(完整word版)第7章多组定量资料的比较思考与练习参考答案.doc

合集下载

概率论与数理统计 第七章习题附答案

概率论与数理统计 第七章习题附答案

习题7-11. 选择题(1) 设总体X 的均值μ与方差σ2都存在但未知, 而12,,,n X X X 为来自X的样本, 则均值μ与方差σ2的矩估计量分别是( ) .(A) X 和S 2. (B) X 和211()n i i X n μ=-∑. (C) μ和σ2.(D) X 和211()nii X X n=-∑.解 选(D).(2) 设[0,]X U θ, 其中θ>0为未知参数, 又12,,,n X X X 为来自总体X的样本, 则θ的矩估计量是( ) .(A) X . (B) 2X . (C) 1max{}i i nX ≤≤. (D) 1min{}i i nX ≤≤.解 选(B).3. 设总体X 的概率密度为(1),01,(;)0, x x f x θθθ+<<=⎧⎨⎩其它.其中θ>-1是未知参数, X 1,X 2,…,X n 是来自X 的容量为n 的简单随机样本, 求: (1) θ的矩估计量;(2) θ的极大似然估计量. 解 总体 X 的数学期望为1101()()d (1)d 2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰. 令()E X X =, 即12X θθ+=+, 得参数θ的矩估计量为21ˆ1X X θ-=-. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… , X n 的一组观测值, 则似然函数为1(1),01,0,n n i i i x x L θθ=⎧⎛⎫+<<⎪ ⎪=⎨⎝⎭⎪⎩∏其它. 当0<x i <1(i =1,2,3,…,n )时, L >0且 ∑=++=ni ixn L 1ln )1ln(ln θθ,令1d ln ln d 1ni i L nx θθ==++∑=0, 得θ的极大似然估计值为 1ˆ1ln nii nxθ==--∑,而θ的极大似然估计量为 1ˆ1ln nii nXθ==--∑.4. 设总体X 服从参数为λ的指数分布, 即X 的概率密度为e ,0,(,)0,0,x x f x x λλλ->=⎧⎨⎩≤ 其中0λ>为未知参数, X 1, X 2, …, X n 为来自总体X 的样本, 试求未知参数λ的矩估计量与极大似然估计量.解 因为E (X )=1λ =X , 所以λ的矩估计量为1ˆXλ=. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… ,X n 的一组观测值, 则似然函数11nii inxx nni L eeλλλλ=--=∑==∏,取对数 1ln ln ()ni i L n x λλ==-∑.令1d ln 0,d ni i L n x λλ==-=∑ 得λ的极大似然估计值为1ˆxλ=,λ的极大似然估计量为1ˆXλ=. 习题7-22. 若1X ,2X ,3X 为来自总体2(,)XN μσ的样本, 且Y 1231134X X kX =++为μ的无偏估计量, 问k 等于多少?解 要求1231111()3434E X X kX k μμμμ++=++=, 解之, k =512.,习题7-31. 选择题(1) 总体未知参数θ的置信水平为0.95的置信区间的意义是指( ).(A) 区间平均含总体95%的值. (B) 区间平均含样本95%的值.(C) 未知参数θ有95%的可靠程度落入此区间. (D) 区间有95%的可靠程度含参数θ的真值. 解 选(D).(2) 对于置信水平1-α(0<α<1), 关于置信区间的可靠程度与精确程度, 下列说法不正确的是( ).(A) 若可靠程度越高, 则置信区间包含未知参数真值的可能性越大. (B) 如果α越小, 则可靠程度越高, 精确程度越低. (C) 如果1-α越小, 则可靠程度越高, 精确程度越低. (D) 若精确程度越高, 则可靠程度越低, 而1-α越小. 解 选(C )习题7-41. 某灯泡厂从当天生产的灯泡中随机抽取9只进行寿命测试, 取得数据如下(单位:小时):1050, 1100, 1080, 1120, 1250, 1040, 1130, 1300, 1200.设灯泡寿命服从正态分布N (μ, 902), 取置信度为0.95, 试求当天生产的全部灯泡的平均寿命的置信区间.解 计算得到1141.11,x = σ2 =902. 对于α = 0.05, 查表可得/20.025 1.96z z ==α.所求置信区间为/2/2(,)(1141.11 1.96,1141.11 1.96)(1082.31,1199.91).x x z z +=-=αα2. 为调查某地旅游者的平均消费水平, 随机访问了40名旅游者, 算得平均消费额为105=x 元, 样本标准差28=s 元. 设消费额服从正态分布. 取置信水平为0.95, 求该地旅游者的平均消费额的置信区间.解 计算可得105,x = s 2 =282.对于α = 0.05, 查表可得0.0252(1)(39) 2.0227t n t α-==.所求μ的置信区间为22((1),(1))(105 2.0227,105 2.0227)x n x n αα--+-=+=(96.045, 113.955).3. 假设某种香烟的尼古丁含量服从正态分布. 现随机抽取此种香烟8支为一组样本, 测得其尼古丁平均含量为18.6毫克, 样本标准差s =2.4毫克. 试求此种香烟尼古丁含量的总体方差的置信水平为0.99的置信区间.解 已知n =8, s 2 =2.42, α = 0.01, 查表可得220.0052(1)(7)20.278n αχχ-==,220.99512(1)(7)0.989n αχχ--==, 所以方差σ 2的置信区间为2222122(1)(1)(,)(1)(1)n S n S n n ααχχ---=--22(81) 2.4(81) 2.4(,)20.2780.989-⨯-⨯=(1.988, 40.768). 4. 某厂利用两条自动化流水线灌装番茄酱, 分别从两条流水线上抽取样本:X 1,X 2,…,X 12及Y 1,Y 2,…,Y 17, 算出221210.6g,9.5g, 2.4, 4.7x y s s ====. 假设这两条流水线上装的番茄酱的重量都服从正态分布, 且相互独立, 其均值分别为12,μμ. 又设两总体方差2212σσ=. 求12μμ-置信水平为0.95的置信区间, 并说明该置信区间的实际意义.解 由题设22121210.6,9.5, 2.4, 4.7,12,17,x y s s n n ======2222112212(1)(1)(121) 2.4(171) 4.71.94212172wn s n s s n n -+--⨯+-⨯===+-+-120.0252(2)(27) 2.05181,t n n t α+-==所求置信区间为122(()(2)((10.69.5) 2.05181 1.94x y t n n s α-±+-=-±⨯ =(-0.40,2.60).结论“21μμ-的置信水平为0.95 的置信区间是(-0.40,2.60)”的实际意义是:在两总体方差相等时, 第一个正态总体的均值1μ比第二个正态总体均值2μ大-0.40~2.60,此结论的可靠性达到95%.。

(完整word版)统计学课后简答题答案

(完整word版)统计学课后简答题答案

第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。

1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

第二章思考题2.1什么是二手资料?使用二手资料应注意什么问题与研究内容有关,由别人调查和试验而来已经存在,并会被我们利用的资料为“二手资料”。

使用时要进行评估,要考虑到资料的原始收集人,收集目的,收集途径,收集时间使用时要注明数据来源。

2.2比较概率抽样和非概率抽样的特点,指出各自适用情况概率抽样:抽样时按一定的概率以随机原则抽取样本。

每个单位别抽中的概率已知或可以计算,当用样本对总体目标量进行估计时,要考虑到每个单位样本被抽到的概率。

技术含量和成本都比较高。

如果调查目的在于掌握和研究对象总体的数量特征,得到总体参数的置信区间,就使用概率抽样。

非概率抽样:操作简单,时效快,成本低,而且对于抽样中的统计学专业技术要求不是很高。

它适合探索性的研究,调查结果用于发现问题,为更深入的数量分析提供准备。

《统计学》教材各章参考答案

《统计学》教材各章参考答案

各章思考与练习参考答案第一章导论(一)单项选择题1.D 2.C 3.B 4.D 5.D 6.D 7.B 8.A 9.B 10.A (二)多项选择题:1.ABCD 2.CD 3.AD 4.BCDE 5.ABDE(三)判断题:1.×2.×3.×4.√5.×(四)简答题:答案略(五)综合题答案略第二章统计调查(一)单项选择题:1.C 2.C 3.B 4.C 5.C 6.A 7.B 8.C 9.C 10.B (二)多项选择题:1.ACD 2.ABC 3.ABCD 4.ABC 5.ACD6.ABCD 7.ABDE 8.BCE 9.ABE 10.CD(三)判断题:1.×2.×3.×4.√5.×(四)名词解释:答案略㈤(五)简答题:答案略第三章统计整理(一)单项选择题:1.C 2.B 3.C 4.B 5.B 6.A 7.B 8.C 9.B 10.B (二)多项选择题:1.AB 2.BD 3.ACD 4.AD 5.BCD6.BD 7.ABC 8.AC 9.ABC 10.CD(三)判断题:1.×2.√3.×4.×5.×(四)名词解释:答案略(五)简答题:答案略(六)计算题:1.解:2可见,组距1000元的分布数列,更为合理。

(2)对选中的分布数列,计算频率、较小制累计次数、较大制累计次数、组中值:(3)略第四章总量指标与相对指标(一)单项选择题:1.C 2.B 3.A 4.B 5.C 6.B 7.B 8.C 9.B 10.D(二)多项选择题:1.ABCD 2.CE 3.ABCDE 4.BCE 5.ABCD(三)判断题:1.X 2.X 3.X 4.√5.X(四)名词解释:答案略(五)简答题:答案略(六)计算题:1.解:该企业集团实现利润比去年增长百分比 =110%/(1+7%)-1=2.80%2.解:(1)2011年的进出口贸易差额=12178-9559=2619(亿元)(顺差)2011年进出口总额的发展速度=21737/17607×100%=123.46%(2)2011年进出口额比例相对数=9559/12178×100%=78.49%2011年出口额结构相对数=12178/21737×100%=56.02%(3)该地区进出口贸易发展速度较快,出现贸易顺差。

定性资料的比较思考与练习参考答案

定性资料的比较思考与练习参考答案

定性资料的⽐较思考与练习参考答案第8章定性资料的⽐较思考与练习参考答案⼀、最佳选择题1. 定性资料的统计推断常⽤( D )。

A.检验B. 正态检验C.检验D.检验E. t′检验2. 两组⼆分类资料发⽣率⽐较,样本总例数100,则检验⾃由度为(A)。

A. 1B. 4C. 95D. 99E. 1003. 四格表检验中, <,可以认为(B)。

A. 两总体率不同B. 不能认为两总体率不同C. 两样本率不同D. 不能认为两样本率不同E. 以上都不对4.等级资料⽐较宜采⽤(E)。

A.检验B.检验C.检验D. 正态检验E. 秩和检验5. 为⽐较治疗某病的新疗法与常规⽅法,试验者将100名患者按性别、年龄等情况配成对⼦,分别接受两疗法治疗。

观察得到有28对患者同时有效,5对患者同时⽆效,11对患者新药有效常规治疗⽆效。

欲⽐较两种疗法的有效率是否相同,应选择的统计分析⽅法为(D)。

A. 独⽴的两组⼆分类资料⽐较检验B. 独⽴的两组⼆分类资料⽐较校正检验C. 配对的两组⼆分类资料⽐较检验D.配对的两组⼆分类资料⽐较校正检验E. Fisher确切概率法1. 简述检验适⽤的数据类型。

答:提⽰:卡⽅检验是应⽤较⼴的⼀种定性资料的假设检验⽅法,常⽤于检验两个或多个样本率(或构成⽐)之间有⽆差别。

2. 两组⼆分类资料的设计类型有⼏类?其相应的检验⽅法是什么?答:提⽰:两组⼆分类资料的设计类型主要有2类,即完全随机设计和配对设计。

完全随机设计和配对设计资料在假设检验⽅法上均采⽤卡⽅检验。

完全随机设计资料应⽤公式(8-1)或(8-4),配对设计资料应⽤公式(8-7)或(8-8)。

3. 什么资料适合⽤秩和检验进⾏检验?简述秩和检验步骤。

答:提⽰:进⾏有序资料的⽐较时宜采⽤秩和检验。

秩和检验步骤为:①建⽴假设,并确定检验⽔准;②根据不同的设计类型对资料进⾏编秩并计算秩和;③根据计算的秩和直接查表或计算相应的统计量再查表,确定值下结论。

统计学方法_课后 习题 答案

统计学方法_课后  习题  答案

思考与练习参考答案第1章绪论一、选择题1. 研究中的基本单位是指( D)。

A.样本 B. 全部对象C.影响因素D. 个体E. 总体2. 从总体中抽取样本的目的是( B )。

A.研究样本统计量 B. 由样本统计量推断总体参数C.研究典型案例 D. 研究总体统计量E. 计算统计指标3. 参数是指( B )。

A.参与个体数 B. 描述总体特征的统计指标C.描述样本特征的统计指标 D. 样本的总和 E. 参与变量数4. 下列资料属名义变量的是(E)。

A.白细胞计数B.住院天数C.门急诊就诊人数D.患者的病情分级 E. ABO血型5.关于随机误差下列不正确的是(C)。

A.受测量精密度限制B.无方向性 C. 也称为偏倚D.不可避免 E. 增加样本含量可降低其大小二、名称解释(答案略)1. 变量与随机变量2. 同质与变异3. 总体与样本4. 参数与统计量5. 误差6. 随机事件7. 频率与概率三、思考题1. 生物统计学与其他统计学有什么区别和联系?答:统计学可细分为数理统计学、经济统计学、生物统计学、卫生统计学、医学统计学等,都是关于数据的学问,是从数据中提取信息、知识的一门科学与艺术。

而生物统计学是统计学原理与方法应用于生物学、医学的一门科学,与医学统计学和卫生统计学很相似,其不同之处在于医学统计学侧重于介绍医学研究中的统计学原理与方法,而卫生统计学更侧重于介绍社会、人群健康研究中的统计学原理与方法。

2. 某年级甲班、乙班各有男生50人。

从两个班各抽取10人测量身高,并求其平均身高。

如果甲班的平均身高大于乙班,能否推论甲班所有同学的平均身高大于乙班?为什么?答:不能。

因为,从甲、乙两班分别抽取的10人,测量其身高,得到的分别是甲、乙两班的一个样本。

样本的平均身高只是甲、乙两班所有同学平均身高的一个点估计值。

即使是按随机化原则进行抽样,由于存在抽样误差,样本均数与总体均数一般很难恰好相等。

因此,不能仅凭两个样本均数高低就作出两总体均数熟高熟低的判断,而应通过统计分析,进行统计推断,才能作出判断。

《概率论与数理统计》习题及答案 第七章

《概率论与数理统计》习题及答案  第七章

《概率论与数理统计》习题及答案第 七 章1.对某一距离进行5次测量,结果如下:2781,2836,2807,2765,2858(米). 已知测量结果服从2(,)N μσ,求参数μ和2σ的矩估计.解 μ的矩估计为ˆX μ=,2σ的矩估计为22*211ˆ()ni i X X S n σ==-=∑ 1(27812836280727652858)2809.05X =++++=,*215854.01170.845S =⨯=所以2ˆ2809,1170.8μσ== 2.设12,,,n X X X 是来自对数级数分布1(),(01,1,2,)(1)kp P X k p k lu p k==-<<=-的一个样本,求p 的矩估计.解 111111ln(1)ln(1)ln(1)1k kk k p p p p p p p μ∞∞==-==-=-⋅----∑∑ (1) 因为p 很难解出来,所以再求总体的二阶原点矩121111ln(1)ln(1)ln(1)kk k x pk k k p p kp kp x p p p μ∞∞∞-===='-⎛⎫==-=- ⎪---⎝⎭∑∑∑ 21ln(1)1ln(1)(1)x pp x p p x p p ='⎡⎤=-=-⋅⎢⎥----⎣⎦ (2) (1)÷(2)得 121p μμ=- 所以 212p μμμ-= 所以得p 的矩估计21221111n i i n i i X X X n p X n α==-==-∑∑3.设总体X 服从参数为N 和p 的二项分布,12,,,n X X X 为取自X 的样本,试求参数N 和p 的矩估计 解 122,(1)()Np Np p Np μμ⎧=⎪⎨=-+⎪⎩ 解之得1/N p μ=, 21(1)p Np μμ-+=, 即1N pμ=,22111p μμμ-=-,所以 N 和p 的矩估计为ˆX N p=,*21S p X =-. 4.设总体X 具有密度11(1)1,,(;)0,.Cx x C f x θθθθ-+⎧>⎪=⎨⎪⎩其他其中参数01,C θ<<为已知常数,且0C >,从中抽得一个样本,12,,,n X X X ,求θ的矩估计解11111111111CCEX C x dx C xθθθθμθθθ+∞--+∞===-⎰111()11C C C C θθθθ-=-⋅=--, 解出θ得11,Cθμ=-92 于是θ的矩估计为 1C Xθ=-. 5.设总体的密度为(1),01,(;)0,.x x f x ααα⎧+<<⎪=⎨⎪⎩其他试用样本12,,,n X X X 求参数α的矩估计和极大似然估计.解 先求矩估计:111210011(1),22EX x dx x ααααμααα++++==+==++⎰解出α得 1112,1μαμ-=- 所以α的矩估计为 121XX α-=-. 再求极大似然估计: 1121(,,;)(1)(1)()nn n i n i L X X x x x x ααααα==+=+∏,1ln ln(1)ln nii L n xαα==++∑,1ln ln 01nii d L nx d αα==++∑,解得α的极大似然估计: 1(1)ln nii nxα==-+∑.6.已知总体X 在12[,]θθ上服从均匀分布,1n X X 是取自X 的样本,求12,θθ的矩估计和极大似然估计.解 先求矩估计: 1212EX θθμ+==,22222211211222()()1243EX θθθθθθθθμ-+++==+=解方程组121221122223θθμθθθθμ⎧+=⎪⎪⎨++⎪=⎪⎩得11θμ=±2123(θμμμ=-注意到12θθ<,得12,θθ的矩估计为*1X θ=-,*2X θ=.再求极大似然估计 1121212111(,,;,)()nn ni L X X θθθθθθ===--∏,1122,,,n x x x θθ≤≤,由极大似然估计的定义知,12,θθ的极大似然估计为11(1)min(,,)n X X X θ==;21()max(,,)n n X X X θ==.7.设总体的密度函数如下,试利用样本12,,,n x x x ,求参数θ的极大似然估计.(1)1(),0,(;)0,.x x e x f x αθαθαθα--⎧>⎪=⎨⎪⎩其它;已知(2)||1(;),,2x f x e x θθθ--=-∞<<+∞-∞<<+∞. 解 (1)111111(,,;)()()ni i i nx x n nn i n i L X X x ex x eααθθααθθαθα=----=∑==∏111ln (;)ln ln (1)ln nnn i i i i L X X n n x x αθθααθ===++--∑∑1ln 0ni i d L nx d αθθ==-∑解似然方程1ni i nx αθ==∑,得θ的极大似然估计94 1.ni i nx αθ==∑(2)1||||1111(;)22ni i i n x x n n i L X X e eθθθ=----=∑==∏由极大似然估计的定义得θ的极大似然估计为样本中位数,即1()2()(1)22,1(),.2n n n X n X X n θ++⎧⎪⎪=⎨⎪+⎪⎩为奇数,为偶数8.设总体X 服从指数分布(),,(;)0,.x ex f x θθθ--⎧≥⎪=⎨⎪⎩其他试利用样本12,,,n X X X 求参数θ的极大似然估计.解 1()11(,,;),,1,2,,.ni i i nx n x n i i L X X eex i n θθθθ=-+--=∑==≥=∏1ln nii L n Xθ==-∑ln 0d Ln d θ=≠ 由极大似然估计的定义,θ的极大似然估计为(1)x θ= 9.设12,,,n X X X 来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,试求未知参数p 的极大似然估计. 解 1111(,,;)(1)(1)ni i i nx nx n n i L x x p p p p p =--=∑=-=-∏,1ln ln ()ln(1),nii L n p Xn p ==+--∑1ln 0,1ni i X nd L n dp p p=-=--∑解似然方程11nii n X n p p=-+=-∑, 得p 的极大似然估计1p X=。

概率论与数理统计第七章练习题与答案详解

概率论与数理统计第七章练习题与答案详解

概率论与数理统计 第七章 参数估计练习题与答案(答案在最后)1.设总体X 的二阶矩存在,n X X X ,,,21 是来自总体X 的一个样本,则2EX 的矩估计是( ).(A) X (B) ()∑=-n i i X X n 121 (C) ∑=n i i X n 121 (D) 2S2.矩估计必然是( ).(A) 总体矩的函数 (B) 样本矩的函数 (C) 无偏估计 (D) 最大似然估计3.某钢珠直径X 服从()1,μN ,从刚生产出的一批钢珠中随机抽取9个,求得样本均值06.31=X ,样本标准差98.0=S ,则μ的最大似然估计是 .4.设θˆ是未知参数θ的一个估计量,若θθ≠ˆE ,则θˆ是θ的( ) (A) 最大似然估计 (B) 矩估计 (C) 有效估计 (D) 有偏估计5.设21,X X 是()1,μN 的一个样本,下面四个关于μ估计量中,只有( )才是μ的无偏估计.(A) 213432X X + (B) 214241X X + (C)215352X X + (D) 214143X X - 6.设总体X 服从参数为λ的Poisson 分布,n X X X ,,,21 是来自总体X 的一个样本,则下列说法中错误的是( ).(A) X 是EX 的无偏估计量 (B) X 是DX 的无偏估计量 (C) X 是EX 的矩估计量 (D) 2X 是2λ的无偏估计量 7.设321,,X X X 是()1,μN 的一个样本,下面四个关于μ无偏估计量中,根据有效性这个标准来衡量,最好的是( ).(A) 321313131X X X ++ (B) 213132X X + (C)321412141X X X ++ (D) 216561X X + 8.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,则⎪⎪⎭⎫⎝⎛+-n U X n U X σσ025.0025.0,作为μ的置信区间,其置信水平是( ).(A) 0.9 (B) 0.95 (C) 0.975 (D) 0.05 9.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,μ的置信水平为α-1的置信区间⎪⎪⎭⎫ ⎝⎛+-n U X n U X σσαα22 ,的长度是α的减函数,对吗?10.总体X 的密度函数为()⎪⎩⎪⎨⎧<<=-其它101x x x f θθ,其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.11.总体X 的密度函数为()⎪⎩⎪⎨⎧>=-其它002222x ex x f x θθ, 其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.12.设总体X 服从几何分布:()()11--==x p p x X P ,() ,2,1=x ,n X X X ,,,21 是来自总体X 的一个样本,求参数p 的最大似然估计. 13.设n X X X ,,,21 是来自总体()2,0σN 的一个样本,求参数2σ的最大似然估计.14.设n X X X ,,,21 是来自总体()2,7t a n σμ+N 的一个样本,其中22πμπ<<-,求参数2,σμ的最大似然估计.15.设n X X X ,,,21 是来自总体()2,~σμN X 的一个样本,对给定t ,求()t X P ≤的最大似然估计.16.一个罐子里装有黑球和白球,有放回地抽取一个容量为n 的样本,发现其中有k 个白球,求罐中黑球数和白球数之比R 的最大似然估计. 17.总体X 的分布律是:()()()θθθ312,0,21-=====-=X P X P X P ,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计和最大似然估计. 18.设总体X 服从二项分布()p N B ,,N 为正整数,10<<p ,n X X X ,,,21 是来自总体X 的大样本,求参数p N ,的矩估计量.19.设μ=EX ,n X X X ,,,21 是来自总体X 的一个样本,证明:()∑=-=n i i X n T 121μ是总体方差的无偏估计.20.总体X 服从()θθ2,上均匀分布,n X X X ,,,21 是来自总体X 的一个样本,证明X 32ˆ=θ是参数θ的无偏估计.21.设总体X 服从二项分布()p m B ,,n X X X ,,,21 是来自总体X 的一个样本,证明∑==ni i X n m p 11ˆ是参数θ的无偏估计. 22.设n X X X ,,,21 是来自总体X 的一个样本,且X 服从参数为λ的Poisson 分布,对任意()1,0∈α,证明()21S X αα-+是λ的无偏估计,其中2,S X 分别是样本均值和样本方差.23.设02>=σDX ,n X X X ,,,21 是来自总体X 的一个样本,问2X 是否是()2EX 的无偏估计.24.设321,,X X X 是来自总体()2,σμN 的一个样本,试验证:32112110351ˆX X X ++=μ,32121254131ˆX X X ++=μ,都是参数μ的无偏估计,并指出哪个更有效.25.从总体()1,1μN 抽取一个容量为1n 的样本:1,,,21n X X X ,从总体()4,2μN 抽取一个容量为2n 的样本:2,,,21n Y Y Y ,求21μμα-=的最大似然估计αˆ.假定总的样本容量21n n n +=不变时,求21,n n 使αˆ的方差最小. 26.为了测量一台机床的椭圆度,从全部产品中随机抽取100件进行测量,求得样本均值为mm X 081.0=,样本标准差为mm S 025.0=,求平均椭圆度μ的置信水平为0.95的置信区间.27.自动机床加工的同类零件中,随机抽取9件,测得长度如下:21.1,21.3,21.4,21.5,21.3,21.7,21.4,21.3,21.6,已知零件长度X 服从()2,σμN ,置信水平为0.95,(1) 若15.0=σ,求μ置信区间; (2) 若σ未知,求μ置信区间; (3) 若4.21=μ,求σ置信区间; (4) 若μ未知,求σ置信区间. 28.设总体X 服从()23,μN ,如果希望μ的置信水平为0.9的置信区间长度不超过2,则需要抽取的样本容量至少是多少?29.某厂利用两条自动化流水线灌装面粉,分别从两条流水线上抽取12和17的两个独立样本,其样本均值和样本方差分别为:6.10=X ,4.221=S ,5.9=Y ,7.422=S ,假设两条生产线上灌装面粉的重量都服从正态分布,其均值分别为21,μμ,方差相等,求21μμ-的置信水平为0.9的置信区间. 30.设两位化验员独立对某种聚合物含氯量用相同方法各作10次测定,其测定值的样本方差分别为:5419.021=S ,6065.022=S ,设2221,σσ分别为两位化验员所测定值总体的方差,设两位化验员的测定值都服从正态分布,求方差比2221σσ的置信水平为0.9的置信区间.31.从一批产品中抽取100个产品,发现其中有9个次品,求这批产品的次品率p 的置信水平为0.9的置信区间.答案详解1.C 2.B 3.31.064.D 5.C 6.D 7.A 8.B 9.对10.(1) 矩估计因为()⎰∞+∞-=dx x xf EX 11+==⎰θθθθdx x ,所以21⎪⎭⎫⎝⎛-=EX EX θ,而X EX =∧,由此得参数θ的矩估计量为21ˆ⎪⎪⎭⎫ ⎝⎛-=X X θ (2) 最大似然估计似然函数为:()()∏==ni i x f L 1θ()()121-=θθnnx x x ,两边取对数, ()θL ln ()()nx x x n21ln 1ln 2-+=θθ,令()θθd L d ln ()0ln 21221=+=n x x x n θθ, 得参数θ的最大似然估计为:212ln ˆ⎪⎭⎫⎝⎛=∑=ni i x n θ11.(1) 矩估计因为()⎰∞+∞-=dx x xf EX ⎰∞+-=022222dx exx θθ⎰∞+∞--=dx e xx 2222221θθ⎰∞+∞--=dx exx 2222222θθπθπθπ22=, 所以EX πθ2=,而X EX =∧,由此得参数θ的矩估计量为X πθ2ˆ=。

第7章-多组定量资料的比较思考与练习参考答案

第7章-多组定量资料的比较思考与练习参考答案

第7章 多组定量资料的比较思考与练习参考答案一、最佳选择题1. 完全随机设计资料的方差分析中,必然有( C )。

A. 组间SS >组内SSB. 组内组间总MS MS MS +=C. 总ss=组间SS +组内SSD. 组内组间MS MS >E. 组间组内νν> 2. 定量资料两样本均数的比较,可采用( D )。

A. t 检验B.F 检验C. Bonferroni 检验D. t 检验与F 检验均可E. LSD 检验3. 当组数等于2时,对于同一资料,方差分析结果与t 检验结果相比,( C )。

A. t 检验结果更为准确B. 方差分析结果更为准确C. 完全等价且F t =D. 完全等价且t F =E. 两者结果可能出现矛盾4. 若单因素方差分析结果为),(01.021ννF F >,则统计推断是( D )。

A. 各样本均数都不相等B. 各样本均数不全相等C. 各总体均数都不相等D. 各总体均数不全相等E. 各总体均数全相等 5. 完全随机设计资料的方差分析中,组间均方表示( C )。

A. 抽样误差的大小B. 处理效应的大小C. 处理效应和抽样误差综合结果D. N 个数据的离散程度E. 随机因素的效应大小 6. 多样本定量资料比较,当分布类型不清时应选择( D )。

A. 方差分析B. t 检验C. Z 检验D. Kruskal-Wallis 检验E. Wilcoxon 检验7. 多组样本比较的Kruskal-Wallis 检验中,当相同秩次较多时,如果用H 值而不用校正后的c H 值,则会( C )。

A . 提高检验的灵敏度B .把一些无差别的总体推断成有差别 C. 把一些有差别的总体推断成无差别 D .Ⅰ、Ⅱ类错误概率不变E. 以上说法均不对二、思考题1. 方差分析的基本思想和应用条件是什么?答:方差分析的基本思想是,对于不同设计的方差分析,其思想都一样,即均将处理间平均变异与误差平均变异比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 7 章多组定量资料的比较
思考与练习参考答案
一、最佳选择题
1. 完全随机设计资料的方差分析中,必然有(C)。

A. SS组间> SS组内
B. MS总MS组间MS组内
C. ss
+ SS组内总 = SS组间
D. MS组间MS组内
E. 组内组间
2. 定量资料两样本均数的比较,可采用( D )。

A. t 检验
B.F检验
C. Bonferroni 检验
D. t检验与F检验均可
E. LSD 检验
3. 当组数等于 2 时,对于同一资料,方差分析结果与t 检验结果相比,( C )。

A. t 检验结果更为准确
B. 方差分析结果更为准确
C. 完全等价且t F
D. 完全等价且F t
E. 两者结果可能出现矛盾
4. 若单因素方差分析结果为 F F
0.01( 1 , 2 )
,则统计推断是(
D )。

A. 各样本均数都不相等
B. 各样本均数不全相等
C. 各总体均数都不相等
D. 各总体均数不全相等
E. 各总体均数全相等
5. 完全随机设计资料的方差分析中,组间均方表示( C )。

A. 抽样误差的大小
B. 处理效应的大小
C. 处理效应和抽样误差综合结果
D. N 个数据的离散程度
E. 随机因素的效应大小
6. 多样本定量资料比较,当分布类型不清时应选择( D )。

A. 方差分析
B. t检验
C. Z 检验
D. Kruskal-Wallis 检验
E. Wilcoxon 检验
7. 多组样本比较的Kruskal-Wallis 检验中,当相同秩次较多时,如果用H 值而不用校正后的 H c值,则会( C )。

A.提高检验的灵敏度
B.把一些无差别的总体推断成有差别
D.Ⅰ、Ⅱ类错误概率不变
E.以上说法均不对
二、思考题
1.方差分析的基本思想和应用条件是什么?
答:方差分析的基本思想是,对于不同设计的方差分析,其思想都一样,即均将处理间
平均变异与误差平均变异比较。

不同之处在于变异分解的项目因设计不同而异。

具体来讲,
根据试验设计的类型和研究目的,将全部观测值总的离均差平方和及其自由度分解为两个或
多个部分,除随机误差作用外,每个部分的变异可由某个因素的作用加以解释,通过比较不同变异来源的均方,借助 F 分布作出统计推断,从而推论各种研究因素对试验结果有无影响。

其应用条件是,①各样本是相互独立的随机样本,均服从正态分布;② 各样本的总体方差相等,即方差齐性。

2.多组定量资料比较时,统计处理的基本流程是什么?
答:多组定量资料比较时首先应考虑用方差分析,对其应用条件进行检验,即方差齐性
及各样本的正态性检验。

若方差齐性,且各样本均服从正态分布,选单因素方差分析。

若方
差不齐,或某样本不服从正态分布,选Kruskal-Wallis 秩和检验,或通过某种形式的数据变
换使其满足方差分析的条件。

若方差分析或秩和检验结果有统计学意义,则需选择合适的方法(如 Bonferonni 、 LSD 法等)进行两两比较。

三、计算题:
1.根据教材表 7-11 资料,大白鼠感染脊髓灰质炎病毒后,再作伤寒或百日咳接种是否影响
生存日数?若结论为“有影响” ,请作多重比较(与对照组比)。

教材表 7-11 各组大鼠接种后生存日数/天
伤寒百日咳对照
5 6 8
7 6 9
8 7 10
9 8 10
9 8 10
10 9 11
10 9 12
11 10 12
11 10 14
12 11 16
解:本题资料可考虑用完全随机设计的单因素方差分析进行统计处理。

( 1)建立检验假设,确定检验水准。

H
0:大白鼠感染脊髓灰质炎病毒后,再接种伤寒或百日咳菌苗生存日数相等。

H
1 :大白鼠感染脊髓灰质炎病毒后,再接种伤寒或百日咳菌苗生存日数不等或不全相
等,=0.05。

( 2)方差分析应用前提条件的检验首先进行正态性及方差齐性检验,三组均服从正
态分布( P1= 0.684,P2= 0.591,P3= 0.507),三个总体的方差齐( P=0.715),符合单因素方差分析的条件,可行方差分析。

(3)各组可分别采用均数和标准差描述其集中趋势和离散趋势,各组的统计描述及
总体均数的置信区间如下:
表 1 三组大鼠接种后生存日数的描述性统计量/天
95%置信区间
N 均数标准差
下限上限
伤寒10 9.20 2.10 7.70 10.70
百日咳10 8.40 1.71 7.17 9.63
对照10 11.2 2.39 9.49 12.91
合计30 9.60 2.34 8.73 10.47 ( 4)资料的方差分析见方差分析表方差分析结果 F 4.776, P 0.017 ,即大白鼠感染脊髓灰质炎病毒后,再接种伤寒或百日咳菌苗生存日数不等或不全相等。

表 2 三组大鼠接种后生存日数差别有无统计学意义的方差分析表
变异来源SS df MS F P
组间41.6 2 20.800 4.776 0.017
组内117.6 27 4.356
合计159.2 29
进一步行多重比较(LSD 检验 ),结果两实验组均与对照组有统计学差异。

认为大白鼠感染脊
髓灰质炎病毒后,再接种伤寒或百日咳菌苗对生存日数有影响,生存日数减少。

表 3 三组大鼠接种后生存日数两两比较的结果
对比组
X A X B S
X A X B P 均数差值的95%置信区间
下限上限
伤寒组与对照组 2.0 0.9333 0.041 -3.92 -0.09
百日咳组与对照组 2.8 0.9333 0.006 -4.72 -0.89
2.将 18 名乙脑患者随机分为三组,分别用单克隆抗体、胸腺肽和利巴韦林三种药物治疗,
观察指标为治疗后的退热时间,结果见教材表7-12。

问三组治疗结果的差异是否具有统计
学意义?教材表 7-12 三组乙脑患者的退热时间/天
治疗分组退热时间
单克隆抗体组0 2 0 0 5 9
胸腺肽组32 13 6 7 10 2
利巴韦林组0 11 15 11 3 1 解:从专业上考虑,退热时间一般不服从正态分布,可采用Kraskal - Wallis 检验分析
三组乙脑患者的退热时间差异有无统计学意义。

( 1)各组可分别采用四份位数描述其集中趋势和离散趋势,各组的统计描述如下:
表 1 三组乙脑患者退热时间的描述性统计量/天
组别N P25 P50 P75
单克隆抗体组 6 0.00 1.00 6.00
胸腺肽组 6 5.00 8.50 17.75
利巴韦林组 6 0.75 7.00 12.00
( 2)建立检验假设,确定检验水准。

H
0:三组乙脑患者的退热时间相等,
H
1 :三组乙脑患者的退热时间不等或不全相等,
=0.05。

2
( 3)Kraskal - Wallis 检验结果,= 4.799,= 2,P=0.091>0.05。

结论为,在α
=0.05
的水平上尚不能认为三组治疗结果的差异具有统计学意义。

(王玖徐天和高永石德文)。

相关文档
最新文档