得出点 的坐标,根据题意得出椭圆 的半焦距,再由椭圆的定义,即可得出 的值.
【详解】因为 为双曲线 的渐近线,所以 ,则
【答案】
【详解】 ,一条渐近线方程为: ,故 , , .
故答案为: .
【点睛】本题考查了双曲线的渐近线和离心率,意在考查学生的计算能力.
6.(2020丰台一模)圆 的圆心到直线 的距离为()
A.2B. C.1D.
【答案】B
【详解】圆 的圆心坐标为 ,则圆心 到直线 的距离 ,故选:B
【点睛】本题主要考查了点到直线的距离公式的应用,属于中档题.
(2)当焦点位置不确定时,有两种方法来解决:一种是分类讨论,注意考虑要全面;另一种是设双曲线的一般方程为 求解.
2.(2020海淀一模)如图,半径为1的圆M与直线l相切于点A,圆M沿着直线l滚动.当圆M滚动到圆 时,圆 与直线 相切于点B,点A运动到点 ,线段AB的长度为 则点 到直线 的距离为()
4.(2020西城一模)设 则以线段 为直径的圆的方程是()
A. B. C. D.
【答案】A
【分析】计算 的中点坐标为 ,圆半径为 ,得到圆方程.
【详解】 的中点坐标为: ,圆半径为 ,圆方程为 .
故选: .
【点睛】本题考查了圆的标准方程,意在考查学生的计算能力.
5.(2020西城一模)设双曲线 的一条渐近线方程为 ,则该双曲线的离心率为____________.
3.(2020海淀一模)已知点P(1,2)在抛物线C 上,则抛物线C的准线方程为___.
【答案】
【分析】 代入抛物线方程,求出 ,可求准线方程.
【详解】 在抛物线 上, ,准线方程为 ,
故答案为: .
【点睛】本题考查抛物线的性质.涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.
【详解】设 ,过点 分别作准线和 轴的垂线,垂足分别为 , ,过点 作 轴的垂线,垂足于点 ,直线 与准线交于点 ,准线与 轴交于点
直线 的倾斜角为 , ,即
由抛物线的定义知, ,则 ,即点 为 中点
由于 ,则 ,即 ,则
设直线 的方程为 ,即
并代入 中,得: ,即 ,则
由于 ,则
故选:D
【点睛】本题主要考查了直线与抛物线的位置关系,抛物线的定义,属于中档题.