波动光学-衍射3
大学物理中的波动光学光的衍射和干涉现象

大学物理中的波动光学光的衍射和干涉现象大学物理中的波动光学:光的衍射和干涉现象波动光学是大学物理中的一门重要课程,研究光的传播与干涉、衍射、偏振等现象。
其中,光的衍射和干涉是波动光学中的两个重要现象。
本文将对光的衍射和干涉进行详细讨论和解析,并探讨其在实际应用中的重要性。
一、光的衍射现象光的衍射是指光通过狭缝或障碍物后的传播过程中,光波的干涉和折射产生的现象。
当光波通过一个狭缝时,光波会在狭缝的边缘发生弯曲,进而产生波动的干涉效应。
这个过程称为光的衍射。
光的衍射现象在日常生活中有各种各样的应用。
例如,CD、DVD 和蓝光碟等光盘的读写原理就是基于光的衍射现象。
光的衍射也被广泛应用于显微镜、望远镜和天文学的观测中,使我们能够更清晰地观察微观和宇宙中的远处物体。
二、光的干涉现象光的干涉是指两个或多个光波相互叠加产生干涉的现象。
当两束或多束光波相遇时,它们会发生叠加干涉现象,形成交替出现明暗的干涉条纹。
这种现象称为光的干涉。
光的干涉现象在很多实验中都有应用。
例如,杨氏双缝干涉实验就是利用光的干涉现象来观察和研究波的性质。
干涉技术还被广泛应用于光学测量、图像处理和激光干涉等领域。
干涉技术的应用使得我们可以实现高精度测量、光栅分析和光学干涉计等。
三、衍射与干涉的区别与联系尽管光的衍射和干涉是两个不同的现象,但它们之间有着紧密的联系。
首先,光的衍射和干涉都是由于光波的波动性质而产生的。
其次,它们都是波动光学中干涉和折射效应的体现。
不同之处在于,光的干涉是多个光波相互叠加产生的干涉现象,而光的衍射是光通过狭缝或障碍物后的波动干涉和弯曲现象。
此外,光的干涉通常需要明确的相位差和干涉构成条件,而光的衍射则更多地受到波长、狭缝尺寸和物体形状的影响。
无论是光的衍射还是干涉,在物理学的研究和实际应用中都起着重要的作用。
无论是在光学器件设计、成像技术还是光学测量中,都需要充分理解和应用这些光学现象。
同时,通过对光的干涉和衍射的研究,我们可以更深入地了解光与物质相互作用、光的传播特性和波动性质等问题,有助于推动光学科学和技术的发展。
物理光学实验1

物理光学实验讲义武汉纺织大学实验一 杨氏双缝干涉实验一、 引言杨氏干涉实验是用分波前法产生干涉的最著名实验。
通过对杨氏干涉实验光路的搭建、调节和使用,可以提高学生调节光路的能力,并且初步了解分波前干涉的原理和特点。
二、 涉及内容波动光学、光学测量、光学衍射三、 实验原理接收屏MX 正方向 Pr 1S 1 r 2Z 正方向S 2 D图1 杨氏双缝干涉原理图考察屏M 上某点P 出的强度分布。
由于S 1,S 2对称设置,且大小相等,可以认为由S 1,S 2发出的两光波在P 点光强度相等,即I 1=I 2=I 0,则P 点的干涉条纹强度分布为:2cos 4cos 2202121δδI I I I I I =++=用∆=-=k r r k )(12δ带入,得: ])([cos 41220λπr r I I -= 表明P 点得光强I 取决于两光波在该点的光程差)(12r r -=∆相位差δ。
设P 点坐标(x ,y ,D ),则 22211)2(D y d x P S r ++-==,22222)2(D y d x P S r +++==, 式中,d 是两相干点光源S 1,S 2间的距离,D 是两相干光源到观察屏(干涉场)M 的距离。
由上面两式可得xd r r 21122=-,于是 12122r r xd r r +=-=∆,实际情况中,d<<D ,若同时x ,y<<D ,则D r r 221≈+,故Dxd r r ≈-=∆12 于是有 ][cos 420D xd I I λπ=, 上式表明,x 相同的点具有相同的强度,形成同一条干涉条纹。
当dD m x λ= ,,,210(±±=m …) 时,屏M 上有最大光强04I I =,为亮纹;当dD m x λ)21(+= ,,,210(±±=m …) 时,屏M 上光强极小为0=I 得暗纹。
上述结果表明,屏幕上z 轴附近的干涉图样由一系列平行等距的明暗直条纹组成,条纹的分布呈余弦平方变化规律,条纹的走向垂直于S 1,S 2连线(x 轴)方向。
大学物理波动光学总结资料

大学物理波动光学总结资料波动光学是指研究光的波动性质及与物质相互作用的学科。
在大学物理中,波动光学通常包括光的干涉、衍射、偏振、散射、吸收等内容。
以下是波动光学的一些基本概念和应用。
一、光的波动性质1.光的电磁波理论。
光是由电磁场传输的波动,在时空上呈现出周期性的变化。
光波在真空中传播速度等于光速而在介质中会有所改变。
根据电场和磁场的变化,光波可以分为不同的偏振状态。
2.光的波长和频率。
光波的波长和频率与它的能量密切相关。
波长越长,频率越低,能量越低;反之亦然。
3.光的能量和强度。
光的能量和强度与波长、频率、振幅有关。
能量密度是指单位体积内的能量,光的强度则是表征单位面积内能量流的强度。
二、光的干涉1.干涉的定义。
干涉是指两个或多个光波向同一方向传播时,相遇后相互作用所产生的现象。
2.杨氏双缝干涉实验。
当一束单色光垂直地照到两个很窄的平行缝口上时,在屏幕上会出现一系列互相平衡、互相补偿的亮和暗的条纹,这种现象就叫做杨氏双缝干涉。
3.干涉条纹的间距。
干涉条纹的间距与光波的波长、发生干涉的光程差等因素有关。
4.布拉格衍射。
布拉格衍射是一种基于干涉理论的衍射现象,用于分析材料的晶体结构。
三、光的衍射1.衍射的定义。
衍射是指光波遇到障碍物时出现波动现象,其表现形式是波动向四周传播并在背面出现干涉现象。
2.夫琅和费衍射。
夫琅和费衍射是指光波通过一个很窄的入口向一个屏幕上的孔洞传播时,从屏幕背面所观察到的特征。
孔洞的大小和形状会影响到衍射现象的质量。
3.斯特拉斯衍射。
斯特拉斯衍射是指透过一个透镜后,将光线聚焦到一个小孔上,然后在背面观察到的光的分布情况。
4.阿贝原则与分束学。
阿贝原则是指光学成像的基本原理,根据这个原理,任意一个物体都可以被看作一个点光源阵列。
分束学是将任意一个物体看作一个点光源阵列,在分别聚焦到像平面后重新合成图像。
四、光的偏振1.偏振的定义。
偏振是指光波的电场振动在一个平面内进行的波动现象。
波动光学的知识点总结

波动光学的知识点总结波动光学的研究内容主要包括以下几个方面:1. 光的波动性质光是一种电磁波,它具有波长和频率,具有幅度和相位的概念。
光的波长和频率决定了光的颜色和能量,波长短的光具有较高的能量,频率高的光具有较大的能量。
光的波动性质使得光能够在空间中传播,并且能够在介质中发生折射、反射等现象。
2. 光的干涉干涉是光波相遇时互相干涉的现象。
干涉是波动光学中一种重要的现象,它包括两种类型:相干干涉和非相干干涉。
相干干涉是指来自同一光源的两条光线之间的干涉,而非相干干涉是指来自不同光源的两条光线之间的干涉。
在干涉实验中,通常会通过双缝干涉、薄膜干涉等实验来观察干涉现象。
3. 光的衍射衍射是光波通过狭缝或者物体边缘时发生偏离直线传播的现象。
光的衍射是波动光学中的重要现象,它可以解释光通过小孔成像、光的散斑等现象。
在衍射实验中,通过单缝衍射、双缝衍射、菲涅尔衍射等实验可以观察衍射现象。
4. 光的偏振偏振是光波中振动方向的特性,偏振光是指光波中只沿特定振动方向传播的光波。
光的偏振是光波的重要特征之一,它可以通过偏振片、偏振器等光学元件来实现。
在偏振实验中,可以通过偏振片的转动、双折射现象等来观察偏振现象。
5. 光的成像成像是光学系统中的一个重要问题,它涉及到光的传播规律和光的反射、折射等现象。
通过成像实验,可以研究光的成像规律、成像质量和成像系统的性能等问题。
光的成像是波动光学中的一个重要研究方向,它主要包括光的成像原理、成像系统的构造和成像参数的计算等内容。
综上所述,波动光学是物理学中一个重要的分支,它研究光的波动性质和光的传播规律。
波动光学的研究内容包括光的波动性质、光的干涉、衍射、偏振和光的成像等内容。
通过波动光学的研究,可以深入了解光的波动性质和光的传播规律,为光学系统的设计与应用提供理论基础。
大学物理波动光学知识点总结.doc

大学物理波动光学知识点总结.doc波动光学是物理学中的重要分支,涉及到光的反射、折射、干涉、衍射等现象。
作为大学物理中的一门必修课程,波动光学是大学物理知识体系重要的组成部分。
以下是相关的知识点总结:1. 光的波动性光可以被看作是一种电磁波。
根据电磁波的性质,光具有波动性,即能够表现出干涉、衍射等现象。
光的波长决定了其在物质中能否传播和被发现。
2. 光的反射光在与物体接触时会发生反射。
根据反射定律,发射角等于入射角。
反射给人们带来很多视觉上的感受和体验,如反光镜、镜子等。
当光从一种介质向另一种介质传播时,光的速度和方向都会发生改变,这个现象称为折射。
光在空气、玻璃、水等介质中的折射现象被广泛应用到光学、通信等领域中。
4. 光的干涉当两束光相遇时,它们会相互干涉,产生干涉条纹。
这是因为两束光的干涉条件不同,它们之间产生了相位差,导致干涉现象。
干涉可以分为光程干涉和振幅干涉。
光经过狭缝或小孔时,其波动性会导致光将会分散成多个波阵面。
这种现象称为衍射。
衍射可以改变光的方向和能量分布,被广泛应用于成像和光谱分析等领域。
6. 偏振偏振是光波沿着一个方向振动的现象,产生偏振的方式可以通过折射、反射、散射等途径实现。
光的偏振性质在光学通信、材料研究等领域有着广泛的应用。
总结波动光学是大学物理学知识体系不可或缺的一部分,它涉及到光的波动性、光的反射、折射、干涉、衍射等现象。
对于工程、光学、材料等领域的学生和研究者来说,深入了解波动光学的基本原理和理论,都有助于提高知识和技术水平。
光学几何光学和波动光学

光学几何光学和波动光学光学几何光学是光学的一个主要分支领域,它主要研究光的传播和成像的几何性质,而波动光学则着重研究光的波动性质和干涉、衍射等现象。
本文将分别介绍和比较光学几何光学和波动光学的基本原理和应用。
一、光学几何光学光学几何光学是一种适用于光传播和成像的理论。
它基于光的传播直线性质,通过光线的追迹和成像原理来研究光学系统,包括透镜、反射镜、光纤等。
光学几何光学主要依赖以下原理:1. 光线传播:光在均匀介质中的传播速度是常量,可以通过直线路径描述光线的传播。
2. 光的反射和折射定律:在光线从一种介质到另一种介质的界面上发生反射或折射时,有相应的定律描述入射角、反射角和折射角之间的关系。
3. 光的成像:根据光线追迹原理,可以通过构造光线追迹图或使用光学元件的公式计算得到光学系统的成像位置和性质。
光学几何光学的应用非常广泛,其中包括凸透镜和凹透镜的成像、显微镜、望远镜、照相机等光学仪器的设计和优化。
通过光学几何光学理论,可以定量地分析和设计光学系统,使其具有所需的成像性能。
二、波动光学波动光学是研究光的波动性质和干涉、衍射等现象的理论。
与光学几何光学相比,波动光学更关注光的波动性质、波动方程和波动现象的解释。
以下是波动光学的基本原理:1. 光的波动性质:光可以被看作一种电磁波,具有波长、频率和振幅等波动性质。
2. 光的干涉和衍射:当光通过一个孔或遇到物体边缘时,会出现干涉和衍射现象。
干涉是指光波叠加引起互相增强或抵消的现象,而衍射是光波绕过障碍物传播和弯曲的现象。
3. 波动光学方程:通过对波动方程的求解,可以得到光波的传播和衍射的数学描述。
4. 非相干光和相干光:在波动光学中,还区分了非相干光和相干光。
非相干光是指光源发出的波长、相位和振幅都是随机变化的,而相干光则是指光源发出的波长和相位是有规律的,可以产生干涉和衍射现象。
波动光学的应用也非常广泛,包括干涉仪、衍射仪、激光、光纤通信等。
通过波动光学理论,我们可以深入理解光的本质和光与物质的相互作用。
大学物理题库-波动光学 光的衍射习题与答案解析

11、波动光学光的衍射一、选择题(共15题)1.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于(A) λ.(B) 1.5 λ.(C) 2 λ.(D) 3 λ.[]2.一束波长为λ的平行单色光垂直入射到一单Array缝AB上,装置如图.在屏幕D上形成衍射图样,如果P是中央亮纹一侧第一个暗纹所在的位置,则BC的长度为(A) λ / 2.(B) λ.(C) 3λ / 2 .(D) 2λ.[]3.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[]4.在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大.[]5.在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的(A) 3 / 4倍. (B) 2 / 3倍.(C) 9 / 8倍. (D) 1 / 2倍.(E) 2倍. [ ] 6.λ在如图所示的单缝夫琅禾费衍射装置中,将单缝宽度a 稍梢变宽,同时使单缝沿y 轴正方向作微小平移(透镜屏幕位置不动),则屏幕C 上的中央衍射条纹将(A) 变窄,同时向上移; (B) 变窄,同时向下移;(C) 变窄,不移动;(D) 变宽,同时向上移;(E) 变宽,不移. [ ] 7.一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现? (A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ ] 8.在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b .(C) a=2b . (D) a=3 b . [ ]λ9.测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射. [ ] 10.波长λ=550 nm(1nm=10−9m)的单色光垂直入射于光栅常数d =2×10-4 cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A) 2. (B) 3. (C) 4. (D) 5. [ ] 11.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少. (B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多. (C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变. (D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.[ ] 12.某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是(A) 2 ,3 ,4 ,5 ...... (B) 2 ,5 ,8 ,11...... (C) 2 ,4 ,6 ,8 ......(D) 3 ,6 ,9 ,12...... [ ] 13.当单色平行光垂直入射时,观察单缝的夫琅禾费衍射图样.设0I 表示中央极大(主极大)的光强,1θ表示中央亮条纹的半角宽度.若只是把单缝的宽度增大为原来的3倍,其他条件不变,则(A) 0I 增大为原来的9倍,1sin θ减小为原来的 31.(B) 0I 增大为原来的3倍,1sin θ减小为原来的 31.(C) 0I 增大为原来的3倍,1sin θ增大为原来的3倍.(D) 0I 不变,1sin θ减小为原来的 31. [ ]14.波长为0.168 nm (1 nm = 10-9 m)的X 射线以掠射角θ 射向某晶体表面时,在反射方向出现第一级极大,已知晶体的晶格常数为0.168 nm ,则θ 角为(A) 30°. (B) 45°.(C) 60°. (D) 90°. [ ] 15.X 射线射到晶体上,对于间距为d 的平行点阵平面,能产生衍射主极大的最大波长为 (A) d / 4. (B) d / 2.(C) d . (D) 2d . [ ]二、填空题(共15题)1.在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5 λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =___________________________. 2.如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的相位差为___________.3.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a =2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个. 4.将波长为λ的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为θ,则缝的宽度等于_________. 5.波长为 600 nm 的单色平行光,垂直入射到缝宽为a=0.60 mm 的单缝上,缝后有一焦距f '=60 cm 的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为_______,两个第三级暗纹之间的距离为______.(1 nm =10﹣9 m) 6.a λ在单缝夫琅禾费衍射示意图中,所画出的各Array条正入射光线间距相等,那末光线1与2在幕上P点上相遇时的相位差为______ P点应为_____ 点.7.测量未知单缝宽度a的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D处测出衍射花样的中央亮纹宽度为l(实验上应保证D≈103a,或D为几米),则由单缝衍射的原理可标出a 与λ,D,l的关系为a =_ ___.8.波长为λ的单色光垂直投射于缝宽为a,总缝数为N,光栅常数为d的光栅上,光栅方程(表示出现主极大的衍射角ϕ应满足的条件)为___________.9.一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为________.10.若光栅的光栅常数d、缝宽a和入射光波长λ都保持不变,而使其缝数N增加,则光栅光谱的同级光谱线将变得___________.11.用平行的白光垂直入射在平面透射光栅上时,波长为λ1=440 nm的第3级光谱线将与波长为λ2=______nm的第2级光谱线重叠.(1 nm =10 –9 m)12.一双缝衍射系统,缝宽为a,两缝中心间距为d.若双缝干涉的第±4,±8,±12,±16,…级主极大由于衍射的影响而消失(即缺级),则d/ a的最大值为____ ____________.13.汽车两盏前灯相距l,与观察者相距S= 10 km.夜间人眼瞳孔直径d= 5.0 mm.人眼敏感波长为λ = 550 nm (1 nm = 10-9 m),若只考虑人眼的圆孔衍射,则人眼可分辨出汽车两前灯的最小间距l = _________m.14.在通常亮度下,人眼瞳孔直径约为3 mm.对波长为550 nm的绿光,最小分辨角约为_______rad.(1 nm = 10-9 m)15.X射线入射到晶格常数为d的晶体中,可能发生布喇格衍射的最大波长为____________.三、计算题(共6题)1. (6分)在单缝的夫琅禾费衍射中,缝宽a =0.100 mm ,平行光垂直入射在单缝上,波长λ=500 nm ,会聚透镜的焦距f =1.00 m .求中央亮纹旁的第一个亮纹的宽度∆x . (1 nm =10–9 m)2. (5分)如图所示,设波长为λ的平面波沿与单缝平面法线成θ角的方向入射,单缝AB 的宽度为a ,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的衍射角ϕ.3. (5分)一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求: (1) 光栅常数a +b(2) 波长λ24. (10分)波长λ=600nm(1nm=10﹣9m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1) 光栅常数(a + b )等于多少?(2) 透光缝可能的最小宽度a 等于多少?(3) 在选定了上述(a + b )和a 之后,求在衍射角-π21<ϕ<π21范围内可能观察到的全部主极大的级次.5.(10分)以波长为λ = 500 nm (1 nm = 10-9 m)的单色平行光斜入射在光栅常数为d = 2.10 μm 、缝宽为a = 0.700 μm 的光栅上,入射角为i = 30.0°,求能看到哪几级光谱线.6. (5分)设汽车前灯光波长按λ = 550 nm (1 nm = 10-9 m)计算,两车灯的距离d = 1.22 m ,在夜间人眼的瞳孔直径为D = 5 mm ,试根据瑞利判据计算人眼刚能分辨上述两只车灯时,人与汽车的距离L .11、波动光学 光的衍射 答案一、选择题(共15题) 1-5:D 、B 、B 、A 、D 、 6-10:C 、B 、B 、D 、B 、 11-15:D 、D 、A 、A 、D 二、填空题(共15题)1、答案:30°2、答案:π3、答案:24、答案:λ / sin θ5、答案:1.2 mm ;3.6 mm6、答案:2π 暗7、答案:2λD / l8、答案:d sin ϕ =k λ ( k =0,±1,±2,···) 9、答案:0,±1,±3,........ 10、答案:更窄更亮 11、答案:660nm 12、答案:413、答案:1.34m14、答案:2.24×10-4 rad 15、答案:2d三、计算题(共6题)1、解:单缝衍射第1个暗纹条件和位置坐标x 1为:a sin θ1 = λa f f f x /sin tg 111λθθ≈≈= (∵θ1很小) 2分单缝衍射第2个暗纹条件和位置坐标x 2为: a sin θ2 = 2λa f f f x /2sin tg 222λθθ≈≈= (∵θ2很小) 2分 单缝衍射中央亮纹旁第一个亮纹的宽度 ()a a f x x x //2121λλ-≈-=∆= f λ / a=1.00×5.00×10-7 / (1.00×10-4) m=5.00 mm 2分2、解:1、2两光线的光程差,在如图情况下为ϕθδsin sin a a BD CA -=-= 2分由单缝衍射极小值条件a (sin θ-sin ϕ ) = ± k λ k = 1,2,…… 2分 (未排除k = 0 的扣1分)得 ϕ = sin —1( ± k λ / a+sin θ ) k = 1,2,……(k ≠ 0) 1分3、解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+ b acm 1036.330sin 341-⨯==+λb a 3分 (2) ()2430sin λ=+ b a()4204/30sin 2=+= b a λnm 2分4、解:(1) 由光栅衍射主极大公式得a +b =ϕλsin k =2.4×10-4 cm 3分(2) 若第三级不缺级,则由光栅公式得()λϕ3sin ='+b a由于第三级缺级,则对应于最小可能的a ,ϕ'方向应是单缝衍射第一级暗纹:两式比较,得 λϕ='sin aa = (a +b )/3=0.8×10-4 cm 3分(3)()λϕk b a =+sin ,(主极大) λϕk a '=sin ,(单缝衍射极小) (k '=1,2,3,......)L θ2 θ1 Cx 2 x 1 ∆x f因此 k =3,6,9,........缺级. 2分又因为k max =(a +b ) / λ=4, 所以实际呈现k=0,±1,±2级明纹.(k=±4 在π / 2处看不到.) 2分5、解:(1) 斜入射时的光栅方程λθk i d d =-sin sin ,k = 0,±1,±2,… 2分规定i 从光栅G 的法线n -n 起,逆时针方向为正;θ 从光栅G 的法线n -n 起,逆时针方向为正.(2) 对应于i = 30°,设θ = 90°, k = k max1,则有λ1max 30sin 90sin k d d =︒-︒ )30sin 90)(sin /(1max ︒-︒=d d k λ= 2.10取整 k max1 = 2. 2分 (3) 对应于i = 30°,设θ = -90°, k = k max2, 则有 λ2max 30sin )90sin(k d d =︒-︒-]30sin )90)[sin(/(2max ︒-︒-=d d k λ = - 6.30取整 k max1 = -6. 2分 (4) 但因 d / a = 3,所以,第-6,-3,… 级谱线缺级. 2分 (5) 综上所述,能看到以下各级光谱线: -5,-4,-2,-1,0,1,2,共7条光谱线. 2分6、解:人眼最小分辨角为 θr = 1.22 λ /D 2分汽车两前灯对人眼的张角 L d /≈'θ1分 人眼刚能分辨两灯时,θθ'=r ,或 d / L =1.22 λ /D∴ ==)22.1/(λDd L 9.09 km 2分d 屏 光栅 透镜11、波动光学光的衍射一、选择题(共15题)1.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于(A) λ.(B) 1.5 λ.(C) 2 λ.(D) 3 λ.[]2.一束波长为λ的平行单色光垂直入射到一单Array缝AB上,装置如图.在屏幕D上形成衍射图样,如果P是中央亮纹一侧第一个暗纹所在的位置,则BC的长度为(A) λ / 2.(B) λ.(C) 3λ / 2 .(D) 2λ.[]3.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[]4.在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大.[]5.在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的(A) 3 / 4倍. (B) 2 / 3倍.(C) 9 / 8倍. (D) 1 / 2倍.(E) 2倍. [ ] 6.λ在如图所示的单缝夫琅禾费衍射装置中,将单缝宽度a 稍梢变宽,同时使单缝沿y 轴正方向作微小平移(透镜屏幕位置不动),则屏幕C 上的中央衍射条纹将(A) 变窄,同时向上移; (B) 变窄,同时向下移;(C) 变窄,不移动;(D) 变宽,同时向上移;(E) 变宽,不移. [ ] 7.一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现? (A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ ] 8.在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b .(C) a=2b . (D) a=3 b . [ ]λ9.测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射. [ ] 10.波长λ=550 nm(1nm=10−9m)的单色光垂直入射于光栅常数d =2×10-4 cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A) 2. (B) 3. (C) 4. (D) 5. [ ] 11.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少. (B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多. (C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变. (D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.[ ] 12.某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是(A) 2 ,3 ,4 ,5 ...... (B) 2 ,5 ,8 ,11...... (C) 2 ,4 ,6 ,8 ......(D) 3 ,6 ,9 ,12...... [ ] 13.当单色平行光垂直入射时,观察单缝的夫琅禾费衍射图样.设0I 表示中央极大(主极大)的光强,1θ表示中央亮条纹的半角宽度.若只是把单缝的宽度增大为原来的3倍,其他条件不变,则(A) 0I 增大为原来的9倍,1sin θ减小为原来的 31.(B) 0I 增大为原来的3倍,1sin θ减小为原来的 31.(C) 0I 增大为原来的3倍,1sin θ增大为原来的3倍.(D) 0I 不变,1sin θ减小为原来的 31. [ ]14.波长为0.168 nm (1 nm = 10-9 m)的X 射线以掠射角θ 射向某晶体表面时,在反射方向出现第一级极大,已知晶体的晶格常数为0.168 nm ,则θ 角为(A) 30°. (B) 45°.(C) 60°. (D) 90°. [ ] 15.X 射线射到晶体上,对于间距为d 的平行点阵平面,能产生衍射主极大的最大波长为 (A) d / 4. (B) d / 2.(C) d . (D) 2d . [ ]二、填空题(共15题)1.在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5 λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =___________________________. 2.如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的相位差为___________.3.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a =2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个. 4.将波长为λ的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为θ,则缝的宽度等于_________. 5.波长为 600 nm 的单色平行光,垂直入射到缝宽为a=0.60 mm 的单缝上,缝后有一焦距f '=60 cm 的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为_______,两个第三级暗纹之间的距离为______.(1 nm =10﹣9 m) 6.a λ在单缝夫琅禾费衍射示意图中,所画出的各Array条正入射光线间距相等,那末光线1与2在幕上P点上相遇时的相位差为______ P点应为_____ 点.7.测量未知单缝宽度a的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D处测出衍射花样的中央亮纹宽度为l(实验上应保证D≈103a,或D为几米),则由单缝衍射的原理可标出a 与λ,D,l的关系为a =_ ___.8.波长为λ的单色光垂直投射于缝宽为a,总缝数为N,光栅常数为d的光栅上,光栅方程(表示出现主极大的衍射角ϕ应满足的条件)为___________.9.一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为________.10.若光栅的光栅常数d、缝宽a和入射光波长λ都保持不变,而使其缝数N增加,则光栅光谱的同级光谱线将变得___________.11.用平行的白光垂直入射在平面透射光栅上时,波长为λ1=440 nm的第3级光谱线将与波长为λ2=______nm的第2级光谱线重叠.(1 nm =10 –9 m)12.一双缝衍射系统,缝宽为a,两缝中心间距为d.若双缝干涉的第±4,±8,±12,±16,…级主极大由于衍射的影响而消失(即缺级),则d/ a的最大值为____ ____________.13.汽车两盏前灯相距l,与观察者相距S= 10 km.夜间人眼瞳孔直径d= 5.0 mm.人眼敏感波长为λ = 550 nm (1 nm = 10-9 m),若只考虑人眼的圆孔衍射,则人眼可分辨出汽车两前灯的最小间距l = _________m.14.在通常亮度下,人眼瞳孔直径约为3 mm.对波长为550 nm的绿光,最小分辨角约为_______rad.(1 nm = 10-9 m)15.X射线入射到晶格常数为d的晶体中,可能发生布喇格衍射的最大波长为____________.三、计算题(共6题)1. (6分)在单缝的夫琅禾费衍射中,缝宽a =0.100 mm ,平行光垂直入射在单缝上,波长λ=500 nm ,会聚透镜的焦距f =1.00 m .求中央亮纹旁的第一个亮纹的宽度∆x . (1 nm =10–9 m)2. (5分)如图所示,设波长为λ的平面波沿与单缝平面法线成θ角的方向入射,单缝AB 的宽度为a ,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的衍射角ϕ.3. (5分)一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求: (1) 光栅常数a +b(2) 波长λ24. (10分)波长λ=600nm(1nm=10﹣9m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1) 光栅常数(a + b )等于多少?(2) 透光缝可能的最小宽度a 等于多少?(3) 在选定了上述(a + b )和a 之后,求在衍射角-π21<ϕ<π21范围内可能观察到的全部主极大的级次.5.(10分)以波长为λ = 500 nm (1 nm = 10-9 m)的单色平行光斜入射在光栅常数为d = 2.10 μm 、缝宽为a = 0.700 μm 的光栅上,入射角为i = 30.0°,求能看到哪几级光谱线.6. (5分)设汽车前灯光波长按λ = 550 nm (1 nm = 10-9 m)计算,两车灯的距离d = 1.22 m ,在夜间人眼的瞳孔直径为D = 5 mm ,试根据瑞利判据计算人眼刚能分辨上述两只车灯时,人与汽车的距离L .11、波动光学 光的衍射 答案一、选择题(共15题) 1-5:D 、B 、B 、A 、D 、 6-10:C 、B 、B 、D 、B 、 11-15:D 、D 、A 、A 、D 二、填空题(共15题)1、答案:30°2、答案:π3、答案:24、答案:λ / sin θ5、答案:1.2 mm ;3.6 mm6、答案:2π 暗7、答案:2λD / l8、答案:d sin ϕ =k λ ( k =0,±1,±2,···) 9、答案:0,±1,±3,........ 10、答案:更窄更亮 11、答案:660nm 12、答案:413、答案:1.34m14、答案:2.24×10-4 rad 15、答案:2d三、计算题(共6题)1、解:单缝衍射第1个暗纹条件和位置坐标x 1为:a sin θ1 = λa f f f x /sin tg 111λθθ≈≈= (∵θ1很小) 2分单缝衍射第2个暗纹条件和位置坐标x 2为: a sin θ2 = 2λa f f f x /2sin tg 222λθθ≈≈= (∵θ2很小) 2分 单缝衍射中央亮纹旁第一个亮纹的宽度 ()a a f x x x //2121λλ-≈-=∆= f λ / a=1.00×5.00×10-7 / (1.00×10-4) m=5.00 mm 2分2、解:1、2两光线的光程差,在如图情况下为ϕθδsin sin a a BD CA -=-= 2分由单缝衍射极小值条件a (sin θ-sin ϕ ) = ± k λ k = 1,2,…… 2分 (未排除k = 0 的扣1分)得 ϕ = sin —1( ± k λ / a+sin θ ) k = 1,2,……(k ≠ 0) 1分3、解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+ b acm 1036.330sin 341-⨯==+λb a 3分 (2) ()2430sin λ=+ b a()4204/30sin 2=+= b a λnm 2分4、解:(1) 由光栅衍射主极大公式得a +b =ϕλsin k =2.4×10-4 cm 3分(2) 若第三级不缺级,则由光栅公式得()λϕ3sin ='+b a由于第三级缺级,则对应于最小可能的a ,ϕ'方向应是单缝衍射第一级暗纹:两式比较,得 λϕ='sin aa = (a +b )/3=0.8×10-4 cm 3分(3)()λϕk b a =+sin ,(主极大) λϕk a '=sin ,(单缝衍射极小) (k '=1,2,3,......)L θ2 θ1 Cx 2 x 1 ∆x f因此 k =3,6,9,........缺级. 2分又因为k max =(a +b ) / λ=4, 所以实际呈现k=0,±1,±2级明纹.(k=±4 在π / 2处看不到.) 2分5、解:(1) 斜入射时的光栅方程λθk i d d =-sin sin ,k = 0,±1,±2,… 2分规定i 从光栅G 的法线n -n 起,逆时针方向为正;θ 从光栅G 的法线n -n 起,逆时针方向为正.(2) 对应于i = 30°,设θ = 90°, k = k max1,则有λ1max 30sin 90sin k d d =︒-︒ )30sin 90)(sin /(1max ︒-︒=d d k λ= 2.10取整 k max1 = 2. 2分 (3) 对应于i = 30°,设θ = -90°, k = k max2, 则有 λ2max 30sin )90sin(k d d =︒-︒-]30sin )90)[sin(/(2max ︒-︒-=d d k λ = - 6.30取整 k max1 = -6. 2分 (4) 但因 d / a = 3,所以,第-6,-3,… 级谱线缺级. 2分 (5) 综上所述,能看到以下各级光谱线: -5,-4,-2,-1,0,1,2,共7条光谱线. 2分6、解:人眼最小分辨角为 θr = 1.22 λ /D 2分汽车两前灯对人眼的张角 L d /≈'θ1分 人眼刚能分辨两灯时,θθ'=r ,或 d / L =1.22 λ /D∴ ==)22.1/(λDd L 9.09 km 2分d 屏 光栅 透镜。
波动光学实验报告

一、实验目的1. 理解波动光学的原理,掌握光的干涉、衍射和偏振现象。
2. 通过实验验证波动光学的基本原理,加深对光学知识的理解。
3. 培养学生的实验操作能力和分析问题的能力。
二、实验原理波动光学是研究光的波动性质的科学,主要研究光的干涉、衍射、偏振现象以及光与物质的相互作用。
本实验主要验证以下原理:1. 干涉现象:当两束相干光波相遇时,它们会相互叠加,形成干涉条纹。
干涉条纹的间距与光的波长和两束光之间的距离有关。
2. 衍射现象:当光波通过一个障碍物或狭缝时,会发生衍射现象。
衍射条纹的间距与光的波长和障碍物或狭缝的尺寸有关。
3. 偏振现象:光波是一种横波,可以通过偏振片使光波的电矢量振动方向限定在一个平面内。
通过观察偏振光的变化,可以验证光的偏振现象。
三、实验仪器与设备1. 激光器2. 双缝干涉装置3. 衍射光栅4. 偏振片5. 光屏6. 光具座7. 刻度尺8. 计时器四、实验步骤1. 干涉实验(1)将激光器发出的光通过扩束镜,使其成为平行光。
(2)将平行光照射到双缝干涉装置上,调整双缝间距,使干涉条纹清晰可见。
(3)观察并记录干涉条纹的位置、间距和亮度。
2. 衍射实验(1)将激光器发出的光通过光栅,使光发生衍射。
(2)调整光栅角度,观察并记录衍射条纹的位置、间距和亮度。
3. 偏振实验(1)将激光器发出的光通过偏振片,使其成为偏振光。
(2)调整偏振片角度,观察并记录偏振光的变化。
五、实验数据与分析1. 干涉实验(1)根据实验数据,计算干涉条纹的间距。
(2)根据干涉条纹的间距和光的波长,验证干涉现象。
2. 衍射实验(1)根据实验数据,计算衍射条纹的间距。
(2)根据衍射条纹的间距和光栅的尺寸,验证衍射现象。
3. 偏振实验(1)根据实验数据,观察偏振光的变化。
(2)根据偏振光的变化,验证光的偏振现象。
六、实验结论1. 通过干涉实验,验证了光的干涉现象,加深了对波动光学原理的理解。
2. 通过衍射实验,验证了光的衍射现象,加深了对波动光学原理的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ι ΙΙ ΙΙΙ
B4
C4
A1
B1
C11
16
4 2 1 3 A4 B4
Ι ΙΙ ΙΙΙ
C4
A1
B1
C11
晶格上的原子相当于缝;晶格常数相当光栅常数 晶格上的原子相当于缝 晶格常数相当光栅常数. 晶格常数相当光栅常数 整个晶体点阵是由有一族相互平行的 晶面组成的. 射线能穿入内部 射线能穿入内部. 晶面组成的. x射线能穿入内部. 一. 先看同一层晶面上各个原子散射的 衍射子波的干涉 相当于光栅衍射θ 的零级主极大是最强的. 相当于光栅衍射θ=0 的零级主极大是最强的 光栅衍射 17
可定晶 轴方向
劳厄(Laue)相 相 劳厄
22
粉末法: 射线入射到多晶 2. 粉末法:用确定波长的 X射线入射到多晶 粉末上.大量无规的晶面取向, 粉末上.大量无规的晶面取向,总可使 布喇格条件满足. 布喇格条件满足.这样得到的衍射图叫 德拜相. 德拜相.
可定晶 格常数
德拜(Dedye)相 相 德拜
λ 2 = λ + δλ = 5896 A
光栅分辨率 所以, 所以
若 k = 2 则 N = 491 若 k = 3 则 N = 327
λ 5890 R= = ≈ 982 = Nk 6 δλ
都可分辨开Na双线 都可分辨开Na双线 Na
7
§4.5 光学仪器的分辨本领 望远镜,显微镜 照相机,眼睛等 显微镜,照相机 望远镜 显微镜 照相机 眼睛等 -----常用的光学仪器都有透镜. 常用的光学仪器都有透镜. 常用的光学仪器都有透镜 一.圆孔的夫琅禾费衍射 I/I
§4.6 X 射线的衍射 1895年伦琴 1845-1923, 1895年伦琴 ( 1845-1923, 德,1901, Nob) 发现了高速电子撞击固体 可产生一种能使胶片感光, 可产生一种能使胶片感光, 空气电离, 空气电离,荧光物质发光 的中性射线---- 射线. 的中性射线---- X射线.
λ λ' sinθ θ 1级 2级 3级 级 级 级
λ λ′
a a
1
光栅的谱线虽很细,但毕竟有一定宽度. 光栅的谱线虽很细,但毕竟有一定宽度. 如果λ 十分接近, 如果λ与λ' 十分接近,它们的主极大就 有可能相重叠而难于分辨. 有可能相重叠而难于分辨. 光谱分析(定性;定量) 炼合金钢 ------- 光谱分析(定性;定量) 光谱分析仪:根据光谱的位置和强度分析 光谱分析仪: 物质的成分与含量的仪器. 物质的成分与含量的仪器. 实际需要把波长相差很小的两条谱线分开, 实际需要把波长相差很小的两条谱线分开, 也就是需要分光本领大的光谱仪. 也就是需要分光本领大的光谱仪. 光栅的分光本领比棱镜的分光本领大. 光栅的分光本领比棱镜的分光本领大. 分光本领比棱镜
§4.4 光栅光谱 一,光栅光谱 光栅的主极大满足光栅方程
d sin θ = ±kλ
如果入射光中包含两个 I 十分接近的波长λ 十分接近的波长λ与λ', 由于色散, 由于色散,它们各有一套 窄而亮的主极大 -----称为光栅谱线 称为光栅谱线. -----称为光栅谱线. 0级 级 波长↑ 级次↑ 越易分辨 越易分辨. 波长↑,级次↑,越易分辨
4 2 1 3 A4 B4
Ι ΙΙ ΙΙΙ
C4
A1
B1
C11
零级主极大对应于各个子波的光程差为零 零级主极大对应于各个子波的光程差为零. 对应于各个子波的光程差为零 由下图可知: 由下图可知 在同一层晶面上散射 的光, 的光,只有服从反射 定律的, 光程差才 定律的, 光程差才为 18 零.
二.再看不同晶面的衍射子波的干涉: 再看不同晶面的衍射子波的干涉: 相邻晶面散射光1 相邻晶面散射光1和2的光程差为 δ = AC + CB = 2d sin Φ
λ的k 级主极大
sin θ = kλ d
λ+δλ的k 级主极大
sin θ
Nd
(λ + δλ ) 的 k ′ = Nk 1 的暗纹, sinθ = k ′(λ + δλ ) 的暗纹, 对应
ቤተ መጻሕፍቲ ባይዱ由图
k Nk 1 λ = (λ + δλ ) d Nd
5
k Nk 1 λ= (λ + δλ ) d Nd
X射线管
X射线管如图: 射线管如图:
-
K A
+
X射线 射线
13
X射线管
-
K A
+
X射线 射线
阴极, K—阴极, 阴极 铜等金属) A—阳极 (钼,钨,铜等金属) 阳极 A—K间加几万伏高压, K间加几万伏高压, 加速阴极发射的热电子. 加速阴极发射的热电子. X射线是波长很短的电磁波 射线是波长很短的电磁波 对一般光栅
最小分辨角: 最小分辨角: 分辨本领的 定义: 定义:
δθ =θ 1≈ 1.22
1
λ
D
D D ↑ → R ↑ R≡ = δθ 1.22λ λ ↓
(透明片 不同 分辨本领不同 透明片:D不同 分辨本领不同.) 透明片 不同,分辨本领不同
11
λ 望远镜:不可选择,可 ↑ D →↑ R 望远镜:不可选择,
刚可分辨
不可分辨 非相干叠加
瑞利判据:对于两个等光强的非相干物点, 瑞利判据:对于两个等光强的非相干物点, 如果其一个象斑的中心恰好 落在另一 象斑的边缘( 第一暗纹处), 象斑的边缘 ( 第一暗纹处 ), 10 则此两物点 被认为是刚刚可以分辨. 被认为是刚刚可以分辨.见
S1 * * S2
D
δθ 0 I
(透明片:射电望远镜的大天线) 透明片:射电望远镜的大天线)
显微镜:不会很大,可 ↓ λ →↑ R 显微镜:不会很大, D
(紫光显微镜 紫光显微镜) 紫光显微镜 电子显微镜) (电子显微镜) 电子的波长很小: 电子的波长很小:0.1 Ao → 1Ao , 很大,可观察物质结构. ∴R 很大,可观察物质结构. ),所以 所以, 5500Ao 的光 δθ ≈ 1' (书 P168 例),所以,在25cm 的两个点; 远处可分辨相距约 0.07mm 的两个点; 在大约9m远处可分辨相距约2mm 9m远处可分辨相距约2mm的两个点 在大约9m远处可分辨相距约2mm的两个点. 12 ,正常人的眼睛对 眼睛: 瞳孔的直径约 3mm ,正常人的眼睛对 眼睛:
1 晶面 d
2.8 Nacl:d = 2.8
2
d′
Φ
A
C
Φ
d′′
dsinΦ
B
d:晶面间距
(晶格常数) 晶格常数) Φ : 掠射角
19
各层散射光干涉加强的条件: 各层散射光干涉加强的条件:
2d sinΦ = kλ
(
k =1,2,3 ) =1,2,3…)
衍射屏 L 观察屏
相对光 强曲线
1
0
sinθ1 θ sinθ
λ
θ1
0
圆孔孔径为D 圆孔孔径为
爱里斑
f
D sin θ 1 ≈ 1.22λ
(不要求推导 不要求推导) 不要求推导
中央亮斑 (爱里斑 爱里斑) 爱里斑 (Airy disk) )
集中了约 84% 的 衍 8 射光能. 射光能.
D sin θ 1 ≈ 1.22λ
2
如何衡量两条谱线能不能分辨? 如何衡量两条谱线能不能分辨? 二. 瑞利判据 瑞利判据: 瑞利判据:一条谱线的中心与另一条谱线 最近的极小重合时,这两条谱线刚刚能分辨. 最近的极小重合时,这两条谱线刚刚能分辨.
刚可分辨 不可分辨
0.8
1.0
3
如何衡量分辨本领的大小? 如何衡量分辨本领的大小? 三 .光栅的分辨本领 设入射波长为 λ 和 λ + δλ 二者的谱线刚刚能分开, 二者的谱线刚刚能分开, 定义: 定义:光栅分辨本领 时,
20
实际情况比较复杂, 实际情况比较复杂,一块晶体可以有许多 方法来划分晶面族. 方法来划分晶面族. d , d ′, d ′′
1
只要满足布喇格 公式, 公式,就能得到 x 射线衍射的 主极大. 主极大.
晶面
d
B dsinΦ C
d′
Φ
A
Φ
2
d′′
入射方向和λ一定时,对第i 入射方向和λ一定时,对第i个晶面族有:
光的衍射
结束
23
�
衍射图样(称为劳厄斑) 衍射图样(称为劳厄斑) 证实了X射线的波动性. 证实了X射线的波动性. 后来,劳厄进一步提出了 后来 劳厄进一步提出了 理论上的分析(1914.Nob) (1914.Nob). 理论上的分析(1914.Nob).
15
布喇格父子提出了研究 射线衍射更简单的方法 布喇格父子提出了研究 x射线衍射更简单的方法 (1915. Nob),得出了 射线在晶体上衍射主极大的 得出了x射线在晶体上衍射主极大的 得出了 公式. 公式. 射线照射晶体时, X 射线照射晶体时,每 个原子(表层,内层) 个原子(表层,内层)受 迫振动, 迫振动,并以此振动频率 向各方向发出子波. 向各方向发出子波.每个 4 原子都是散射子波的波源. 原子都是散射子波的波源. 3
λ
a << 1
10 λ : ~ 10 A
1 2
14
,所以看不到衍射现象 所以看不到衍射现象. 所以看不到衍射现象
劳厄(Laue)实验(1912): 劳厄(Laue)实验(1912)
准直缝 晶体 X射线 射线 劳厄斑
晶体点阵相当于 三维光栅. 三维光栅.原子 间距是 A 的数 量级, 可与x 量级, 可与x 射 线的波长相比拟. 线的波长相比拟.
即
→ Nkλ = ( Nk 1)(λ + δλ )
→ 0 = Nkδλ λ δλ → λ = δλ ( Nk 1)