基本初等函数讲义

合集下载

基本初等函数讲义(超级全)

基本初等函数讲义(超级全)

一、一次函数二、二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法 ①已知三个点坐标时.宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时.常使用顶点式. ③若已知抛物线与x 轴有两个交点.且横线坐标已知时.选用两根式求()f x 更方便. (①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线.对称轴方程为,2x a=-顶点坐标是24(,)24b ac b a a-- ②当0a >时.抛物线开口向上.函数在(,]2b a -∞-上递减.在[,)2ba-+∞上递增.当2b x a =-时.2min 4()4ac b f x a -=;当0a <时.抛物线开口向下.函数在(,]2ba -∞-上递增.在[,)2b a -+∞上递减.当2bx a=-时.2max 4()4ac b f x a -=. 三、幂函数(1)幂函数的定义一般地.函数y x α=叫做幂函数.其中x 为自变量.α是常数. 过定点:所有的幂函数在(0,)+∞都有定义.并且图象都通过点(1,1).(1)根式的概念:如果,,,1nx a a R x R n =∈∈>.且n N +∈.那么x 叫做a 的n 次方根. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈(1)对数的定义①若(0,1)xa N a a =>≠且.则x 叫做以a 为底N 的对数.记作log a x N =.其中a 叫做底数.N 叫做真数. ②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =.log 1a a =.log b a a b =.(3)常用对数与自然对数常用对数:lg N .即10log N ;自然对数:ln N .即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>.那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A .值域为C .从式子()y f x =中解出x .得式子()x y ϕ=.如果对于y 在C 中的任何一个值.通过式子()x y ϕ=.x 在A 中都有唯一确定的值和它对应.那么式子()x y ϕ=表示x 是y 的函数.函数()x y ϕ=叫做函数()y f x =的反函数.记作1()x fy -=.习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域.即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=.并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上.则'(,)P b a 在反函数1()y f x -=的图象上.④一般地.函数()y f x =要有反函数则它必须为单调函数. 例题一、求二次函数的解析式例1.抛物线244y x x =--的顶点坐标是()A .(2.0)B .(2.-2)C .(2.-8)D .(-2.-8)例2.已知抛物线的顶点为( 1.2).且通过(1.10).则这条抛物线的表达式为()A .()2312y x =-- B .()2312y x =-+ C. ()2312y x =+- D.()2312y x =-+---例3.抛物线y=的顶点在第三象限.试确定m 的取值范围是( ) A .m <-1或m >2 B .m <0或m >-1 C .-1<m <0 D .m <-1例4.已知二次函数()f x 同时满足条件:(1)()()11f x f x +=-;(2)()f x 的最大值为15;(3)()0f x =的两根立方和等于17求()f x 的解析式二、二次函数在特定区间上的最值问题例5. 当22x -≤≤时.求函数223y x x =--的最大值和最小值.例6.当0x ≥时.求函数(2)y x x =--的取值范围.例7.当1t x t ≤≤+时.求函数21522y x x =--的最小值(其中t 为常数).222x mx m -++三、幂函数例8.下列函数在(),0-∞上为减函数的是()A.13y x = B.2y x = C.3y x = D.2y x -=例9.下列幂函数中定义域为{}0x x >的是() A.23y x = B.32y x = C.23y x-= D.32y x-=例10.讨论函数y =52x 的定义域、值域、奇偶性、单调性.并画出图象的示意图.例10.已知函数y =42215x x --.(1)求函数的定义域、值域;(2)判断函数的奇偶性; (3)求函数的单调区间.四、指数函数的运算例11.计算122(2)-⎡⎤-⎣⎦的结果是( ) A、12C、—12例12.等于( ) A 、 B 、C 、 D 、例13.若53,83==ba .则b a233-=___________五、指数函数的性质例14.{|2},{|xM y y P y y ====.则M ∩P () A.{|1}y y > B. {|1}y y ≥ C. {|0}y y > D. {|0}y y ≥ 例15.求下列函数的定义域与值域: (1)442x y -=(2)||2()3x y =例16.函数()2301x y a a a -=+>≠且的图像必经过点 ( )A .(0.1)B .(1.1)C .(2.3)D .(2.4)例17求函数y=2121x x -+的定义域和值域.并讨论函数的单调性、奇偶性.4416a 8a 4a 2a五、对数函数的运算例18.已知32a=.那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、23a a -例19.2log (2)log log a a a M N M N -=+.则NM的值为( ) A 、41B 、4C 、1D 、4或1 例20.已知732log [log (log )]0x =.那么12x -等于( )A 、13B C D 例21.2log 13a <.则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭五、对数函数的性质例22.下列函数中.在()0,2上为增函数的是( )A 、12log (1)y x =+B 、2log y =C 、21log y x =D 、2log (45)y x x =-+ 例23.函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称例23.求证函数)()lg f x x =是(奇、偶)函数。

基本初等函数知识点归纳

基本初等函数知识点归纳

基本初等函数知识点归纳1.常值函数:常值函数是指在定义域上的值始终相同的函数。

常见的常值函数有恒等于0的零函数和恒等于1的单位函数。

常值函数的图像是一条与x轴平行的直线。

2.幂函数:幂函数是指形如y=x^n的函数,其中n是一个实数。

当n 为正偶数时,函数的图像在原点右侧递增;当n为正奇数时,图像在全定义域递增;当n为负数时,图像在全定义域递减。

特殊地,当n为0时,函数为常值函数13.指数函数:指数函数是形如y=a^x的函数,其中a为正实数且a≠1、指数函数的图像可以是递增或递减的曲线,具体取决于底数a的大小关系。

当a>1时,函数递增;当0<a<1时,函数递减。

指数函数特点是它们的图像都经过点(0,1)。

4. 对数函数:对数函数是指形如y = log_a(x)的函数,其中a为正实数且a ≠ 1、对数函数是指数函数的反函数,因此它们的图像是关于y = x对称的。

对数函数的图像在定义域上递增,对数函数的唯一一个特殊点是(1,0)。

5. 三角函数:三角函数包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。

这些函数在三角学中起着重要的作用,并且它们的图像都是周期性的。

正弦函数和余弦函数的图像是一条在[-1,1]之间往复的波浪线,而正切函数和余切函数的图像是一条通过原点的无数个波浪线。

6. 反三角函数:反三角函数是三角函数的反函数。

反三角函数包括反正弦函数asin(x)、反余弦函数acos(x)、反正切函数atan(x)等。

它们的定义域和值域与所对应的三角函数的范围正好相反。

反三角函数的图像和所对应的三角函数的图像关于y = x对称。

以上是基本初等函数的主要内容,它们是数学中最常见的函数,不仅在实际问题中有着广泛的应用,而且还在高中数学的教学中起到了重要的作用。

通过对这些函数的学习与理解,可以更好地掌握数学知识,提高数学解题的能力。

基本初等函数第一讲

基本初等函数第一讲

2.1指数函数2.1.1指数与指数幂的运算(1)(I )复习回顾 引例:填空___=; -_____9=)0a _____(2≥=; (II )讲授新课22=4 ,(-2)2=4 ⇒ 2,-2叫4的平方根23=8 ⇒ 2叫8的立方根; (-2)3=-8⇒-2叫-8的立方根25=32 ⇒ 2叫32的5次方根 … 2n =a ⇒2叫a 的n 次方根1.n 次方根的定义:(板书)问题1:n 次方根的定义给出了,x 如何用a 表示呢?na x =是否正确?分析过程:结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。

此时,a 的n 次方根可表示为na x =。

从而有:3273=,2325-=-,236a a =结论2:当n 为偶数时(跟平方根一样),有下列性质:正数的n 次方根有两个且互为相反数,负数没有n 次方根。

此时正数a 的n 次方根可表示为:)0a (a n >± 其中n a 表示a 的正的n 次方根,n a -表示a 的负的n 次方根。

结论3:0的n 次方根是0,记作n n a ,00即=当a=0时也有意义。

这样,可在实数范围内,得到n 次方根的性质: 3.n 次方根的性质:(板书)*)(2,12,N k kn a k n a x n n ∈⎪⎩⎪⎨⎧=±+== 其中叫根式,n 叫根指数,a 叫被开方数。

注意:根式是n 次方根的一种表示形式,并且,由n 次方根的定义,可得到根式的运算性质。

4.根式运算性质:(板书)①a a nn =)(,即一个数先开方,再乘方(同次),结果仍为被开方数。

问题2:若对一个数先乘方,再开方(同次),结果又是什么? 由所得结果,可有:(板书)②⎩⎨⎧=为偶数为奇数;n a n a a nn|,|,性质的推导(略): (Ⅳ)例题讲解 注意:根指数n 为奇数的题目较易处理,要侧重于根指数n 为偶数的运算。

(完整版)基本初等函数知识点及函数的基本性质

(完整版)基本初等函数知识点及函数的基本性质
对数函数
定义
函数y logax(a 0且a
1)叫做对数函数
a1
0a1
x1
x1
yx 1
y
y logax
yy logax
图象
(1,0)
O
(1,0)
x
Ox
定义域
(0,,0),即当x
1时,y 0.
奇偶性
非奇非偶
② 对数函数对底数的限制:(a 0,且a1). 三、对数函数的图像和性质:
指数函数及其性质
、指数与指数幂的运算
一)根式的概念
1、如果xna,a R,x R,n1,且n N,那么x叫做a的n次方根.当n是奇数时,a
函数名称
指数函数
定义
函数y ax(a 0且a1)叫做指数函数
图象
a1
0a1
y 1yy ax
(0,1)
Ox
y axy
y 1(0,1)
Ox
定义域
R
值域
(0,+∞)
过定点
在第一象限内,a越小图象越高, 越靠近y轴;
图象影响
在第二象限内,a越大图象越低, 越靠近x轴.
在第二象限内,a越小图象越低, 越靠近x轴.
注意:利用函数的单调性,结合图象还可以看出:
1)
在[a,
b]上,
f (x)
ax(a 0且a
1)值域是[f (a),f(b)]或[f(b),f(a)]
2)
若x
0,则
对数函数及其性质
、对数与对数的运算
一)对数
1.对数的概念: 一般地, 如果ax
N (a
0,a
1),那么数x叫做以.a为.底.N的对数, 记作:
x

基本初等函数知识点

基本初等函数知识点

4.对数的运算性质 如果 ,那么①ห้องสมุดไป่ตู้法:
②减法:
③数乘:


⑥换底公式:
知识点四:对数函数及其性质
2
1.对数函数定义 一般地,函数 2.对数函数性质: 函数名称 定义 函数 对数函数 且 叫做对数函数 叫做对数函数,其中 是自变量,函数的定义域 .
图象
定义域 值域 过定点 奇偶性 单调性 在 上是增函数 图象过定点 ,即当 非奇非偶 在 上是减函数 时, .
4
4.函数值域: ①y
3 2x
②y
x3 5 x
5、函数图像变换知识 ①平移变换: 形如:y=f(x+a):把函数 y=f(x)的图象沿x轴方向向左或向右平移|a|个单位,就得到 y=f(x+a)的图象。 形如:y=f(x)+a:把函数 y=f(x)的图象沿y轴方向向上或向下平移|a|个单位,就得到 y=f(x)+a 的图象 ②.对称变换 y=f(x)→ y=f(-x),关于y轴对称 y=f(x)→ y=-f(x) ,关于x轴对称 ③.翻折变换 y=f(x)→y=f|x|, (左折变换) 把y轴右边的图象保留,然后将y轴右边部分关于y轴对称 y=f(x)→y=|f(x)|(上折变换) 把x轴上方的图象保留,x轴下方的图象关于x轴对称 在第一象限内,底数越大,图像(逆时针方向)越靠近 y 轴。 6 函数的表示方法 ①列表法:通过列出自变量与对应的函数值的表来表达函数关系的方法叫列表法 ②图像法:如果图形 F 是函数 y f ( x) 的图像,则图像上的任意点的坐标满足函数的关系式,反之满足函数关系的点 都在图像上.这种由图形表示函数的方法叫做图像法. ③如果在函数 y f ( x) ( x A) 中, f ( x) 是用代数式来表达的,这种方法叫做解析法 7.分段函数 在函数的定义域内,对于自变量 x 的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数。 8 函数单调性及证明方法: ①增函数:一般地 , 设函数 f(x) 的定义域为 D, 如果对于定义域 D 内的某个区间上的任意两个自变量的值 x1,x2 , 当 x1<x2 时 , 都有 f(x1)< f(x2), 那么就说 f(x) 在这个区间上是增函数。 此区间就叫做函数 f(x) 的单调增区间。 ②减函数: 一般地 , 设函数 f(x) 的定义域为 D, 如果对于定义域 D 内的某个区间上的任意两个自变量的值 x1,x2 , 当 x1<x2 时 , 都有 f(x1)> f(x2), 那么就说 f(x) 在这个区间上是减函数。此区间叫做函数 f(x) 的单调减区间。 ③证明方法 第一步:设 x1、x2 是给定区间内的两个任意的值,且 x1<x2; 第二步:作差 f(x2)-f(x1),并对“差式”变形,主要采用的方法是“因式分解”或“配方法”; 第三步:判断差式 f(x2)-f(x1)的正负号,从而证得其增减性 9.函数的奇偶性 ⑴奇函数 ①设函数 y=f(x)的定义域为 D,如果对 D 内的任意一个 x,都有-x∈D,且 f(-x)=-f(x),则这个函数叫做奇函数。 ②奇函数图象关于原点(0,0)中心对称。

基本初等函数讲义(全)

基本初等函数讲义(全)

基本初等函数讲义(全) -CAL-FENGHAI.-(YICAI)-Company One1一、一次函数二、二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质定义域 (),-∞+∞对称轴2b x a=-顶点坐标24,24b ac b aa ⎛⎫-- ⎪⎝⎭值域24,4ac b a ⎛⎫-+∞ ⎪⎝⎭24,4ac b a ⎛⎫--∞ ⎪⎝⎭单调区间,2b a ⎛⎫-∞- ⎪⎝⎭递减,2b a ⎛⎫-+∞ ⎪⎝⎭递增 ,2b a ⎛⎫-∞- ⎪⎝⎭递增,2b a ⎛⎫-+∞ ⎪⎝⎭递减 ①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=. 三、幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).四、指数函数(1)根式的概念如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.(2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m n m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m n n n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ (4)指数函数函数名称 指数函数定义 函数(0x y a a =>且1)a ≠叫做指数函数图象1a > 01a <<xa y =y(0,1)1y =x a y =y(0,1)1y =(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且 (5)对数函数函数 名称对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高. (6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法x yO(1,0)1x =log a y x =xyO (1,0)1x =log a y x=①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. (8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. ③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.例题一、求二次函数的解析式例1. 抛物线244y x x =--的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)例2.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为( )A .()2312y x =--B .()2312y x =-+ C. ()2312y x =+- D. ()2312y x =-+-例3.抛物线y=的顶点在第三象限,试确定m 的取值范围是( )A .m <-1或m >2B .m <0或m >-1C .-1<m <0D .m <-1--222x mx m -++例4.已知二次函数()f x 同时满足条件: (1)()()11f x f x +=-; (2)()f x 的最大值为15; (3)()0f x =的两根立方和等于17 求()f x 的解析式二、二次函数在特定区间上的最值问题例5. 当22x -≤≤时,求函数223y x x =--的最大值和最小值.例6.当0x ≥时,求函数(2)y x x =--的取值范围.例7.当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数).三、幂函数例8.下列函数在(),0-∞上为减函数的是( )A.13y x = B.2y x = C.3y x = D.2y x -=例9.下列幂函数中定义域为{}0x x >的是( )A.23y x = B.32y x = C.23y x -= D.32y x -=例10. 讨论函数y =52x 的定义域、值域、奇偶性、单调性,并画出图象的示意图.例10.已知函数y =42215x x --.(1)求函数的定义域、值域; (2)判断函数的奇偶性; (3)求函数的单调区间.四、指数函数的运算例11. 计算122(2)-⎡⎤-⎣⎦的结果是( )A、12 C、—12例12.等于( ) A 、 B 、 C 、 D 、例13. 若53,83==ba ,则b a233-=___________五、指数函数的性质例14.{|2},{|xM y y P y y ====,则M∩P( ) A.{|1}y y > B. {|1}y y ≥ C. {|0}y y > D. {|0}y y ≥ 例15.求下列函数的定义域与值域:(1)442x y -= (2)||2()3x y =例16.函数()2301x y a a a -=+>≠且的图像必经过点 ( )A .(0,1)B .(1,1)C .(2,3)D .(2,4)4416a 8a 4a 2a例17求函数y=2121x x -+的定义域和值域,并讨论函数的单调性、奇偶性.五、对数函数的运算例18.已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a - 例19.2log (2)log log a a a M N M N -=+,则NM 的值为( ) A 、41 B 、4 C 、1 D 、4或1 例20.已知732log [log (log )]0x =,那么12x -等于( )A 、13 B 、 C D 例21.2log 13a<,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭ B 、2,3⎛⎫+∞ ⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭五、对数函数的性质例22.下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B、2log y =C 、21log y x = D、2log (45)y x x =-+ 例23.函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称例23.函数)()lgf x x =是 (奇、偶)函数。

基本初等函数之对数与对数函数,附练习题

基本初等函数之对数与对数函数,附练习题

对数与对数函数(讲义)知识点睛一、对数与对数的运算1.对数(1)如果x a N =(a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数.常用对数:10log lg N N =;自然对数:e log ln N N =.(2)当a >0,且a ≠1时,x a N =⇔log a x N =.(3)负数和零没有对数;log 10a =,log 1a a =.2.对数的运算性质(1)如果a >0,且a ≠1,M >0,N >0,那么①log ()log log a a a M N M N ⋅=+;②log log log aa a MM N N=-;③log log ()n a a M n M n =∈R .(2)换底公式:log log log c a c bb a=(a >0,且a ≠1;c >0,且c ≠1;b >0).(3)log (010)a b a b a a b =>≠>,;.二、对数函数及其性质1.定义:一般地,函数log (0,1)a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.对数函数log (0,1)a y x a a =>≠且的图象和性质:0<a <1a >1图象定义域(0,+∞)值域R性质①过定点(1,0),即x =1时,y =0②在(0,+∞)上是减函数②在(0,+∞)上是增函数3.对数函数底数变化与图象分布规律1log a y x =;②log b y x =;③log c y x =;④log d y x =,则有0<b <a <1<d <c ,即:x ∈(1,+∞)时,log log log log a b c d x x x x <<<;x ∈(0,1)时,log log log log a b c d x x x x >>>.4.反函数对数函数与指数函数互为反函数,互为反函数的两个函数的图象关于直线y x =对称.精讲精练1.把下列指数式化为对数式,对数式化为指数式.(1)32=8_______________;(2)415625-=_______________;(3)13127=3-_______________;(4)lg 0.0013=-_____________;(5)0.3log 2=a _____________;(6)ln x =_____________.2.求下列各式的值.(1)43log (927)⨯(2)1lg lg 4lg 52++(3)661log 12log 2-(4)22333399(log 2)(log )log log 422++⋅(5)2345log 3log 4log 5log 2⋅⋅⋅(6)48525(log 5log 5)(log 2log 2)++3.已知234log [log (log )]0x =,则x 的值为_________.4.已知3485log 4log 8log log 25m ⋅⋅=,那么m 的值为()A .9B .18C .12D .275.已知4823log 3x y ==,,则x +2y 的值为()A .3B .8C .4D .log 486.已知log 3a m =,log 2a n =,那么a 2m +3n =()A .17B .72C .108D .317.已知lg lg 2lg(2)x y x y +=-,则xy的值为_________.8.设lg a ,lg b 是方程2x 2-4x +1=0的两个实根,则2(lg )ab的值等于()A .2B .12C .4D .149.已知函数()lg f x x =.若()1f ab =,则22()()f a f b +=_____.10.下列函数表达式中是对数函数的是()A .0.01log (0)y x x =>B .22log y x =C .2log (2)(2)y x x =+>-D .2ln(1)y x =+11.若点(a ,b )在lg y x =图象上,且a ≠1,则下列点也在此图象上的是()A .1()b a ,B .(10a ,1-b )C .10(1)b a+,D .(a 2,2b )12.若函数log ()a y x b =+(a >0,a ≠1)的图象过两点(-1,0)和(0,1),则()A .a =2,b =2B .2a b ==C .a =2,b =1D .a b ==13.直接写出下列函数的定义域:311log (2)_______________2345log (3)_______________16_______________ln(1)x y x y y y y x y x -=-====-=+=+();();();();();().14.已知()f x 的定义域为[0,1],则函数12[log (3)]y f x =-的定义域是_____________.15.函数212log (613)y x x =++的值域为()A .RB .[8,+∞)C .(-∞,-2]D .[-3,+∞)16.函数log a y x =在区间[2,π]上最大值比最小值大1,则a =__________.17.下列判断不正确的是()A .22log 3.4log 4.3<B .0.20.3log 0.4log 0.4<C .67log 7log 6>D .30.3log log 4π<18.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点()A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度19.函数21log (01)1a x y a a x +=>≠-,的图象过定点P ,则点P 的坐标为()A .(1,0)B .(-2,0)C .(2,0)D .(-1,0)20.已知函数()log (1)a f x x =+,()log (1)a g x x =-(a >0,且a ≠1).(1)求函数()()f x g x +的定义域;(2)判断函数()()f x g x +的奇偶性,并说明理由.21.设a ,b ∈R 且a ≠2,定义在区间(-b ,b )上的函数1()lg12axf x x+=+满足:()()0f x f x +-=.(1)求实数a 的值;(2)求b 的取值范围.22.已知关于x 的方程212log 210x a x ⋅--=有实数根,求a 的取值范围.23.已知函数2log [(21)]a y x a x a =--+的定义域为R ,求实数a 的取值范围.回顾与思考________________________________________________________________________________________________________________________________________________________________________【参考答案】1.(1)2log 83=;(2)51log 4625=-;(3)2711log 33=-;(4)3100.001-=;(5)0.32a =;(6)e x =2.(1)11;(2)1;(3)12;(4)4;(5)1;(6)543.644.A 5.A 6.B 7.48.A 9.210.A 11.D 12.A13.(1)(2)+∞,;(2)(0)+∞,;(3)2(1]3,;(4)(0;(5)(12)(23)⋃,,;(6)(10)(02]-⋃,,14.5[22,15.C16.2π或2π17.D18.C 19.B20.(1)(-1,1);(2)偶函数,证明()()()()f x g x f x g x -+-=+21.(1)2a =-;(2)102b ≤<22.02a ≤<23.33(11)(1122,-⋃+对数与对数函数(随堂测试)1.函数22()log (2)f x x x a =-+的值域为[0,+∞),则正实数a 等于()A .1B .2C .3D .42.求函数2log (4)(01)a y x x a a =->≠,且的单调递减区间.【参考答案】1.B2.当01a <<时,f (x )的单调递减区间为(0,2];当1a >时,f (x )的单调递减区间为[2,4)对数与对数函数(作业)1.求下列各式的值.(1)lg +(2)553log 10log 0.125+(3)22(lg 2)(lg 5)lg 4lg 5++⋅(4)22lg 5lg83+(5)20321log log ()52-+-(6)231lg 25lg 2lg log 9log 22+-⨯2.下列对数运算中,一定正确的是()A .lg()lg lg M N M N +=⋅B .ln ln n M n M =C .lg()lg lg M N M N⋅=+D .lg log lg a b b a=3.已知3log 2a =,那么33log 22log 6-用a 表示是()A .5a -2B .-a -2C .3a -(1+a )2D .3-a 2-14.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是()A .log log log a c c b b a ⋅=B .log log log a c c b a b ⋅=C .log ()log log a a a bc b c =⋅D .log ()log log a a a b c b c+=+5.已知x ,y 为正实数,则下列式子中正确的是()A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=⋅C .lg lg lg lg 222x y x y⋅=+D .lg()lg lg 222x y x y⋅=⋅6.设方程22(lg )lg 30x x --=的两实根是a ,b ,则log log a b b a +等于()A .1B .-2C .-4D .103-7.在(2)log (5)a y a -=-中,实数a 的取值范围是()A .5a >或2a <B .23a <<或35a <<C .25a <<D .34a <<8.函数()ln1xf x x =+-的定义域为()A .(0,+∞)B .(1,+∞)C .(0,1)D .(0,1)∪(1,+∞)9.已知函数12()2log f x x =的值域为[-1,1],则函数()f x 的定义域为()A .22B .[11]-,C .1[2]2,D .2(])2-∞⋃∞,+10.已知3log 6a =,5log 10b =,7log 14c =,则()A .c b a >>B .b c a >>C .a c b >>D .a b c>>11.已知2log 3.45a =,4log 3.65b =,3log 0.31()5c =,则()A .a b c >>B .b a c >>C .a c b >>D .c a b>>12.函数12log 2y x =+的单调增区间为()A .()-∞∞,+B .(2)-∞-,C .(2)-∞+,D .(2)(2)-∞-⋃∞,,+13.若函数log (01)a y x a =<<在区间[a ,2a ]上的最大值是最小值的3倍,则a的值为()A .22B .24C .12D .1414.函数log (2)5a y x =-+过定点()A .(1,0)B .(3,1)C .(3,5)D .(1,5)15.当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象大致是()A .B .C .D .16.设函数()(01)x x f x ka a a a -=->≠,在()-∞+∞,上既是奇函数又是增函数,则()log ()a g x x k =+的图象是()A .B .C .D .17.已知函数e 1(1)()ln (1)x x f x x x ⎧-=⎨>⎩≤,则(ln 2)f 的值为_________.18.函数12log (1)()2(1)x x x f x x ⎧⎪=⎨⎪<⎩≥的值域是_________________.19.已知13log 2a =,0.62b =,4log 3c =,则a ,b ,c 的大小关系为_____________.20.给出下列命题:12log 2log a a x x =;2函数2log (1)y x =+是对数函数;3函数1ln1xy x+=-与ln(1)ln(1)y x x =+--的定义域相同;4若log log a a m n <,则m n <.其中正确的命题是_________.21.已知函数()f x 在[0)+∞,上是增函数,()(||)g x f x =-,若(lg )(1)g x g >,求x 的取值范围.22.设函数212log (0)()log ()(0)xx f x x x >⎧⎪=⎨-<⎪⎩,若()()f a f a >-,求实数a 的取值范围.23.已知函数3()2log f x x =+(1≤x ≤9),求函数22[()]()y f x f x =+的最大值.【参考答案】24.(1)1;(2)3;(3)1;(4)2;(5)4;(6)12-25.D26.B27.B28.D29.D30.B31.B32.A33.D34.C35.B36.B37.C38.A39.C40.141.(2)-∞,42.a <c <b43.③44.11010x <<45.1a >或10a -<<46.22阅读材料反函数趣谈在指数函数2x y =中,x 为自变量,y 为因变量.如果把y 当成自变量,x 当成因变量,同学们思考一下,x 是不是y 的函数?在指数函数2x y =中,过y 轴正半轴上任意一点作x 轴的平行线,与2x y =的图象有且只有一个交点.另一方面,根据指数与对数的关系,由指数式2x y =可得到对数式2log x y =.这样,对于任意一个(0)y ∈+∞,,通过式子2log x y =,在R 中都有唯一确定的x 和它对应.此时,可以把y 作为自变量,x 作为y 的函数,这时我们就说2log x y =((0))y ∈+∞,是函数2x y =()x ∈R 的反函数.注意到,在函数2log x y =中,y 是自变量,x 是函数,但是习惯上,我们通常用x 表示自变量,y 表示函数,因此我们对调函数2log x y =中的字母,把它写成2log y x =,这样,对数函数2log y x =((0))x ∈+∞,是指数函数2x y =()x ∈R 的反函数.由前面的讨论可知,指数函数2x y =()x ∈R 与对数函数2log y x =((0))x ∈+∞,是互为反函数的.类似地,我们可以得到对数函数log (01)a y x a a =>≠,且和指数函数x y a =(01)a a >≠,且互为反函数.在上面的讨论过程中我们发现,过y 轴正半轴上任意一点作x 轴的平行线,与2x y =的图象有且只有一个交点,这就保证了对于任意一个(0)y ∈+∞,,都有唯一确定的2log x y =和它对应,进而才能得到反函数.这就启发我们,不是任意的函数都存在反函数的,只有一一对应的函数才存在反函数.一一对应的函数是指值域中的每一个元素y 只有定义域中的唯一的一个元素x 和它相对应,即定义域中的元素x 和值域中的元素y ,通过对应法则y=f (x )存在着一一对应关系.清楚了反函数存在的条件后,我们接下来讨论反函数的性质.通过画出指数函数2x y =与对数函数2log y x =的图象后,我们发现它们是关于直线y=x 对称的,也就是互为反函数的两个函数的图象是关于直线y=x 对称的.这与我们前面的分析也是一致的,原函数与反函数是定义域、值域互换,对应法则互逆.研究反函数的性质离不开函数的单调性和奇偶性,下面的结论同学们可以自己尝试证明.一个函数与它的反函数在相应区间上单调性是一致的,也就是说如果原函数在某个区间上是单调递增(减)的,那么它的反函数在相应区间上也是单调递增(减)的.关于奇偶性,如果一个奇函数存在反函数,那么它的反函数也是奇函数;一般情况下偶函数是不存在反函数的,例外情况是f (x )=C (C 为常数).学习了反函数这种重要的工具,它可以帮助我们解决很多问题.当原函数的性质不容易研究时,我们可以考虑研究它的反函数.比如当直接求原函数的值域比较困难时,可以通过求其反函数的定义域来确定原函数的值域,来看一道具体的例题.【例】已知函数10110x xy =+,求它的值域.解析:先计算它的反函数,由10110x x y =+得到(110)10x x y +=,解得101x y y =-,反函数即为lg 1y x y =-,反函数的定义域为原函数的值域,也就是01y y >-,原函数的值域即为(01),.练习题1.下列函数中,有反函数的是()A .22y x x=+B .||y x =C .2lg y x =D .11y x =-2.函数21x y =-的反函数为_____________.3.已知函数1212x x y -=+,求它的值域.【参考答案】1.D2.2log (1)y x =+3.(-1,1)。

第六讲_基本初等函数的性质

第六讲_基本初等函数的性质

第六讲 基本初等函数的性质一、知识要点:1、基本初等函数的性质一般包含以下几个方面:(1)定义域;(2)解析式;(3)奇偶性;(4)单调性;(5)周期性;(6)值域等。

函数的各种性质并不是孤立的,而是相互联系,相互依赖的,在研究函数的某一方面的性质时,很有可能要借助于另一个性质。

另外,我们经常通过观察函数图象来获得函数的各种性质,但有很多函数却是要先通过函数性质的研究才能想象出其图象的大致分布情况,二者相辅相成。

2、基本初等函数的类型主要有:一次函数、二次函数、指数函数、对数函数、幂函数以及简单的复合函数等。

限于篇幅,这里对它们的图象和性质不一一列举。

3、特别研究常用的形如0,,≠+=b a xbax y 的函数,掌握一些重要结论,但这些结论在解题应用中须加以简单证明。

二、例题选讲:1、一次函数(形如0,,,≠∈+=k R b k b kx y 的函数)例1、当0≤x ≤1时,函数y=ax+a -1的值有正值也有负值,则实数a 的取值范围是( )(A)a <21(B)a >1 (C)a <21或a >1 (D)21<a <1例2、对于1||≤m 的一切实数m ,求使得不等式)1(122->-x m x 都成立的实数x 的取值范围.2、二次函数一般式:.0,)(2≠++=a c bx ax x f 顶点式:.0,)()(2≠+-=a n m x a x f 零点式:.0),)(()(21≠--=a x x x x a x f例3、已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为)3,1(。

(Ⅰ)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式; (Ⅱ)若)(x f 在区间]4,2[-上是单调函数,求a 的取值范围。

3、反比例函数(形如0,≠=k xky 的函数) 我们常用分离常数的方法将一个分式型函数转化为反比例函数来研究:)0,.()(2≠+-+=+-++=++c a cd x c ad c b ca d cx c adb d cxc ad cx b ax或:)0,.()()1()()()(≠+-+=+-+=++=++=++c a c d x c d a b c a c a c d x c d a b c a c d x a b x c a c d x c a b x a d cx b ax例4、求函数)0(112)(<-+=x xx x g 的值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、一次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a=-顶点坐标是24(,)24b ac b a a-- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=. 三、幂函数 (1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 四、指数函数(1)根式的概念:如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr rab a b a b r R =>>∈ (4)指数函数(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且(5)对数函数设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x fy -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x fy -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y fx -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数. 例题一、求二次函数的解析式例1.抛物线244y x x =--的顶点坐标是()A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)例2.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为()A .()2312y x =-- B .()2312y x =-+C. ()2312y x =+- D.()2312y x =-+-例3.抛物线y=的顶点在第三象限,试确定m 的取值范围是( ) A .m <-1或m >2 B .m <0或m >-1 C .-1<m <0 D .m <-1例4.已知二次函数()f x 同时满足条件:(1)()()11f x f x +=-;(2)()f x 的最大值为15;(3)()0f x =的两根立方和等于17求()f x 的解析式--222x mx m -++二、二次函数在特定区间上的最值问题例5. 当22x -≤≤时,求函数223y x x =--的最大值和最小值.例6.当0x ≥时,求函数(2)y x x =--的取值范围.例7.当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数).三、幂函数例8.下列函数在(),0-∞上为减函数的是()A.13y x = B.2y x = C.3y x = D.2y x -=例9.下列幂函数中定义域为{}0x x >的是()A.23y x = B.32y x = C.23y x-= D.32y x-=例10.讨论函数y =52x 的定义域、值域、奇偶性、单调性,并画出图象的示意图.例10.已知函数y=42215xx--.(1)求函数的定义域、值域;(2)判断函数的奇偶性;(3)求函数的单调区间.四、指数函数的运算例11.计算122(2)-⎡⎤-⎣⎦的结果是( )A、12CD 、—12例12.等于( ) A 、 B 、C 、 D 、例13.若53,83==b a ,则b a 233-=___________五、指数函数的性质 例14.{|2},{|x M y y P y y ====,则M∩P () A.{|1}y y > B. {|1}y y ≥ C. {|0}y y > D. {|0}y y ≥例15.求下列函数的定义域与值域:(1)442x y -=(2)||2()3x y =例16.函数()2301x y a a a -=+>≠且的图像必经过点 ( )A .(0,1)B .(1,1)C .(2,3)D .(2,4)例17求函数y=2121x x -+的定义域和值域,并讨论函数的单调性、奇偶性.4416a 8a 4a 2a五、对数函数的运算例18.已知32a=,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、23a a - 例19.2log (2)log log a a a M N M N -=+,则NM 的值为( ) A 、41B 、4 C 、1 D 、4或1 例20.已知732log [log (log )]0x =,那么12x -等于( )A 、13B C D 例21.2log 13a<,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭U B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U 五、对数函数的性质例22.下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+B 、2log y =C 、21log y x =D 、2log (45)y x x =-+例23.函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于( )A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称例23.求证函数)()lg f x x =是(奇、偶)函数。

课下作业1.已知二次函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象可能是图所示的( )2.对抛物线y=-3与y=-+4的说法不正确的是()A .抛物线的形状相同B .抛物线的顶点相同C .抛物线对称轴相同D .抛物线的开口方向相反3. 二次函数y=图像的顶点在() A .第一象限 B .第二象限 C .第三象限 D .第四象限4. 如图所示,满足a >0,b <0的函数y=的图像是()5.如果抛物线y=的顶点在x 轴上,那么c 的值为()A .0B .6C .3D .96.一次函数y =ax +b 与二次函数y =ax2+bx +c 在同一坐标系中的图象大致是( )7.在下列图象中,二次函数y=ax2+bx +c 与函数y=(a b)x 的图象可能是 ()22(2)x -22(2)x -221x x --+2ax bx+26x x c ++8.若函数f(x)=(a-1)x2+(a2-1)x+1是偶函数,则在区间[0,+∞)上f(x)是() A.减函数B.增函数C.常函数D.可能是减函数,也可能是常函数9.已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是() A.[1,+∞) B.[0,2]C.[1,2] D.(-∞,2]10、使x2>x3成立的x的取值范围是()A、x<1且x≠0B、0<x<1C、x>1D、x<111、若四个幂函数y=a x,y=b x,y=c x,y=d x在同一坐标系中的图象如右图,则a、b、c、d的大小关系是()A、d>c>b>aB、a>b>c>dC、d>c>a>bD、a>b>d>c12.若幂函数()1mf x x-=在(0,+∞)上是减函数,则( )A.m>1 B.m<1 C.m=l D.不能确定13.若点(),A a b在幂函数()ny x n Q=∈的图象上,那么下列结论中不能成立的是A .00a b >⎧⎨>⎩B .00a b >⎧⎨<⎩C.00a b <⎧⎨<⎩ D .00a b <⎧⎨>⎩14.若函数f (x )=log 12(x 2-6x +5)在(a ,+∞)上是减函数,则a 的取值范围是( )A .(-∞,1]B .(3,+∞)C .(-∞,3)D .[5,+∞)15、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T I 是() A 、∅ B 、T C 、S D 、有限集16、函数22log (1)y x x =+≥的值域为()A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞17、设1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则() A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >>18、在(2)log (5)a b a -=-中,实数a 的取值范围是()A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<19、计算lg52lg2)lg5()lg2(22•++等于() A 、0 B 、1 C 、2 D 、320、已知3log 2a =,那么33log 82log 6-用a 表示是()A 、52a -B 、2a -C 、23(1)a a -+D 、231a a --21、已知幂函数f(x)过点(2),则f(4)的值为() A 、12B 、 1C 、2D 、8二、填空题1.抛物线y =8x 2-(m -1)x +m -7的顶点在x 轴上,则m =________.2.函数23-=x y 的定义域为___________. 3.设()()12m f x m x +=-,如果()f x 是正比例函数,则m=____ ,如果()f x 是反比例函数,则m=______,如果f(x)是幂函数,则m=____.4.若14(1)x --有意义,则x ∈___________.5.当35x y <=___________.6.若25525x x y ⋅=,则y 的最小值为___________. 7、若2log 2,log 3,m n a a m n a +===。

相关文档
最新文档