时间序列分析实验指导与练习
时间序列分析实验指导

时间序列分析实验指导时间序列分析是一种常用的统计方法,用于分析时间上的变化趋势和周期性变化。
它能够帮助我们预测未来的趋势和判断时间序列数据之间的因果关系。
本文将详细介绍进行时间序列分析的实验指导,包括实验准备、数据处理和模型建立等内容。
一、实验准备1. 确定实验目标:首先需要确定想要分析的时间序列的目标,如销售额、股票价格等。
明确实验目标有助于确定实验的方向和方法。
2. 数据采集:根据实验目标,选择合适的数据源,并采集相关数据。
常见的数据源包括数据库、API接口和互联网上的公开数据等。
3. 数据预处理:对采集到的数据进行预处理,包括数据清洗、填补缺失值和去除异常值等操作。
确保数据的准确性和一致性。
二、数据处理1. 数据可视化:将采集到的数据进行可视化,以便更好地理解数据的特征和变化趋势。
可以通过绘制时间序列图、箱线图和自相关图等方式进行数据可视化。
2. 数据平稳化:时间序列分析要求数据是平稳的,即均值和方差不随时间变化。
如果数据不平稳,需要进行平稳化处理。
常见的平稳化方法包括差分和对数变换。
3. 自相关性检验:利用自相关函数(ACF)和偏自相关函数(PACF)来检验数据的自相关性。
分析自相关系数的大小和延迟的时间间隔,判断是否存在显著的自相关关系。
4. 白噪声检验:利用残差的自相关函数和偏自相关函数来检验数据是否为白噪声。
如果数据是白噪声,说明数据中不存在周期性和趋势,不适合进行时间序列分析。
三、模型建立1. 模型选择:根据数据的特征和目标确定合适的时间序列模型。
常见的时间序列模型包括AR模型、MA模型、ARMA模型和ARIMA模型等。
2. 参数估计:对选择的模型进行参数估计,可以使用极大似然估计、最小二乘法或贝叶斯估计等方法。
3. 模型诊断:对模型进行诊断,判断模型的拟合程度和残差的性质。
可以使用残差自相关函数和偏自相关函数来检验模型的拟合优度。
4. 模型预测:利用已建立的模型对未来的数据进行预测。
统计学实验报告--时间序列分析

实验目的:
1.综合运用统计学时间序列相关知识,并结合经济学等方面的知识进
行回归分析,预测2012年社会投资额。
2.根据时间序列预测结果,建立回归方程,预测该地2012年GDP。
实验步骤:
1.对所搜集的数据资料进行分类整理。
2.绘制表格及频数分布直方图。
3.运用时间数列,进行回归分析,预测2012年社会投资额。
4.运用时间数列预测结果,建立回归方程,预测2012年GDP。
某地区资料如下:
分析: (1)设X=a+bt b=(∑xt -n
/1∑∑t x )/[∑2^t -2)^(/1∑t n ]
=(3086-1/6*384*21)/(91-1/6*21^2) =7.7429 x =140.5 t =3.5 a=x -b t
=140.5-7.7429*3.5 =113.3999+7.7429t
故,2012年,即t=7时,社会投资额为167.6002亿元。
(2)设ŷ=c+dx
d=(∑xy-1/n∑∑y
/1
n
x]
2^x
x)/[∑∑
-2
)^
(
=(284740-1/6*2021*843)/(179509-1/6*843^2)
=0.74
c=y-d x=232.86
故,2012年该地GDP为356.88亿元。
实验结论:运用时间序列进行回归分析,可以根据以往的经济数据进行预测分析,提高经济活动的目的性与计划性。
实验5--时间序列分析资料

实验五时间序列分析【实验项目】419023003-05【实验目的与要求】1、掌握利用Excel和SPSS 软件进行移动平均、滑动平均的基本方法2、掌握利用Excel和SPSS 软件进行自相关分析和自回归分析的基本方法【实验内容】1、移动平均法2、滑动平均法3、自相关分析4、自回归分析【实验步骤】时间序列,也叫时间数列或动态数列,是要素(变量)的数据按照时间顺序变动排列而形成的一种数列,它反映了要素(变量)随时间而变化的发展过程。
常规时间序列分析方法包括移动平均法、滑动平均法、指数平滑法、自回归分析方法。
本实验以教材P75表3.3.1 “某地区1990-2004年粮食产量”说明应用Excel 和SPSS软件进行移动平均、滑动平均、指数平滑和自回归分析的基本方法。
(表5.1)。
表5.1某地区1990-2004年粮食产量一、移动平均法(一)应用Excel进行移动平均计算在“数据分析”里可以直接进行计算操作步骤1、打开表5.1。
2、【工具】→【数据分析】→【移动平均】,在弹出的“移动平均”对话框中,分别作如图5.1和图5.2的设置:图5.1 “移动平均”对话框(三点移动)图5.2 “移动平均”对话框(五点移动)3、在原数据表格的C1和D1单元格分别输入“三点移动平均”和“五点移动平均”(图5.3),得到“三点移动平均”和“五点移动平均”计算结果(注意和教材中的结果进行比较.............)。
图5.3 三点和五点移动平均计算结果(二)应用SPSS进行移动平均计算操作步骤1、启动SPSS,打开表5.1。
2、【转换】→【创建时间序列】,在弹出的“创建时间序列”对话框中,“函数”选项列举了创建新变量的方法,其中“先前移动平均”即为通常所说的“移动平均”,“中心移动平均”则为“滑动平均”。
图5.4 “创建时间序列”对话框“函数”选项3、在“创建时间序列”对话框“函数”选项中选择“先前移动平均”,在“跨度”方框中填写“3”,然后将“粮食产量”通过箭头输入到右边的“变量:新名称”中,再在“名称”方框中改成“粮食产量三点移动”,点击“更改”按钮。
时间序列分析作业及答案

(3) 5500 4000 (1 x ) 5 5500 x 106.58% 甲厂平均发展速度需 106.58% 4000
a1 a2 a3 a4 a5 1 解 : x x 1 x 1 5 a0 a1 a2 a3 a 4
n
5 (1 5.2%) (1 4.8%) (1 3.8%) (1 3.5%) (1 2.4%) 1
平均每年的降低率: x 96.05% 1 3.95%
lg1.375 0.13830 n 14.32年 15年后可达到乙厂水平 lg1.0225 0.00966
《时间序列分析》作业
STAT
[习题集P53第8题]甲、乙两厂各年产量资料如下。要求:(1) 分别计算两厂的平均发展速度;(2)按现在甲厂平均发展速度, 要几年才能达到乙厂1999年的水平?(3)如要求甲厂从1999年 起,在五年内达到乙厂1999年的水平,则甲厂的平均发展速度 必须达到多少?
a1990 25(1 4%)5 30.42 a2000 30.42(1 4.5%)10 47.24
a2000 25(1 4%)5 (1 4.5%)10 47.24 (万吨)
(2)已知:a2000 3 25 75 75 25(1 4%)5 (1 x )10
5
《时间序列分析》作业
STAT
[习题集P54第10题]某地区1995~2001年财政收入资料如下(单位: 亿元)。根据该资料: (1)用最小平方法的简捷式配合直线趋势方程; (2)根据直线趋势方程预测2002年的财政收入。
时间序列分析实验指导范文

时间序列分析实验指导范文分析时间序列数据是一种常见的数据分析方法,它可以帮助我们识别和预测数据中的趋势和模式。
本实验将介绍如何进行时间序列分析,并使用ARIMA模型来预测未来的数据。
一、实验目的:掌握时间序列数据的分析方法,了解ARIMA模型的应用。
二、实验步骤:1. 数据准备从可靠的数据源获取时间序列数据,确保数据的完整性和准确性。
将数据保存为csv格式以便分析。
2. 数据预处理对时间序列数据进行必要的预处理,如去除缺失值、异常值处理等。
可以使用Python中的pandas库进行数据清洗。
3. 数据可视化使用Python中的matplotlib库绘制时间序列数据的折线图,观察数据的整体趋势和周期性。
4. 模型拟合利用ARIMA模型对时间序列数据进行拟合。
ARIMA模型包括自回归(AR)、差分(I)和移动平均(MA)三个组成部分。
根据数据的特点选择合适的参数来进行模型的训练。
5. 模型诊断对拟合的ARIMA模型进行诊断,检查模型的残差是否满足平稳性、独立性和正态分布性等假设。
可以绘制残差的自相关图和偏自相关图进行检验。
6. 模型预测使用训练好的ARIMA模型对未来的数据进行预测。
可以通过Python中的statsmodels库来实现。
7. 结果评估对模型预测的结果进行评估,比较预测值和实际值的差异。
可以计算预测误差的均方根误差(RMSE)或平均绝对误差(MAE)来评估模型的精度。
三、实验注意事项:1. 根据数据的性质选择合适的时间序列模型,不同的数据可能需要不同的模型来进行拟合和预测。
2. 在进行时间序列分析之前,需要对数据进行充分的了解,包括数据的来源、采集方法等,以确保数据的可靠性。
3. 在进行ARIMA模型的拟合时,可以通过调整模型的参数来提高模型的拟合度和预测精度。
四、实验总结:时间序列分析是一种常用的数据分析方法,可用于预测未来的数据趋势和模式。
通过本实验,我们学习了如何进行时间序列分析,并使用ARIMA模型对未来的数据进行预测。
时间序列法实验报告

一、实验目的1. 了解时间序列分析方法的基本原理和应用。
2. 学习如何使用时间序列分析方法对实际数据进行预测和分析。
3. 通过实验,提高对时间序列数据处理的实际操作能力。
二、实验内容本次实验选取了一组某城市过去三年的月均降雨量数据,旨在通过时间序列分析方法预测未来一个月的降雨量。
三、实验步骤1. 数据预处理- 读取实验数据,确保数据格式正确。
- 检查数据是否存在缺失值,如有,进行插补处理。
- 对数据进行初步的描述性统计分析,了解数据的分布情况。
2. 时间序列平稳性检验- 对原始数据进行ADF(Augmented Dickey-Fuller)检验,判断时间序列是否平稳。
- 若不平稳,进行差分处理,直至序列平稳。
3. 时间序列建模- 根据平稳时间序列的特点,选择合适的模型进行拟合。
- 本实验选取ARIMA模型进行拟合,其中AR项数为1,MA项数为1,差分次数为1。
4. 模型参数估计- 使用最小二乘法对模型参数进行估计。
5. 模型检验- 对拟合后的模型进行残差分析,检查是否存在自相关或异方差。
- 若存在自相关或异方差,对模型进行修正。
6. 预测- 使用拟合后的模型对未来一个月的降雨量进行预测。
四、实验结果与分析1. 数据预处理- 实验数据共有36个观测值,无缺失值。
- 描述性统计分析结果显示,降雨量数据呈正态分布。
2. 时间序列平稳性检验- 对原始数据进行ADF检验,结果显示P值小于0.05,拒绝原假设,说明原始数据不平稳。
- 对数据进行一阶差分后,再次进行ADF检验,结果显示P值小于0.05,接受原假设,说明一阶差分后的数据平稳。
3. 时间序列建模- 根据平稳时间序列的特点,选择ARIMA(1,1,1)模型进行拟合。
4. 模型参数估计- 使用最小二乘法对模型参数进行估计,得到AR系数为0.8,MA系数为-0.9。
5. 模型检验- 对拟合后的模型进行残差分析,发现残差序列存在自相关,但不存在异方差。
- 对模型进行修正,加入自回归项,得到修正后的ARIMA(1,1,1,1)模型。
新大计量地理学实验指导04时间序列分析

用 SPSS 统计软件学会建立时间序列新变量方法时间序列,也叫时间数列或动态数列,是要素(变量) 的数据按照时间顺序变动排列而形成的一种数列,它反映了要素(变量) 随时间变化的发展过程。
地理过程的时间序列分析,就是通过分析地理要素(变量) 随时间变化的历史过程,揭示其发展变化规律,并对其未来状态进行预测。
在描述实际中出现的某些问题时,一种非常有用的随机模型就是自回归模型 (Autoregression) .在该模型中,过程的当前值被表示过程的有穷线性组合在加上一个重击e t .我们用X t,X t- 1,X t-2,… ,记在等间隔时间t,t- 1,t-2,…上的过程值。
此外,用Z t,Z t- 1,Z t-2,…,记关于均值u 的偏差,即Z t=X t-u 。
则:Z t=φ1Z t- 1+φ2Z t-2+…+φp Z t-p+e t便叫做为P阶自回归(AR)过程,当P=1时,称为一阶自回归模型。
1) 定义变量,建立数据文件并输入数据,至少要有一个变量。
打开Data 菜单中的DefineDates 对话框,定义时间序列的周期。
采用Transform 菜单中的Create Time Series 的方法,建立一个时间序列的新的变量。
2) 按Analyze ⇒ Time series ⇒ Autoregression 顺序展开相应的对话框。
3) 选择一个因变量,将其移到Dependent 框。
选择一个或多个自变量移到independent(s)框。
在Media 栏中,从三种方法中选择一种预测方法。
如果在回归方程中不需要包括常数项,可不选Include constant in model 复选项。
4) 单击Save 按钮展开保存对话框,在对话框中选择计算结果存放方式。
O 在Create Variables 栏中给出今Add to file 选项,将新建变量存放在原数据文件中,是系统默认的。
今Replace existing 选项,用新建变量数据替代数据文件中原先存在的计算结果。
时间序列分析实验报告(3)

《时间序列分析》课程实验报告一、上机练习(P124)1.拟合线性趋势12.79 14.02 12.92 18.27 21.22 18.81 25.73 26.27 26.75 28.73 31.71 33.95程序:data xiti1;input x@@;t=_n_;cards;12.79 14.02 12.92 18.27 21.22 18.81 25.73 26.27 26.75 28.73 31.71 33.95 ;proc gplot data=xiti1;plot x*t;symbol c=red v=star i=join;run;proc autoreg data=xiti1;model x=t;output predicted=xhat out=out; run;proc gplot data=out;plot x*t=1 xhat*t=2/overlay; symbol2c=green v=star i=join; run;运行结果:分析:上图为该序列的时序图,可以看出其具有明显的线性递增趋势,故使用线性模型进行拟合:x t=a+bt+I t,t=1,2,3,…,12分析:上图为拟合模型的参数估计值,其中a=9.7086,b=1.9829,它们的检验P值均小于0.0001,即小于显著性水平0.05,拒绝原假设,故其参数均显著。
从而所拟合模型为:x t=9.7086+1.9829t.分析:上图中绿色的线段为线性趋势拟合线,可以看出其与原数据基本吻合。
2.拟合非线性趋势1.85 7.48 14.29 23.02 37.42 74.27 140.72265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95程序:data xiti2;input x@@;t=_n_;cards;1.85 7.48 14.29 23.02 37.42 74.27 140.72265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95;proc gplot data=xiti2;plot x*t;symbol c=red v=star i=none;run;proc nlin method=gauss;model x=a*b**t;parameters a=0.1 b=1.1;der.a=b**t;der.b=a*t*b**(t-1);output predicted=xh out=out;run;proc gplot data=out;plot x*t=1 xh*t=2/overlay;symbol2c=green v=none i=join;run;运行结果:分析:上图为该时间序列的时序图,可以很明显的看出其基本是呈指数函数趋势慢慢递增的,故我们可以选择指数型模型进行非线性拟合:x t=ab t+I t,t=1,2,3,…,12分析:由上图可得该拟合模型为:x t=1.0309*1.9958t+I t分析:图中的红色星号为原序列值,绿色的曲线为拟合后的拟合曲线,可以看出原序列值与拟合值基本上是重合的,故该拟合效果是很好的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列分析实验指导42-2-450100150200250统计与应用数学学院前言随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。
为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。
为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。
这套实验教学指导书具有以下特点:①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。
②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。
这套实验教学指导书在编写的过程中始终得到XX财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢!限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。
统计与数学模型分析实验中心2007年2月目录实验一EVIEWS中时间序列相关函数操作- 1 - 实验二确定性时间序列建模方法- 9 -实验三时间序列随机性和平稳性检验- 18 - 实验四时间序列季节性、可逆性检验- 20 - 实验五ARMA模型的建立、识别、检验- 26 - 实验六 ARMA模型的诊断性检验- 29 -实验七 ARMA模型的预测- 30 -实验八复习ARMA建模过程- 32 -实验九时间序列非平稳性检验- 34 -实验一EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。
【实验内容】一、EViews软件的常用菜单方式和命令方式;二、各种常用差分函数表达式;三、时间序列的自相关和偏自相关图与函数;【实验步骤】一、EViews软件的常用菜单方式和命令方式;㈠创建工作文件⒈菜单方式启动EViews软件之后,进入EViews主窗口在主菜单上依次点击File/New/Workfile,即选择新建对象的类型为工作文件,将弹出一个对话框,由用户选择数据的时间频率(frequency)、起始期和终止期。
选择时间频率为Annual(年度),再分别点击起始期栏(Start date)和终止期栏(End date),输入相应的日期,然后点击OK按钮,将在EViews 软件的主显示窗口显示相应的工作文件窗口。
工作文件窗口是EViews的子窗口,工作文件一开始其中就包含了两个对象,一个是系数向量C(保存估计系数用),另一个是残差序列RESID(实际值与拟合值之差)。
⒉命令方式在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件。
命令格式为:CREATE 时间频率类型起始期终止期则菜单方式过程可写为:CREATE A 1985 1998㈡输入Y、X的数据⒈DATA命令方式在EViews软件的命令窗口键入DATA命令,命令格式为:DATA <序列名1> <序列名2>…<序列名n>本例中可在命令窗口键入如下命令:DATA Y X⒉鼠标图形界面方式在EViews软件主窗口或工作文件窗口点击Objects/New Object,对象类型选择Series,并给定序列名,一次只能创建一个新序列。
再从工作文件目录中选取并双击所创建的新序列就可以展示该对象,选择Edit+/-,进入编辑状态,输入数据。
㈢生成log(Y)、log(X)、X^2、1/X、时间变量T等序列在命令窗口中依次键入以下命令即可:GENR LOGY=LOG(Y)GENR LOGX=LOG(X)GENR X1=X^2GENR X2=1/XGENR T=TREND(84)㈣选择若干变量构成数组,在数组中增加变量。
在工作文件窗口中单击所要选择的变量,按住Ctrl键不放,继续用鼠标选择要展示的变量,选择完以后,单击鼠标右键,在弹出的快捷菜单中点击Open/as Group,则会弹出数组窗口,其中变量从左至右按在工作文件窗口中选择变量的顺序来排列。
在数组窗口点击Edit+/-,进入全屏幕编辑状态,选择一个空列,点击标题栏,在编辑窗口输入变量名,再点击屏幕任意位置,即可增加一个新变量增加变量后,即可输入数据。
点击要删除的变量列的标题栏,在编辑窗口输入新变量名,再点击屏幕任意位置,弹出RENAME对话框,点击YES按钮即可。
㈤在工作文件窗口中删除、更名变量。
⒈在工作文件窗口中选取所要删除或更名的变量并单击鼠标右键,在弹出的快捷菜单中选择Delete(删除)或Rename(更名)即可⒉在工作文件窗口中选取所要删除或更名的变量,点击工作文件窗口菜单栏中的Objects/Delete selected…(Rename selected…),即可删除(更名)变量⒊在工作文件窗口中选取所要删除的变量,点击工作文件窗口菜单栏中的Delete按钮即可删除变量。
三、图形分析与描述统计分析㈠利用PLOT命令绘制趋势图在命令窗口中键入:PLOT Y也可以利用PLOT命令将多个变量的变化趋势描绘在同一X图中,例如键入以下命令,可以观察变量Y、X的变化趋势PLOT Y X㈡利用SCAT命令绘制X、Y的散点图在命令窗口中键入:SCAT X Y则可以初步观察变量之间的相关程度与相关类型二、各种常用差分函数表达式(一)利用D(x)命令系列对时间序列进行差分(x为表1-1中的数据)。
1、在命令窗口中键入:genr dx=D(x)则生成的新序列为序列x的一阶差分序列2、在命令窗口中键入:genr dxn=D(x,n)则生成的新序列为序列x的n阶差分。
3、在命令窗口中键入:genr dxs=D(x,0,s)则生成的新序列为序列x 的对周期长度为s 一阶季节差分。
4、在命令窗口中键入:genr dxsn=D(x,n,s)则生成的新序列为对周期长度为s 的时间序列x 取一阶季节差分后的序列再取n 阶差分。
5、在命令窗口中键入:genr dlx=Dlog(x)则生成的新序列为x 取自然对数后,再取一阶差分。
6、在命令窗口中键入:genr dlxsn=Dlog(x,n,s)则生成的新序列为周期长度为s 的时间序列x 先取自然对数,再取一阶季节差分,然后再对序列取n 阶差分。
在EVIEWS 中操作的图形分别为:-150-100-5050100495051525354555657585960DX-150-100-50050100150495051525354555657585960DX2-2020406080495051525354555657585960DX12三、时间序列的自相关和偏自相关图与函数;(一)观察时间序列的自相关图。
命令方式:(1)在命令行输入命令:Ident x (x 为序列名称); (2)然后在出现的对话框中输入滞后时期数。
(可取默认数) 菜单方式:(1)双击序列图标。
菜单操作方式:View —>Correlogram , 在出现的对话框中输入滞后数。
(可取默认数)(二)练习:观察一些文件中的序列自相关函数Autocorrelation ,偏自相关函数Partial autocorrelation 的特征练习1:操作文件:Stpoor~1.wf1(美国S&P500工业股票价格指数1980年1月~1996年2月)-40-20204060495051525354555657585960-0.3-0.2-0.10.00.10.20.3495051525354555657585960-0.15-0.10-0.050.000.050.100.15495051525354555657585960步骤:(1)打开该文件。
(2)观察序列stpoorr的趋势图,自相关图(自相关函数,偏自相关函数)的特征。
(3)对序列取一阶差分,生成新序列dsp:genr dsp=d(stpoor),并观察其趋势图,自相关图(同上,下略)的特征。
(4)对该序列的自然对数取一阶差分,生成新的序列dlnsp:genr dlnsp=dlog(stpoor),并观察其趋势图,自相关图。
练习2:操作文件:usagnp.wf1(美国1947年第一季度~1970年第四季度GNP 数据)步骤:(1)打开该文件。
(2)观察序列usagdp的趋势图的特征,自相关图的特征。
(3)对该序列取一阶差分,生新的序列dgdp:Genr dgdp=d(usagdp)。
观察其趋势图,自相关图。
(4)对该序列的自然对数取一阶差分,生成新的序列dlngdp:Genr dlngdp=dlog(gdp)。
观察其趋势图,自相关图。
(5)对序列一阶季节差分,生成新序列dsgdp=d(usagdp,0,4)观察其趋势图,自相关图的特征。
(6)对该序列的自然对数取一阶季节差分,生成新的序列:dslngdp=dlog(usagdp,0,4),观察其趋势图、自相关图。
实验二确定性时间序列建模方法【实验目的】熟悉确定性时间序列模型的建模原理;掌握确定性时间序列建立模型的几种常用方法。
【实验内容】一、多项式模型和加权最小二乘法的建立;二、单参数和双参数指数平滑法进行预测的操作练习;三、二次曲线和对数曲线趋势模型建立及预测;【实验步骤】一、多项式模型和加权最小二乘法的建立;1、我国1974—1994年的发电量资料列于表中,已知1995年的发电量为10077.26亿千瓦小时,试以表1.1中的资料为样本:(1)据拟合优度和外推检验的结果建立最合适的多项式模型。
(2)采用加权最小二乘法估计我国工业发电量的线性趋势,并与普通最小二乘法估计的线性模型进行比较,列出OLS方法预测值和W=0.6,W=0.7时1992到1995年预测值以及相对误差。
74-78 79-83 84-88 89-93 94-951668 2820 3770 5848 92811958 3006 4107 6212 10077.262031 3093 4495 67752234 3277 4973 75392566 3514 5452 8395操作过程:建立WORKFILE:CREATE A 1974 1995生成新序列Y:data y生成新的时间趋势序列t :genr t=trend(1973) 建立系列方程:smpl 1974 1994ls y c tls y c t t^2ls y c t t^2 t^3通过拟合优度和外推检验的结果发现一元三次多项式模型效果最好。
首先生成权数序列:genr m=sqr(0.6^(21-t))加权最小二乘法的命令方式:ls(w=m) y c t普通最小二乘法命令方式:ls y c t进行预测:打开对应的方程窗口,点forecast按纽,将出现对话框,修改对话框 sample range for forecast中的时间期限的截止日期为预测期.相对误差的计算公式为:(实际值-预测值)/实际值二、单参数和双参数指数平滑法进行预测的操作练习2、某地区1996~2003年的人口数据如表1.2 ,运用二次指数平滑法预测该镇2004年底的人口数(单位:人)。