圆心角与圆周角能力提升训练(含答案)
初三数学上册圆心角与圆周角训练题

初三数学上册圆心角与圆周角训练题初三数学上册圆心角与圆周角的训练积累越多,学会越熟练。
下面是我们为大家带来的关于初三数学上册圆心角与圆周角的训练题,期望会给大家带来协助。
初三数学上册圆心角与圆周角训练题目一、选择题1.在同圆中,同弦所对的圆周角 A.相等 B.互补 C.相等或互补D.互余2.3-63所示,A,B,C,D在同一个圆上,四边形ABCD的两条对角线把四个内角分成的8个角中,相等的角共有 A.2对 B.3对 C.4对 D.5对3.3-64所示,⊙O的半径为5,弦AB,C是圆上一点,则ACB的度数是.4.四边形 ABCD内接于⊙O,若BOD=100,则DAB的度数为A.50B.80C.100D.1305.是中国共产主义年轻人团团旗上的案,点A、B、C、D、E五等分圆,则A+B+C+D+E的度数是A.180B.15 0C.135D.1206.下列命题中,正确的命题个数是①顶点在圆周上的角是圆周角;②圆周角度数等于圆心角度数的一半;③900的圆周角所对的弦是直径;④圆周角相等,则它们所对的弧也相等。
A、1个B、2个C、3个D、4个二、填空题7.3-65所示,在⊙O中,AOB=100,C为优弧ACB的中点,则CAB=8.3-66所示,AB为⊙O的直径,AB=6,CAD=30,则弦DC= .9.3-67所示,AB是⊙O的直径,BOC=120,CDAB,求ABD的度数.10.已知AB是⊙O的直径,AD ∥ OC弧AD的度数为80,则BOC=_________11.⊙O内接四边形ABCD中,AB=CD则中和1相等的角有______。
12.弦AB的长等于⊙O的半径,点C在AB上,则C的度数是________-.三、解答题13.3-68所示,在△ABC中,AB=AC,C=70,以AB为直径的半圆分别交AC,BC于D,E,O为圆心,求DOE的度数.14.已知⊙O的直径为10,点A,点B,点C在⊙O上,CAB的平分线交⊙O于点D.①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;②,若CAB=60,求BD的长.15.3-70所示,在⊙O中,AB是直径,弦AC=12 cm,BC=16 cm,ACB的平分线交⊙O于点D,求AD的长.16.3-71所示,AB是半圆O的直径,C是半圆上一点,D是AC的中点,DHAB,H是垂足,AC分别交BD,DH于E,F,试说明DF=EF.初三数学上册圆心角与圆周角训练题答案1.C2.C3.60[提示:3-72所示,作ODAB,垂足为D,则BDsinBODBOD=60,BOA=120,BCABOA=60.故填60.]4.剖析:由于BOD=100,所以C=50,所以A=130,由于圆内接四边形的对角互补。
圆的定义圆心角圆周角训练题(含答案)

圆的定义圆心角圆周角训练题一、单选题(共17题;共34分)1.(2020九上·江苏月考)下列说法错误的是()A. 长度相等的两条弧是等弧B. 直径是圆中最长的弦C. 面积相等的两个圆是等圆D. 半径相等的两个半圆是等弧2.(2019九上·台安期中)下列说法中,不正确的个数是()①优弧一定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆心的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.A. 1个B. 2个C. 3个D. 4个3.(2019九上·沭阳月考)下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是( )A. ①③B. ①③④C. ①②③D. ②④4.(2019九上·贾汪月考)下列说法中,错误的是()A. 半圆是弧B. 半径相等的圆是等圆C. 过圆心的线段是直径D. 直径是弦5.(2018九上·下城期末)下列命题中是真命题的为()A. 弦是直径B. 直径相等的两个圆是等圆C. 平面内的任意一点不在圆上就在圆内D. 一个圆有且只有一条直径6.(2020九上·浙江期中)如图,是的直径,,,则的度数是().A. 52°B. 57°C. 66°D. 78°7.(2019九上·柳江月考)如图,AB是⊙O的直径,,∠COD=34°,则∠AOE的度数是( )A. 51°B. 56°C. 68°D. 78°8.(2019九上·邯郸月考)如图,AB是O的直径, ,∠BOC=40°,则∠AOE的度数为()A. 30°B. 40°C. 50°D. 60°9.(2019九上·余杭期中)如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB于点D,交AC于点E,则∠A的度数为()A. 45º-αB. αC. 45º+αD. 25º+α10.(2020九下·南召月考)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A. AB=ADB. BC=CDC.D. ∠BCA=∠DCA11.(2020九上·无锡月考)在半径为的圆中,长度等于的弦所对的弧的度数为()A. B. C. 或 D. 或12.(2020·西湖模拟)如图,已知点A,B,C,D,E是⊙O的五等分点,则∠BAD的度数是()A. 36°B. 48°C. 72°D. 96°13.(2020·衢州模拟)如图,在⊙O中,=,∠A=40°,则∠B的度数是()A. 60°B. 40°C. 50°D. 70°14.(2020·乾县模拟)如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=70°,∠C=50°,则∠ADB 的度数是()A. 70°B. 80°C. 82°D. 85°15.(2019九上·龙湖期末)如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=( )A. 40°B. 45°C. 50°D. 60°16.(2019九上·道外期末)如图,,是的直径,,若,则的度数是()A. 32°B. 60°C. 68°D. 64°17.(2019九上·光明期中)如图,已知AB是⊙O的直径,∠CBA=25°,则∠D的度数为()A. B. C. D.参考答案一、单选题1.【答案】A【解析】【解答】解:A、等弧就是指能完全重合的两段弧,所以长度相等的弧的度数不一定是等弧,故错误;B、直径是圆中最长的弦,正确;C、面积相等的两个圆是等圆,正确;D、半径相等的两个半圆是等弧,正确.故答案为:A.2.【答案】C【解析】【解答】在同圆或等圆中,优弧一定比劣弧长,所以①错误;面积相等的两个圆半径相等,则它们是等圆,所以②正确;能完全重合的弧是等弧,所以③错误;经过圆内一个定点可以作无数条弦,所以④正确;经过圆内一定点可以作无数条直径或一条直径,所以⑤错误.故答案为:C.3.【答案】A【解析】【解答】解:①直径相等的两个圆能重合,所以是等圆,①是真命题;②长度相等的弧不一定能重合,所以不一定是等弧,②是假命题;③圆中最长的弦是直径,通过圆心的弦是直径,③是真命题;④一条弦把圆分成两条弧,这两条弧可以是半圆,所以可能是等弧,④是假命题.故答案为:A.4.【答案】C【解析】【解答】解:A、半圆是弧,所以A选项的说法正确;B、半径相等的圆是等圆,所以B选项的说法正确;C、过圆心的弦为直径,所以C选项的说法错误;D、直径是弦,所以D选项的说法正确.故答案为:C.5.【答案】B【解析】【解答】解:弦不一定是直径,A是假命题;直径相等的两个圆是等圆,B是真命题;平面内的任意一点在圆上、圆内或圆外,C是假命题;一个圆有无数条直径,D是假命题;故选:B.6.【答案】C【解析】【解答】解:∵AB是⊙O的直径,,∠COD=38°,∴∠BOC=∠COD=∠DOE=38°.∴∠BOE=114°,∴∠AOE=180°-114°=66°.故答案为:C.7.【答案】D【解析】【解答】解:∵,∠COD=34°,∴∠BOC=∠COD=∠DOE=34°,∴∠AOE=180°-∠BOC-∠COD-∠DOE=180°-34°-34°-34°= 78° .故答案为:D.8.【答案】D【解析】【解答】解:∵,∠BOC=40°∴∠BOC=∠COD=∠EOD=40°∴∠BOE=120°∴∠AOE=180°-∠BOE=60°.9.【答案】A【解析】【解答】解:如图,连接CD,∵的度数为,∴∠DCE= ,∵BC=CD,∴∠CBD=∠BDC= ,∵∠C=90°,∴∠CBD+∠A=90°,∴,∴;故选择:A.10.【答案】B【解析】【解答】解:A.∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B.∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C.∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D.∠BCA与∠DCA的大小关系不确定,故本选项错误。
圆周角 同步提升训练(附答案) 2021-2022学年苏科版九年级数学上册

2021-2022学年苏科版九年级数学上册《2.4圆周角》同步能力提升训练(附答案)1.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°2.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110°D.130°3.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°4.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50°B.60°C.70°D.80°5.如图,AB是半圆的直径,点D是的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°6.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A.15°B.28°C.29°D.34°7.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.5cm C.5cm D.6cm8.如图,AB是⊙O的直径,M是⊙O上一点,MN⊥AB,垂足为N.P、Q分别是、上一点(不与端点重合),如果∠MNP=∠MNQ,下面结论:①∠1=∠2;②∠P+∠Q =180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.其中正确的是()A.①②③B.①③⑤C.④⑤D.①②⑤9.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为.10.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=°.11.如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=.12.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为.13.如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2,弦BM平分∠ABC 交AC于点D,连接MA,MC.(1)求⊙O半径的长;(2)求证:AB+BC=BM.14.如图,在△ABC中,CA=CB,E是边BC上一点,以AE为直径的⊙O经过点C,并交AB于点D,连接ED.(1)判断△BDE的形状并证明.(2)连接CO并延长交AB于点F,若BE=CE=3,求AF的长.15.如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.(1)求⊙O的半径;(2)求证:CE=BE.16.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.17.已知,如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一点,AG与DC的延长线交于点F.(1)如CD=8,BE=2,求⊙O的半径长;(2)求证:∠FGC=∠AGD.18.已知△ABC中,AB=AC,以AB为直径的圆O交BC于D,交AC于E,(1)如图①,若AB=6,CD=2,求CE的长;(2)如图②,当∠A为锐角时,使判断∠BAC与∠CBE的关系,并证明你的结论;(3)若②中的边AB不动,边AC绕点A按逆时针旋转,当∠BAC为钝角时,如图③,CA的延长线与圆O相交于E.请问:∠BAC与∠CBE的关系是否与(2)中你得出的关系相同?若相同,请加以证明,若不同,请说明理由.19.已知⊙O的直径为10,点A、点B、点C在⊙O上,∠CAB的平分线交⊙O于点D.(1)如图①,若BC为⊙O的直径,AB=6,求AC、BD、CD的长;(2)如图②,若∠CAB=60°,求BD的长.20.如图,AB是⊙O的直径,C、D为⊙O上的点,且AD平分∠CAB,作DE⊥AB于点E.(1)求证:AC∥OD;(2)若OE=4,求AC的长.参考答案1.解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠ADC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选:C.2.解:连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°,∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=∠1,∴∠A=130°.故选:D.3.解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.4.解:∵∠BOD=100°,∴∠A=∠BOD=50°,∵∠B=60°,∴∠C=180°﹣∠A﹣∠B=70°.故选:C.5.解:连接BD,如图,∵点D是的中点,即弧CD=弧AD,∴∠ABD=∠CBD,而∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圆的直径,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°.故选:C.6.解:根据圆周角定理可知:圆周角的度数等于它所对的弧的度数的一半,根据量角器的读数方法可得:(86°﹣30°)÷2=28°.故选:B.7.解:连接EC,由圆周角定理得,∠E=∠B,∠ACE=90°,∵∠B=∠EAC,∴∠E=∠EAC,∴CE=CA,∴AC=AE=5(cm),故选:B.8.解:延长MN交圆于点W,延长QN交圆于点E,延长PN交圆于点F,连接PE,QF ∵∠PNM=∠QNM,MN⊥AB,∴∠1=∠2(故①正确),∵∠2与∠ANE是对顶角,∴∠1=∠ANE,∵AB是直径,∴可得PN=EN,同理NQ=NF,∵点N是MW的中点,MN•NW=MN2=PN•NF=EN•NQ=PN•QN(故⑤正确),∴MN:NQ=PN:MN,∵∠PNM=∠QNM,∴△NPM∽△NMQ,∴∠Q=∠PMN(故③正确).故选:B.9.解:当GH为⊙O的直径时,GE+FH有最大值.当GH为直径时,E点与O点重合,∴AC也是直径,AC=14.∵∠ABC是直径上的圆周角,∴∠ABC=90°,∵∠C=30°,∴AB=AC=7.∵点E、F分别为AC、BC的中点,∴EF=AB=3.5,∴GE+FH=GH﹣EF=14﹣3.5=10.5.故答案为:10.5.10.解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=35°,∴∠B+∠E=180°+35°=215°.故答案为:215.11.解:∵∠A=55°,∠E=30°,∴∠EBF=∠A+∠E=85°,∵∠A+∠BCD=180°,∴∠BCD=180°﹣55°=125°,∵∠BCD=∠F+∠CBF,∴∠F=125°﹣85°=40°.故答案为40°.12.解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故答案为:65°13.解:(1)连接OA、OC,过O作OH⊥AC于点H,如图1,∵∠ABC=120°,∴∠AMC=180°﹣∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=∠AOC=60°,∵AH=AC=,∴OA=2,故⊙O的半径为2.(2)证明:在BM上截取BE=BC,连接CE,如图2,∵∠ABC=120°,BM平分∠ABC,∴∠ABM=∠CBM=60°,∵BE=BC,∴△EBC是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠BCD+∠DCE=60°,∵∠ACM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD,∵∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM是等边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME,∵ME+EB=BM,∴AB+BC=BM.14.(1)证明:△BDE是等腰直角三角形.∵AE是⊙O的直径∴∠ACB=∠ADE=90°,∴∠BDE=180°﹣90°=90°.∵CA=CB,∴∠B=45°,∴△BDE是等腰直角三角形.(2)过点F作FG⊥AC于点G,则△AFG是等腰直角三角形,且AG=FG.∵OA=OC,∴∠EAC=∠FCG.∵BE=CE=3,∴AC=BC=2CE=6,∴tan∠FCG=tan∠EAC=.∴CG=2FG=2AG.∴FG=AG=2,∴AF=2.15.(1)解:∵OC为⊙O的半径,OC⊥BD,∴;∵DB=8,∴MB=4设⊙O的半径为r,∵CM=2,∴OM=r﹣2,在Rt△OMB中,根据勾股定理得(r﹣2)2+42=r2,解得r=5;(2)证明:方法一:连接AC、CB,∵AB是直径,∴∠ACB=90°.∴∠ACF+∠FCB=90°.又∵CF⊥AB,∴∠CAF+∠ACF=90°∴∠FCB=∠CAF(3分)∵OC为⊙O的半径,OC⊥BD,∴C是的中点,∴∠CAF=∠CBD.∴∠FCB=∠DBC.∴CE=BE;方法二:如图,连接BC,补全⊙O,延长CF交⊙O于点G;又∵CF⊥AB,AB为直径,∴=.∴OC为⊙O的半径,OC⊥BD.∴C是的中点,∴=.∴=.∴∠FCB=∠DBC.∴CE=BE.16.(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.17.(1)解:连接OC.设⊙O的半径为R.∵CD⊥AB,∴DE=EC=4,在Rt△OEC中,∵OC2=OE2+EC2,∴R2=(R﹣2)2+42,解得R=5.(2)证明:连接AD,∵弦CD⊥AB∴=,∴∠ADC=∠AGD,∵四边形ADCG是圆内接四边形,∴∠ADC=∠FGC,∴∠FGC=∠AGD.18.解:(1)连接AD.∵AB为直径,∴AD⊥BC.又∵AB=AC,∴BD=CD.又CD=2,∴BD=2.∴CE=.(2)∠BAC与∠CBE的关系是:∠BAC=2∠CBE.理由如下:由(1),得AD⊥BC.又AB=AC,∴∠1=∠2.又∠2=∠CBE,∴∠BAC=2∠CBE.(3)相同.理由如下:连接AD.∵AB为直径,∴AD⊥BC,又AB=AC,∴∠1=∠2,∵∠CAD是圆内接四边形AEBD的外角,∴∠2=∠CBE,∴∠CAB=2∠CBE.19.解:(1)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(2)如图②,连接OB,OD,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.20.(1)证明:∵AD平分∠CAB,∴∠OAC=2∠OAD.∵∠BOD=2∠BAD,∴∠BOD=∠OAC,∴AC∥OD.(2)解:作OF⊥AC于点F,如图所示:则AF=AC,∵AC∥OD,∴∠DOE=∠OAF.在△DOE和△OAF中,,∴△DOE≌△OAF(AAS),∴OE=AF=AC,∴AC=2OE=8.。
湘教版九年级下册2.2.1圆心角练习(含答案)

湘教版九年级下册 2.2.1圆心角练习(含答案)2.2圆心角、圆周角2.2.1圆心角基础题知识点1认识圆心角1.下边四个图中的角,是圆心角的是()A. B.C. D.︵2.如图,已知AB为⊙O的直径,点D为半圆周上的一点,且AD所对圆心角的度数是则圆心角∠BOD的度数为____________.知识点2圆心角、弧、弦之间的关系3.以下说法中,正确的选项是() A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等︵BD所对圆心角度数的两倍,︵︵4.如图,在⊙O中,AB=AC,∠AOB=122°,则∠AOC的度数为()A.122°B.120°C.61°D.58°5.如图,A,B,C,D是⊙O上的四点,且AD=BC,则AB与CD的大小关系为() A.AB>CD B.AB=CDC.AB<CD D.不可以确立︵︵6.如图,已知在⊙O中,BC是直径,AB=DC,∠AOD=80°,则∠ABC等于()A.40°B.65°C.100°D.105°1/6︵湘教版九年级下册 2.2.1圆心角练习(含答案)︵︵︵︵︵︵︵7.以下图,在⊙O中,AC,BC是弦,依据条件填空:︵若AC=BC,则________________________________________________________________________;︵若AC=BC,则________________________________________________________________________;若∠AOC=∠BOC,则________________________________________________________________________.︵8.如图,在⊙O中,点C是AB的中点,∠A=50°,则∠BOC等于____________度.︵︵9.以下图,在⊙O中,AB=AC,∠B=70°,则∠A=____________.︵︵︵10.(贵港中考改编)以下图,AB是⊙O的直径,BC=CD=DE,∠COD=34°,求∠AEO的度数.2/6湘教版九年级下册 2.2.1圆心角练习(含答案)中档题11.如图,AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA.则∠BCD等于()A.100°B.110°C.120°D.135°12.如图,在⊙O中,已知弦AB=DE,OC⊥AB,OF⊥DE,垂足分别为C,F,则以下说法中正确的个数为()︵︵①∠DOE=∠AOB;②AB=DE;③OF=OC;④AC=EF.A.1 B.2 C.3 D.4︵︵︵︵13.已知AB,CD是同圆的两段弧,且AB=2CD,则弦AB与2CD之间的关系为()A.AB=2CD C.AB>2CD B.AB<2CDD.不可以确立︵14.如图,已知D,E分别为半径OA,OB的中点,C为AB的中点.试问CD与CE能否相等?说明你的原因.15.以下图,以?ABCD的极点A为圆心,AB为半径作圆,交AD,BC于E,F,延伸BA交⊙A于G,求证:3/6湘教版九年级下册 2.2.1圆心角练习(含答案)︵︵GE=EF.︵︵16.如图,AB是⊙O的直径,AC=CD,∠COD=60°.△AOC是等边三角形吗?请说明原因;(2)求证:OC∥BD.综合题4/6湘教版九年级下册 2.2.1圆心角练习(含答案)︵17.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AON=60°,点B为AN的中点,P是直径MN上的一个动点,求PA+PB的最小值.5/6湘教版九年级下册2.2.1圆心角 练习(含答案)参照答案1.D 2.60° 3.B 4.A 5.B 6.B ︵ ︵7.(1)AC =BC ,∠AOC =∠BOC (2)AC =BC ,∠AOC =∠BOC︵ ︵(3)AC =BC ,AC =BC 8.409.40°︵ ︵ ︵ 10.∵BC =CD =DE ,∠COD =34°,∴∠BOE =102°. OA =OE ,∴∠AEO =∠EAO =12∠BOE =51°. 11.C 12.D 13.B 14.相等.原因以下:连结 OC. ∵D ,E 分别为⊙O 半径OA ,OB 的中点, ∴OD =1AO ,OE = 1 B O. 2 2︵OA =OB ,∴OD =OE.∵C 是AB 的中点, ︵ ︵AC =BC.∴∠AOC =∠BOC.∴△DCO ≌△ECO(SAS).∴CD =CE.15.证明:连结 AF.∵四边形ABCD 为平行四边形 ,AD ∥BC.∴∠GAE =∠B ,∠EAF =∠AFB. 又∵AB =AF ,∴∠B =∠AFB. ︵ ︵∴∠GAE =∠EAF.∴GE =EF.︵ ︵16.(1)△AOC 是等边三角形.∵AC =CD ,∴∠AOC =∠DOC =60°.又∵OA =OC ,∴△AOC 是等边三角形.︵ ︵1∠AOD.(2)证明:∵AC =CD ,∴∠AOC =∠COD =2OD =OB.∴∠B =∠ODB =1∠AOD.2 ∴∠AOC =∠B.∴OC ∥BD.17.作点A 对于MN 的对称点 A ′,连结A ′B,交MN 于点P ,连结OA ′,OB ,PA ,AA ′.∵点A 与A ′对于MN 对称,点A 是半圆上的一个三平分点 ,∴∠A ′ON =∠AON =60°,PA =PA ′. ︵∵点B 是AN 的中点,∴∠BON =30°. ∴∠A ′OB =∠A ′ON +∠BON =90°. 又∵OA =OA ′=1,∴A ′B = 2.∴PA +PB =PA ′+PB =A ′B= 2.6/6。
北师大九年级下《3.4圆周角与圆心角的关系》强化训练含答案

《3.4圆心角与圆周角的关系》强化训练一、选择题1.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()第1小题图第2小题图第3小题图第4小题图A.150°B.140°C.130°D.120°2.如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75°B.60°C.45°D.30°3.如图,BD是⊙O的直径,点A、C在⊙O上,AB BC,∠AOB=60°,则∠BDC的度数=是()A.60°B.45°C.35°D.30°4.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140°B.70°C.60°D.40°5.如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=()第5小题图第6小题图第7小题图第8小题图A .64°B .58°C .72°D .55° 6.如图,点A ,B ,C 在⊙O 上,∠A=36°,∠C=28°,则∠B=( ) A .100° B .72° C .64°D .36°7.如图,线段AB 是⊙O 的直径,弦CD ⊥AB ,∠CAB=40°,则∠ABD 与∠AOD 分别等于( ) A .40°,80°B .50°,100°C .50°,80°D .40°,100°8.如图,已知AB 是⊙O 的直径,∠D=40°,则∠CAB 的度数为( ) A .20° B .40°C .50°D .70°9.如图,把直角三角板的直角顶点O 放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M 、N ,量得OM=8cm ,ON=6cm ,则该圆玻璃镜的半径是( )第9小题图 第10小题图 第11小题图 第12小题图A B .5cm C .6cm D .10cm10.如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( )A .13B .CD 11.如图,点A 、B 、C 是圆O 上的三点,且四边形ABCO 是平行四边形,OF ⊥OC 交圆O 于点F ,则∠BAF 等于( ) A .12.5°B .15°C .20°D .22.5°12.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B C D.DE=OB二、填空题13.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=度.第13小题图第14小题图第15小题图第16小题图14.如图,在⊙O中,AB是弦,C是 AB上一点.若∠OAB=25°,∠OCA=40°,则∠BOC 的大小为度.15.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=度.16.如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=.17.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=°.第17小题图第18小题图第19小题图第20小题图18.如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D=.19.如图,A,B,C,D是⊙O上的四个点,∠C=110°,则∠BOD=140度.20.如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O 的直径,AB=BC=CD.连接PA、PB、PC,若PA=a,则点A到PB和PC的距离之和AE+AF=.三、解答题21.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.22.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若EF=2CD的长.23.已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形(1)求证:△DFB是等腰三角形;(2)若,求证:CF⊥AB.24.在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP ⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.25.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且.DE BE(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.26.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,CD的长.参考答案1.A2.D3.D4.B5.B6.C7.B8.C9.B 10.C 11.B 12.D13.30 14.30 15.35 16.35°17.62°18.65 19.140 20.21.(1)∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2.22.(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=AB•sinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.23.(1)∵AB是⊙O直径,∴∠ACB=90°,∵△AEF为等边三角形,∴∠CAB=∠EFA=60°,∴∠B=30°,∵∠EFA=∠B+∠FDB,∴∠B=∠FDB=30°,∴△DFB是等腰三角形;(2)过点A作AM⊥DF于点M,设AF=2a,∵△AEF是等边三角形,∴FM=EM=a,,在Rt△DAM中,,,∴DM=5a,∴DF=BF=6a,∴AB=AF+BF=8a,在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,∵AE=EF=AF=2a,∴CE=AC﹣AE=2a,∵∠AEF=∠ECF +∠EFC=60°,∴∠CFE=30°, ∴∠AFC=∠AFE +∠EFC=60°+30°=90°, ∴CF ⊥AB .24. (1)连结OQ ,如图1,∵PQ ∥AB ,OP ⊥PQ , ∴OP ⊥AB ,在Rt △OBP 中,∵tan ∠B=OPOB,∴OP=3tan30°在Rt △OPQ 中,∵OQ=3,∴= (2)连结OQ ,如图2,在Rt △OPQ 中,=, 当OP 的长最小时,PQ 的长最大, 此时OP ⊥BC ,则OP=12OB=32,∴PQ 2=.25. (1)△ABC 为等腰三角形.理由如下:连结AE ,如图,∵ DEBE =, ∴∠DAE=∠BAE ,即AE 平分∠BAC , ∵AB 为直径,∴AE⊥BC,∴△ABC为等腰三角形;(2)∵△ABC为等腰三角形,AE⊥BC,∴BE=CE=12BC=12×12=6,在Rt△ABE中,∵AB=10,BE=6,∴AE=,∵AB为直径,∴∠ADB=90°,∴12AE•BC=12BD•AC,∴BD=81248 105⨯=,在Rt△ABD中,∵AB=10,BD=485,∴145 =,∴sin∠ABD=14751025 ADAB==.26.(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=12BC=,∵△CDE∽△CBA,∴CD CE CB AC=,∴CE•CB=CD•CA,AC=AB=4,,∴CD=32第11 页/ 共11 页。
圆周角—巩固练习(提高)含答案

C圆周角—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有()A、2个B、3个C、4个D、5个2.已知,如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°。
给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣弧DE的2倍;⑤AE=BC。
其中正确的有()个A.5B.4C.3D.2第1题图第2题图第3题图3.如图,在⊙O中,弦AB的长是半径OA的3倍,为AB中点,AB、OC交于点P,则四边形OACB是() A.平行四边形B.矩形C.菱形D.正方形4.如图,设⊙O的半径为r,弦的长为a,弦与圆心的距离为d,弦的中点到所对劣弧中点的距离为h,下面说法或等式:①r=d+h②4r2=4d2+a2正确结论的序号是()③已知r、a、d、h中任意两个,可求其它两个。
其中A.仅①B.②③C.①②③D.①③5.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为()A.68°B.88°C.90°D.112°6.(2016黔南州)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为()A.cm B.3cm C.3cm D.6cm二、填空题7.如图所示,AB、CD是⊙O的两条互相垂直的弦,圆心角∠AOC=130°,AD、CB的延长线相交于P,则∠P=________°.(第7题)(第9题)8.(2016青岛)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=°.9.如图,⊙O的直径AB与弦CD相交于点E,若AE=5,BE=1,C D42,则∠AED=°.10.如图,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,则弦CE=________.11.如图所示,在半径为3的⊙O中,点B是劣弧AC的中点,连接AB并延长到D,使BD=AB,连接AC、BC、CD,如果AB=2,那么CD=________.ABM O P N(第10题图)(第11题图)(第12题图)︵12.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,点B为AN中点,P直径MN上的一个动点,则PA+PB的最小值是.13.如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=.三、解答题14.如图,在⊙O中,AB=BC=CD,OB,OC分别交AC,BD于E、F,求证O E=OF15.如图,等腰△ABC中,AC=BC,⊙O为△ABC的外接圆,D为上一点,CE⊥AD于E,求证:AE=BD+DE.16.如图所示,AB是⊙O的直径,C为AE的中点,CD⊥AB于D,交AE于F,连接AC,求证:AF=CF.17.如图所示,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D,求四边形ADBC的面积.【答案与解析】一、选择题1.【答案】D.【解析】与∠BCE相等的角有5个,∠DAE=∠AED=∠ABD,∠BAD=∠BAE+∠DAE=∠BAE+∠ABD=∠BCE,同理∠ADO=∠ODE=∠OED=∠BCE,且∠ACD=∠BCE.2.【答案】C.【解析】①②④正确.3.【答案】C.【解析】由弦AB的长是半径OA的3倍,C为AB中点,得∠AOC=60°,△AOC为等边三角形,所以AO=AC,进而得到OA=OB=BC=AC,故则四边形OACB是菱形.4.【答案】C.【解析】根据垂径定理及勾股定理可得①②③都是正确的.5.【答案】B.【解析】如图,∵AB=AC=AD,∴点B、C、D在以点A为圆心,以AB的长为半径的圆上;∵∠CBD=2∠BDC,∠CAD=2∠CBD,∠BAC=2∠BDC,∴∠CAD=2∠BAC,而∠BAC=44°,∴∠CAD=88°,故选B.6.【答案】A.【解析】连接CB.∵AB是⊙O的直径,弦CD⊥AB于点E,∴圆心O到弦CD的距离为OE;∵∠COB=2∠CDB(同弧所对的圆周角是所对的圆心角的一半),∠CDB=30°,=∴∠COB=60°;在 △Rt OCE 中,OC=5cm ,∴OE= cm . 故选 A .二、填空题 7.【答案】40°;【解析】∵ ∠AOC =130°,∴ ∠ADC =∠ABC =65°, 又 AB ⊥CD ,∴ ∠PCD =90°-65°=25°,∴ ∠P =∠ADC -∠PCD =65°-25°=40°.8.【答案】62.【解析】∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠BCD=28°,∴∠ACD=62°,由圆周角定理得,∠ABD=∠ACD=62°,故答案为:62.9.【答案】30°; 10.【答案】3;11.【答案】43;【解析】连结 OA 、OB ,交 AC 于 E ,因为点 B 是劣弧 AC 的中点,所以OB ⊥AC ,设 BE=x,则 OE=3-x ,由 AB 2-BE 2=OA 2-OE 2 得22-x 2=32-(3-x )2,解得 x = 2 4, CD = 2BE = .3 3AB CD 2 CD 4或连接 OA 、△O B , OAB ∽△BCD , , = , CD = . OA BC 3 2 312.【答案】;【解析】作点B关于MN的对称点C,连接AC交MN于点P,则P点就是所求作的点.(如图)此时PA+PB最小,且等于AC的长.连接OA,OC,根据题意得弧AN的度数是60°,则弧BN的度数是30°,根据垂径定理得弧CN的度数是30°,则∠AOC=90°,又OA=OC=1,则AC=.13.【答案】40°;【解析】∵∠A=55°,∠E=30°,∴∠EBF=∠A+∠E=85°,∵∠A+∠BCD=180°,∴∠BCD=180°﹣55°=125°,∵∠BCD=∠F+∠CBF,∴∠F=125°﹣85°=40°.三、解答题14.【答案与解析】如图,∵AB=BC=CD,∴AC=BD,∴AC=BD,∵B,C是AC,BD的中点,∴BF=CE=1AC,O B⊥AC,O C⊥BD, 2∴Rt OBF≌Rt OCE,∴OE=OF15.【答案与解析】证明:如图,在AE上截取AF=BD,连接CF,CD;在△ACF和△BCD中∴△ACF≌△BCD,∴CF=CD,∵CE⊥AD于E,∴EF=DE,∴AE=AF+EF=BD+DE.16.【答案与解析】证法一:连接BC,如图所示.∵AB是直径,∴∠ACB=90°,即∠ACF+∠BCD=90°.又∵CD⊥AB,∴∠B+∠BCD=90°,∴∠ACF=∠B.∵点C是AE的中点,∴AC=CE,∴∠B=∠CAE,∴∠ACF=∠CAE,∴AF=CF.证法二:如图所示,连接BC,并延长CD交⊙O于点H.∵AB是直径,CD⊥AB,∴AC=AH.∴点C是AE的中点,∴AC=CE,∴AH=CE.∵∠ACF=∠CAF,∴AF=CF.四边形ADBC =S17.【答案与解析】∵AB是直径,∴∠ACB=∠ADB=∠90°.在△R t ABC中,AB=6,AC=2,∴BC=AB2-AC2=62-22=42.∵∠ACB的平分线交⊙O于点D,∴∠DCA=∠BCD.∴AD=DB,∴AD=BD.∴在△R t ABD中,AD2+BD2=AB2=62,∴AD=BD=32.∴S∆ABC +S∆ABD=11A C BC+AD BD22=11⨯2⨯42+⨯(32)2=9+42.22。
(名师整理)最新人教版数学中考《垂径定理 圆心角 圆周角定理》专题精练(含答案解析)

垂径定理圆心角圆周角定理一选择题:1、如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°2.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为( )A.50° B.55° C.60° D.65°3.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100° B.110° C.120°D.130°4.如图,⊙O的半径为5,弦AB的长为8,点M在线段AB(包括端点A,B)上移动,则OM取值范围是()A.3≤OM≤5B.3≤OM<5C.4≤OM≤5 D.4≤OM<55、如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有()A.2个 B.3个 C.4个 D.5个6.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B 的读数分别为86°、30°,则∠ACB的大小为( )A.15°B.28° C.29°D.34°7.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是( )8.如图.⊙O 中,AB、AC是弦,O在∠ABO的内部,,,,则下列关系中,正确的是()A. B. C. D.9.如图,四边形ABCD内接于⊙O,BC是直径,AD=DC,∠ADB=20º,则∠ACB,∠DBC分别为()A.15º与30º B.20º与35º C.20º与40º D.30º与35º10.图中∠BOD的度数是()A.55° B.110° C.125° D.150°11.如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为()(A)140°(B)125°(C)130°(D)110°12.如图,弦AB∥CD,E为上一点,AE平分,则图中与相等(不包括)的角共有()A.3个 B.4个 C.5个 D.6个13、如图,已知的半径为1,锐角内接于,于点,于点,则的值等于()A.的长 B.的长 C.的长 D.的长14.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分 D.抛物线的一部分15.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为()A. B. C.或 D.或或16.如图,,在以为直径的半圆上,,在上,为正方形,若正方形边长为1,,,则下列式子中,不正确的是()A. B. C. D.17.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4 B.5 C.6 D.718.如图,在△ABC中,AD是高,AE是直径,AE交BC于G,有下列四个结论:•①AD2=BD·CD;②BE2=EG·AE;③AE·AD=AB·AC;④AG·EG=BG·CG.其中正确结论的有()A.1个 B.2个 C.3个 D.4个19.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,,的中点分别是M,N,P,Q。
人教版 九年级数学上册 第24章 圆的概念及弧、弦、圆心角和圆周角 专题练习(含答案)

圆的概念及弧、弦、圆心角和圆周角专题练习(含答案)例1. 如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°例2. 如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE CE=1.则弧BD 的长是()B C D例3.如图,已知A,B,C在⊙O上,ACB为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C例4. 如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3巩固练习1.如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.2.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为________.3.⊙O中,∠AOB=100°,若C是AB上一点,则∠ACB等于( ).A.80°B.100°C.120°D.130°4.已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.5. 已知:如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为AD的中点,若∠BAD=20°,求∠ACO的度数6.如图,以ABCD的顶点A为圆心,AB为半径作⊙A,分别交BC、AD于E、F,交BA的延长线于G,试说明弧EF和弧FG相等.7. ⊙O中,M为AB的中点,则下列结论正确的是( ).A.AB>2AM B.AB=2AM C.AB<2AM D.AB与2AM的大小不能确定8. 如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想AD与CB之间的关系,并证明你的猜想.9. 如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在ANB上滑动(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.10.如图,若五边形ABCDE是⊙O的内接正五边形,则∠BOC=______,∠ABE=______,∠ADC=______,∠ABC=______.10题图11题图12题图11.如图,若六边形ABCDEF是⊙O的内接正六边形,则∠AED=______,∠FAE=______,∠DAB=______,∠EFA=______.12.如图,ΔABC是⊙O的内接正三角形,若P是AB上一点,则∠BPC=______;若M是BC上一点,则∠BMC=______.13.在⊙O中,若圆心角∠AOB=100°,C是AB上一点,则∠ACB等于( ).A.80°B.100°C.130°D.140°14.在圆中,弦AB,CD相交于E.若∠ADC=46°,∠BCD=33°,则∠DEB等于( ).A.13°B.79°C.38.5°D.101°15.如图,AC 是⊙O 的直径,弦AB ∥CD ,若∠BAC =32°,则∠AOD 等于( ).A .64°B .48°C .32°D .76°16.如图,弦AB ,CD 相交于E 点,若∠BAC =27°,∠BEC =64°,则∠AOD 等于( ).A .37°B .74°C .54°D .64°17.如图,四边形ABCD 内接于⊙O ,则x = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
松滋市实验中学九年级培优辅差《圆周角》训练题
命题人:胡海洋
题号一、选择题二、填空题三、简答题总分
得分。
一、选择题
1、如图,内接于,若,则的大小为()
A.B. C.D.
)
(第1题)(第2题)(第3题)(第4题)(第5题)
2、如图,AB是的直径,点C、D在上,,则()A.70° B.60° C.50° D.40°
3、如图,是的外接圆,已知,则的大小为()
A.40° B.30° C.45°
D.50°
4、如图,已知A、B、C、D、E均在⊙O上,且AC为⊙O的直径,则∠A+∠B+∠C= ( )
A.180°B.90°C.45°D.30°
¥
5、如图,四边形ABCD内接于⊙O,BC是直径,AD=DC,∠ADB=20º,则∠ACB,∠DBC分别为()A.15º与30º B.20º与35º C.20º与40º D.30º与35º
6、. 如右图,A、B、C、D为⊙O的四等分点,若动点P从点C出发,沿C→D→O→C路线作匀速运动,设运动时间为t,∠APB的度数为y,则y与t之间函数关系的大致图象是
A B C
D
二、填空题
7、如图,在⊙O中,∠AOB=46º,则∠ACB=º.
8、如图,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=63 º,那么∠B= º.
—
(第7题)(第8题)(第9题)(第10题)(第11题)
9、如图,AB是⊙0的直径,弦AC长为4a,弦BC长为5a,∠ACB的平分线交⊙0于点D,则CD的长为 .
10、如图, ⊙P过O、、,半径PB⊥PA,双曲线恰好经过B点,则k的值是
____________.
11、如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB = 20°,则∠OCD = _____________.
12、如图,已知AB是⊙O的直径,BC是弦,∠ABC=30°,过圆心O作OD⊥BC交BC于点D,连接DC,则∠
DCB= 。
(第12题)(第13题)(第14题)
】
13、如图,为的直径,点为其半圆上任意一点(不含、),点为另一半圆上一定点,若
为度,为度.则与的函数关系是.
14、如图,是半圆的直径,为圆心,是半圆上一点,且,是延长线上一点,与半圆相交于点,如果,则,,.
三、简答题
15、AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若,求的度数.
`
16、已知AB、AC为⊙O的两条弦
(1)用直尺(没有刻度)和圆规作出弧BC的中点D;
(2)连接OD,则OD∥AC吗若成立,请证明;若不成立,请添加一个适当的条件,
使之成立,再证明.
}
17、如图,AB为半圆直径,O 为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D,若AC=8cm,DE=2cm,求OD的长。
,BF和AD交于E,
18、.如图20-12,BC为⊙O的直径,AD⊥BC,垂足为D,AB AF
求证:AE=BE.。
19、在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.
{
20、如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.
(1)求∠B的大小;
(2)已知AD=6求圆心O到BD的距离.
21、如图,⊙ 0是ABC的外接圆,AD是⊙0的直径,DE⊥ BC于E,AF⊥BC于F
(1)求证BE=CF;
(2)作OG ⊥BC于G,若DE=BF=3,OG=1,求弦AC的长.
》
22、如右图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=10,求弦AC的长.
:
23、.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD。
(1)P是优弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB;
(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系请证明你的结论。
{
24、如图,⊙O为四边形的外接圆,圆心在上,∥。
(1)求证:AC平分;
(2)若AC = 8,AC:CD=2:1试求⊙C的半径;
(3)
%
`
¥
参考答案
一、选择题
{
1、D
2、D
3、A
4、B
5、B
6、C
二、填空题
¥
7、【考点】圆周角定理.
【分析】由⊙O中,∠AOB=46°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠ACB的度数.
【解答】解:∵⊙O中,∠AOB=46°,
∴∠ACB=1 2 ∠AOB=1 2 ×46°=23°.
故答案为:23.
【点评】此题考查了圆周角定理.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用,注意数形结合思想的应用.
8、21°
9、
[
10、-4
11、65°
12、30度
13、
14、
三、简答题
15、证明:切⊙O于是⊙O的直径,
!
∴.
,∴.
∴.
16、解:(1)作图略……………………………………… 3分
(2) 不成立,添加:AB是直径…………… 2分
证明略……………………………… 3分
17、3
18、证明:连结AB,AC,
-
∠BAD=∠ABF AE=BE.
19、解:连接BD
∵AB⊙O是直径
∴BD⊥AD
又∵CF⊥AD
∴BD∥CF
∴∠BDC=∠C…………………………3分
(
又∵∠BDC=∠BOC
∴∠C=∠BOC
∵AB⊥CD
∴∠C=30°
∴∠ADC=60°…………………………………………………………………6分20、考点:圆周角定理;三角形内角和定理;垂径定理。
解答:解:(1)∵∠APD=∠C+∠CAB,
∴∠C=65°﹣40°=25°,
》
∴∠B=∠C=25°;
(2)作OE⊥BD于E,
则DE=BE,
又∵AO=BO,
∴,
圆心O到BD的距离为3.
21、(1)证明:延长DE交⊙0于B,
~
连接AH、BH.则四边形AHEF为矩形,
∴AF=EH,AH//EF,∴∠HAB=∠ABC,
∴BH =AC,∴ Rt△BEH≌ Rt△CFA,.∴ BE=CF;
(2)解:连接CD,连接FO并延长交DE于P点.
则AFO≌△DPO,∴ AF=DP,OF=OP,
∴OG= PE,∴PE=2,∴AF=DP=1
∵DE=BF=CE,∴∠BCD=45°
又∠ACD=90°,:. ∠ACB=45°.
∴AC=
22、解:∵BD为⊙O的直径,∴∠BAD=90°
,
23、(1)证明:连接OD,∵AB是直径,AB⊥CD,∴∠COB=∠DOB=。
又∵∠CPD=,∴∠CPD=∠COB。
(2)∠CP′D与∠COB的数量关系是:∠CP′D+∠COB=180°。
证明:∵∠CPD+∠CP′D=180°,∠CPD=∠COB,∴∠CP′D+∠COB=180°。
24、解:(1)∵OC//AB,∴∠BAC=∠ACO,
∵ OC=OA∴∠ACO =∠CAO
∴∠CAO=∠BAC即:AC平分∠DAB
(2)AC=8,弧AC与CD之比为2:1,
∴∠CAD=30°∵AD是直径,∴∠ACD=90°,
∴ AD=∴圆O的半径为
(3)∵点B为弧AC的中点∴∠BAC=∠BCA,
∴∠BAC=∠BCA=∠=OAC=∠OCA∴OA//BC
∴四边形ABCO是平行四边形∵ AO=CO ∴四边形ABCO为菱形。