八年级上12月月考数学试卷
河南省信阳市平桥区2023-2024学年八年级上学期12月月考数学试题

河南省信阳市平桥区2023-2024学年八年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在每一个学子心中或许都梦想过自己心目中大学的模样,很多大学的校徽设计也会融入数学元素,下列大学的校徽图案是轴对称图形的是()A .B .C .D .2.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为()A .2B .3C .4D .53.下列运算正确的是()A .4312x x x ⋅=B .()()32641a a ÷=C .()2349a a a ⋅=D .()()3224ab ab ab ÷-=-4.下列从左到右的变形,属于因式分解的是()A .()()2422a a a a a-+=+-+B .2244(2)a a a +-=-C .()2a b a a b +=+D .()()24313a a a a ++=++5.在平面直角坐标系中,已知点P 与点1P 关于x 轴对称,点P 与点2P 关于y 轴对称.若点2P 的坐标为()1,2-,则点1P 的坐标为()A .()1,2-B .()1,2--C .()2,1-D .()2,1--6.在等腰三角形ABC 中,AB AC =,100BAC ∠=︒,一含30︒角的三角板如图放置(一直角边与BC 边重合,斜边经过ABC 的顶点A ),则α∠的度数为().A .15︒B .20︒C .30︒D .40︒7.若()22816x m x x +=++.则m 的值为()A .4B .4±C .8D .8±8.已知,如图1,Rt ABC △.画一个Rt A B C ''' ,使得Rt Rt A B C ABC '''△≌△.在已有90MB N '∠=︒的条件下,图2、图3分别是甲、乙两同学的画图过程.下列说法错误的是()A .甲同学作图判定Rt Rt ABC ABC '''△≌△的依据是HL B .甲同学第二步作图时,用圆规截取的长度是线段AC 的长C .乙同学作图判定Rt Rt A B C ABC '''△≌△的依据是SASD .乙同学第一步作图时,用圆规截取的长度是线段AC 的长9.“廊桥凌水,楼阁傲天,状元故里状元桥,绶溪桥上看绶溪”.莆田绶溪公园开放“状元桥”和“状元阁”游览观光,其中“状元阁”的建筑风格堪称“咫尺之内再造乾坤”.如图,“状元阁”的顶端可看作等腰三角形ABC ,AB AC =,D 是边BC 上的一点.下列条件不能说明AD 是ABC 的角平分线的是()A .ADB ADC∠=∠B .BD CD =C .2BC AD=D .ABD ACDS S = 10.如图,在ABC 中,90C ∠=︒,15B ∠=︒,AB 的垂直平分线交BC 于点D ,交AB 于点E .若12DB cm =,则AC =()A .4cmB .5cmC .6cmD .7cm二、填空题14.如图,已知BO 平分CBA ∠12AC =,则AMN 的周长是15.如右图,C 是线段AB 上的一点,三、解答题16.计算:(1)221232ab ab ab ⎛⎫⎛-⋅ ⎪ ⎝⎭⎝(2)()(213242x xy y ++17.计算:(1)()()12a a ++;(2)()()33a b a b +-;(3)()()22(y y y +---18.因式分解:(1)22363m mn n -+;(2)()()24ax y y x -+-19.如图,在平面直角坐标系中,正方形网格的格点上.(1)画出将ABC 沿x 轴方向向右平移(2)画出111A B C △关于x 轴的对称图形△(3)在x 轴上找一点M ,使得MA MC +的值最小.(保留作图痕迹)20.如图,DE AB ⊥于E ,DF AC ⊥于F ,若,BD CD BE CF ==.(1)求证:AD 平分BAC ∠;(2)写出+AB AC 与AE 之间的等量关系,并说明理由.21.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考:22.由已知和作图能得到ADC △≌EDB △的理由是______.A .SSSB .SASC .AASD .HL23.求得AD 的取值范围是______.A .68AD <<B .68AD ≤≤C .17AD <<D .17AD ≤≤【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(1)如图2,AD 是ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE EF =.求证:AC BF =.(1)在ABC 中,按要求完成尺规作图;①求作求作线段AC 的对称轴直线l ,交(2)(1)中得到的图形中,若示)25.如图,在ABC 中,AB 点Q 同时从点C 出发沿线段AC 线段BC 相交于点D(1)如图①,当60A ∠=︒,QP AB ⊥时,求证:2AP CD =;(2)如图②,过点P 作PE BC ⊥于点E ,在PQ 移动的过程中,若改变,请说明理由;若不变,请求出其值.。
湖北武汉部分学校2023-2024学年八年级上学期月考数学试题(原卷版)

武汉市部分学校八年级12月联考数学试卷一、选择题(共10小题,每小题3分,共30分)1. 在ABC 中,40B ∠=°,80C ∠=°,则A ∠度数为( )A. 30°B. 40°C. 50°D. 60° 2. 一个八边形的内角和的度数为( )A. 720°B. 900°C. 1080°D. 1260° 3. 已知点(),2A m 和()3,B n 关于y 轴对称,则()2023m n +的值为( ) A. 1− B. 0 C. 1 D. ()20205− 4. 如图,AB ∥CD ,∠A =35°,∠C =80°,那么∠E 等于( )A. 35°B. 45°C. 55°D. 75° 5. 如图,在等边 ABC 中,AD 是它的角平分线,DE ⊥AB 于E ,若AC =8,则BE =( )A. 1B. 2C. 3D. 46. 如图,已知AD 是△ABC 的角平分线,AD 的中垂线交AB 于点F ,交BC 的延长线于点E .以下四个结论:(1)∠EAD =∠EDA ;(2)DF ∥AC ;(3)∠FDE =90°;(4)∠B =∠CAE .恒成立的结论有( )A. (1)(2)B. (2)(3)(4)C. (1)(2)(4)D. (1)(2)(3)(4) 7. 对于实数a 、b ,定义一种运算:()2*a b a b =−.给出三个推断:①**a b b a =;②()222**a b a b =;③()()**a b a b −=−,其中正确的推断个数是( ) A. 0 B. 1 C. 2 D. 38. 等腰三角形的周长为12,则腰长a 的取值范围是( )的A. a>6B. a<3C. 4<a<7D. 3<a<69. 如图,ABC 是等边三角形,E 、F 分别在AC 、BC 上,且AE CF =,则下列结论:①AF BE =,②60BDF ∠=°,③BD CE =,其中正确的个数是( )个A. 1B. 2C. 3D. 410. 如图,AF D C ∥,BC 平分ACD ∠,BD 平分EBF ∠,且BC BD ⊥,下列结论:①BC 平分ABE ∠;②AC BE ;③90BCD D∠+∠=°;④60DBF ∠=°,其中正确个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(每小题3分,共18分)11. 已知等腰三角形的两边长分别为5 cm ,8 cm ,则该等腰三角形的周长是______cm .12. 如图,点B ,F ,C ,E 在同一条直线上,欲证ABC DEF ∆≅∆,已知AC DF =,AB DE =,还可以添加的条件是______.13. 五条线段的长度分别为1cm ,2cm ,3cm ,4cm ,5cm ,以其中三条线段为边长共可以组成_____个三角形.14 分解因:22424x xy y x y −−++=______________________.15. 如图,在ABC 中,AC 的垂直平分线PD 与BC 的垂直平分线PE 交于点P ,垂足分别为D ,E ,连接PA ,PB ,PC ,若45PAD ∠=°,则ABC ∠=_____°.的.16. 如图,在四边形ABCD 中,ACBC ⊥于点C ,且AC 平分BAD ∠,若ADC △的面积为210cm ,则ABD △的面积为________2cm .三、解答题(共8小题,共72分)17. 因式分解:(1)3−a b ab ;(2)22363ax axy ay ++18. 在ABC 中,2B A ∠=∠,40C B ∠=∠+°.求ABC 的各内角度数.19. 如图所示,已知点A 、E 、F 、D 在同一条直线上,AE=DF ,BF ⊥AD ,CE ⊥AD ,垂足分别为F 、E ,BF=CE ,求证:(1)△ABF ≌△DCE(2)AB ∥CD20 先化简,再求值:(x +3y )2﹣2x (x +2y )+(x ﹣3y )(x +3y ),其中x =﹣1,y =2.21. 如图,在平面直角坐标系中,点()30A −,,点()1,5B −. (1)①画出线段AB 关于y 轴对称的线段CD ;②在y 轴上找一点P 使PA PB +的值最小(保留作图痕迹); (2)按下列步骤,用不带刻度直尺在线段CD 找一点Q 使45BAQ ∠=°. ①在图中取点E ,使得BE BA =,且BE BA ⊥,则点E 的坐标为___________; ②连接AE 交CD 于点Q ,则点Q 即为所求.22. 如图,在Rt ABC △中,90ABC ∠=°,ABC 的角平分线AE 、CF 相交于点D ,点G 为AB 延长线上一点,DG 交BC 于点H ,ACD AGD △≌△,21GDF ∠=∠.(1)求证:GD CF ⊥;(2)求证:CH AF AC +=..的23. 已知等边ABC ,AD 是BC 边上的高.(1)如图1,点E 在AD 上,以BE 为边向下作等边BEF △,连接CF . ①求证:AE CF =;②如图2,M 是BF 的中点,连接DM ,求证:12DM AE =; (2)如图3,点E 是射线AD 上一动点,连接BE ,CE ,点N 是AE 的中点,连接NB ,NC ,当90BNC ∠=°时,直接写出BEC ∠的度数为______ .24. 在平面直角坐标系中,点A 的坐标为()0,4(1)如图1,若点B 的坐标为()3,0,ABC 是等腰直角三角形,BA BC =,90ABC ∠=°,求C 点坐标;(2)如图2,若点E 是AB 的中点,求证:2AB OE =; (3)如图3,ABC 是等腰直角三角形,BA BC =,90ABC ∠=°,ACD 是等边三角形,连接OD ,若30AOD ∠=°,求B 点坐标。
2024年山东省青岛市崂山实验学校八年级(上)月考数学试卷(12月份)(五四学制)+答案解析

2023-2024学年山东省青岛市崂山实验学校八年级(上)月考数学试卷(12月份)(五四学制)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在实数、0、、、、、中,无理数的个数是()A.2个B.3个C.4个D.5个2.点M 在y 轴的左侧,到x 轴、y 轴的距离分别是3和5,点M 坐标为()A. B.C.或D.或3.两个一次函数与为常数,且,它们在同一个坐标系中的图象可能是()A. B.C. D.4.已知是关于x 、y 的二元一次方程组的解,则的立方根是()A.1B.C.D.5.点和都在直线上,则与的关系是() A.B.C. D.6.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A.B.C.D.7.某滑雪俱乐部12名会员被分成甲、乙两组,他们的身高情况如图所示,甲组身高的平均数为,则下列结论正确的是()A.,B.,C.,D.,8.《九章算术》中记载了一个问题,大意是:甲、乙两人各带了若干钱,如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为()A. B. C. D.9.如图,两条直线的交点坐标可以看作两个二元一次方程的公共解,其中一个方程是,则另一个方程是()A.B.C.D.10.如图,在平面直角坐标系中,点,,……都在x轴上,点,,……都在直线上,,,,……都是等腰直角三角形,且,则点的坐标是()A.B.C.D.二、填空题:本题共5小题,每小题4分,共20分。
11.已知,,,若,则整数n的值为______.12.已知一平面直角坐标系内有点,点,点,若在该坐标系内存在一点D,使轴,且,点D的坐标为______.13.某人购进一批苹果到集贸市场零售,已经卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚得______元.14.如图.点A的坐标为,点B在直线上运动,当线段AB最短时,点B的坐标为______.15.A,B两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离与时间的关系如图所示,则甲出发______小时后与乙相遇.三、解答题:本题共7小题,共70分。
2022-2023学年山西省太原市八年级第一学期12月月考数学试卷及参考答案

2022-2023学年山西省太原市八年级(上)月考数学试卷说明:共三大题,23小题,满分120分,作答时间120分钟.一、选择题(本大题共10个小题,每小题3分,共30分.) 1.()02-等于( ) A.2-B.0C.1D.22.下列图标形象地表示了“二十四节气”中的“立春”“芒种”“白露”“大雪”,其中是轴对称图形的是( )A. B. C. D.3.下列计算结果正确的是( ) A.1234a a a ÷=B.()236aa -= C.2510a a a ⋅=D.()2236a a -=4.在ABC △中,B C ∠=∠,2AB =,则AC 的长为( ) A.1B.2C.3D.45.现需要在某条街道l 上修建一个核酸检测点P ,向居住在A ,B 小区的居民提供核酸检测服务,要使P 到A ,B 的距离之和最短,则核酸检测点P 符合题意的是( )A. B. C . D.6.下列各式从左到右的变形是因式分解,并因式分解正确的是( ) A.()2222m n mn m n -+=-B.()()21454x x x x ++=++C.()()22444x y x y x y -=-+D.()()()()21a b a b a b a b -+-=--+7.如图,在33⨯的正方形网格中,12∠+∠等于( )A.60°B.75°C.90°D.105°8.若225x mx ++是完全平方式,则m 的值是( ) A.10±B.5±C.10D.59.如图,将图1中的一个小长方形变换位置得到如图2所示的图形,根据两个图形中阴影部分的面积关系得到的等式是( )A.()2222a b a ab b +=++ B.()2222a b a ab b -=-+ C.()()22a b a b a b -=+-D.()()2222a b a b a ab b +-=+-10.如图,在Rt ABC △中,90C ∠=︒,30A ∠=︒,BH 平分ABC ∠,6BH =,P 是边AB 上一动点,则H ,P 之间的最小距离为( )A.2B.3C.4D.6二、填空题(本大题共5个小题,每小题3分,共15分) 11.分解因式:225x -=______.12.若点A 位于第三象限,则点A 关于y 轴的对称点落在第______象限. 13.已知45m =,49n =,则4m n +的值为______.14.如图,在ABC △中,AB AC =,AB 的垂直平分线交边AB 于点D ,交边AC 于点E ,若ABC △与EBC △的周长分别是15,9,则BC =______.15.如图,某山的山顶E 处有一个观光塔EF ,已知该山的山坡面与水平面的夹角EAB ∠为30°,山高EB 为120米,点C 距山脚A 处180米,CD AB ∥,交EB 于点D ,在点C 处测得观光塔顶端F 的仰角FCD ∠为60°,则观光塔EF 的高度是______米.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本题共2个小题,每小题5分,共10分)计算:(1)()3232a a a -⋅+.(2)()()()2a b a b b a b +---.先化简,再求值:()()22x xy y x y ++-,其中1x =,2y =-.18.(本题8分)课本再现:(1)如图,ABC △是等边三角形,DE BC ∥,分别交AB ,AC 于点D ,E .求证:ADE △是等边三角形.(2)如图,等边三角形ABC 的两条角平分线相交于点D ,延长BD 至点E ,使得AE AD =,求证:ADE △是等边三角形.19.(本题8分) 观察以下等式:第1个等式:223181-=⨯;第2个等式:225382-=⨯;第3个等式:227583-=⨯;第4个等式:229784-=⨯;…按照以上规律,解决下列问题: (1)写出第5个等式:______.(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.下列方框中的内容是小宇分解因式的解题步骤.请回答下列问题:(1)小宇分解因式中第二步到第三步运用了______. A.提公因式法B.平方差公式法C.两数和的完全平方公式法D.两数差的完全平方公式法(2)小宇得到的结果能否继续因式分解?若能,直接写出分解因式的结果;若不能,请说明理由. (3)请对多项式()()22262425x x xx +++-+进行因式分解.21.(本题8分)为了推进节能减排,助力实现碳达峰、碳中和,某市新换了一批新能源公交车(如图1).图2、图3分别是该公交车双开门关闭、打开中某一时刻的俯视(从上面往下看)示意图.ME ,EF ,FN 是门轴的滑动轨道,90E F ∠=∠=︒,两门AB ,CD 的门轴A ,B ,C ,D 都在滑动轨道上,两门关闭时(如图2),点A ,D分别在点E ,F 处,门缝忽略不计(B ,C 重合),两门同时开启时,点A ,D 分别沿E M →,F N →的方向同时以相同的速度滑动,如图3,当点B 到达点E 处时,点C 恰好到达点F 处,此时两门完全开启,若1EF =米,AB CD =,在两门开启的过程中,当60ABE ∠=︒时,求BC 的长度.22.(本题13分)综合与探究【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如,由图可以得到()2222a b a ab b +=++,基于此,请解答下列问题.【直接应用】(1)若3x y +=,225x y +=,求xy 的值. 【类比应用】(2)若()32x x -=,则()223x x +-=______.【知识迁移】(3)将两块全等的特制直角三角板(90AOB COD ∠=∠=︒)按如图所示的方式放置,其中点A ,O ,D 在同一直线上,点B ,O ,C 也在同一直线上,连接AC ,BD .若14AD =,50AOC BOD S S +=△△,求一块直角三角板的面积.23.(本题13分)综合与实践课间,小鑫在草稿纸上画了一个直角三角形.如图,在Rt ABC △中,90ACB ∠=︒,他想到了作AC 的垂直平分线ED ,交AC 于点E ,交AB 于点D .他和同桌开始探讨线段AD 与BD 的大小关系.(1)尝试探究:当30A ∠=︒时,直接写出线段AD 与BD 的大小关系:AD ______BD .(填“>”、“<”或“=”)(2)得出结论:若A ∠为任意锐角,则线段AD 与BD 的大小关系是AD ______BD ,请说明理由.(填“>”、“<”或“=”)(3)应用结论:利用上面的结论继续研究,如图,P 是FHG △的边HG 上的一个动点,PM FH ⊥于点M ,PN FG ⊥于点N ,FP 与MN 交于点K .当点P 运动到某处时,MN 与FP 正好互相垂直,此时FP 平分HFG ∠吗?请说明理由.数学参考答案1.C2.D3.B4.B5.A6.D7.C8.A9.C 10.B 11.()()55x x +- 12.四 13.45 14.3 15.6016.(1)解:原式3338a a =-+……3分35a =.……5分(2)解:原式2222a b ab b =--+……3分22a ab =-.……5分 17.解:原式322223x x y xy x y xy y =++---……3分33x y =-.……5分 当1x =,2y =-时,原式()33129=--=.……7分18.解:(1)①AED ∠;……1分②ADE ∠; ③AED ∠;……3分④等角对等边.……4分(2)证明:∵ABC △是等边三角形,∴60BAC ABC ∠=∠=︒.……5分 ∵BE 和AD 分别为ABC ∠和BAC ∠的平分线,∴1302ABD ABC ∠=∠=︒,1302BAD BAC ∠=∠=︒. ∵ADE ∠为ABD △的外角,∴60ADE ABD BAD ∠=∠+∠=︒.……7分∵AE AD =,∴ADE △是等边三角形.……8分 19.解:(1)2211985-=⨯.……3分(2)第n 个等式:()()2221218n n n +--=.……5分证明:∵等式左边()()212121218n n n n n =++-+-+==等式右边,∴等式成立.……8分 20.解:(1)C.……2分(2)能,分解因式的结果为()42x +.……4分 (3)设22y x x =+.原式()()6425y y =+-+……5分()22211y y y =++=+……6分()()2222211x x x ⎡⎤=++=+⎣⎦……7分()41x =+.……8分21.解:由题意,得BE CF =,1EF AB CD =+=米.∵AB CD =,∴12AB CD ==米.……2分 在Rt AEB △中,∵90E ∠=︒,60ABE ∠=︒,∴30EAB ∠=︒,∴1124BE AB ==米,∴14CF BE ==米,……6分∴12BC EF BE CF =--=米. 答:BC 的长度为12米.……8分 22.解:(1)∵()2222x y x xy y +=++,又∵3x y +=,225x y +=,∴952xy =+,∴2xy =.……4分 (2)5.……7分 提示:设3y x =-,则()33x y x x +=+-=.∵()32x x -=,即2xy =,∴()()222222323225x x x y x y xy +-=+=+-=-⨯=.(3)∵两块直角三角板全等,∴AO CO =,BO DO =,90AOB COD ∠=∠=︒.……8分 ∵点A ,O ,D 在同一直线上,点B ,O ,C 也在同一直线上, ∴18090AOC COD ∠=︒-∠=︒,90BOD AOC ∠=∠=︒. 设AO CO x ==,BO DO y ==.∵14AD AO OD x y =+=+=, 又∵22115022AOC BOD S S x y +=+=△△,∴22100x y +=,解得48xy =,……11分 ∴112422AOBS OA OB xy =⋅==△.答:一块直角三角板的面积为24.……13分 23.解:(1)=.……2分 (2)=.……4分理由:∵ED 垂直平分AC ,∴AD CD =,∴A ACD ∠=∠.……5分 ∵90ACB ∠=︒,∴90A B ACD BCD ∠+∠=∠+∠=︒, ∴B BCD ∠=∠,∴BD CD =,∴AD BD =.……7分 (3)FP 平分HFG ∠.……8分理由:如图,作MF 的垂直平分线交FP 于点O ,连接OM ,ON .∵PM FH ⊥,PN FG ⊥,∴MPF △和NPF △都是直角三角形. 由(2)中所证可知OF OP OM ==.作线段FN 的垂直平分线也必经过FP 的中点O ,……10分 ∴OM OP OF ON ===.又∵MN FP ⊥,∴90OKM OKN ∠=∠=︒.∵OK OK =,∴Rt Rt OKM OKN ≌△△,∴MK NK =,∴FKM FKN ≌△△,∴MFK NFK ∠=∠,即FP 平分HFG ∠.……13分。
初中八年级数学第一学期十二月月考

第一学期十二月月考八年级数学(考试用时90分钟,满分120分)姓名班级总得分题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题(本大题10小题,每小题3分,共30分。
把答案写在答题框中去)1、已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A. 30°B. 50°C. 80°D. 100°2、下列图形对称轴最多的是()A.正方形 B.等边三角形 C.等腰三角形 D.线段3、下列说法中正确的是()A.两个全等三角形成轴对称B.两个三角形关于某直线对称,不一定全等C.线段AB的对称轴垂直平分ABD.直线MN垂直平分线段AB,则直线MN是线段AB的对称轴4、如图,在△ABC中,AB⊥AC,AD⊥BC,点D是BC的中点,DE⊥AB,DF⊥AC,连接EF,则图中等腰直角三角形的个数是()A.8个 B.10个 C.12个 D.13个5、与的和为 ( )A. B. C. D.6、下列计算错误的是()A.2m+3n=5mn B.a6÷a2=a4 C.(x2)3=x6 D.a?a2=a37、下列等式一定成立的是()A.a2+a3=a5 B.(a+b)2=a2+b2C.(2ab2)3=6a3b6 D.(x﹣a)(x﹣b)=x2﹣(a+b)x+ab8、把x2y﹣2y2x+y3分解因式正确的是()A.y(x2﹣2xy+y2) B.x2y﹣y2(2x﹣y) C.y(x﹣y)2 D.y(x+y)29、下面是按一定规律排列的一列数:第1个数:;第2个数:;第3个数:;……第个数:.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是()A.第10个数 B.第11个数 C.第12个数 D.第13个数10、如图,在△ABC中,∠ACB=9O°,AC=BC,BE⊥CE于D,DE=4cm,AD=6 c m,则BE的长是 ( ) A.2cm B.1.5 cm C.1 cm D.3 cm二、填空题(本大题6小题,每小题4分,共24分)11、若与的和是单项式,则=_________.12、计算:﹣x2?x3= .13、如果把多项式x2﹣8x+m分解因式得(x﹣10)(x+n),那么m+n= .14、如右图,△ABC是等腰三角形,AD是底边BC上的高,若AB=5cm,BD=3cm,则△ABC的周长是______.15、如右图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是______.16、若(2x+1)0=(3x-6)0,则x的取值范围是__三、解答题(一)(本大题3小题,每小题6分,共18分)17、如右图在△ABC中,D是BC的中点,,DE⊥AB于E,DF⊥AC于F,BE=CF.求证:AD是△ABC的角平分线.18、已知,如右图,AB=CD,AB∥CD,BE=FD,求证:△ABF≌△CDE.19、如下图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE垂足为E,AD⊥CE垂足为D,AD=2.5cm,BE=1.7cm,求DE的长.21、如图,已知中,厘米,厘米,点为的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A 点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?22、解方程:五、解答题(三)(本大题3小题,每小题9分,共27分)23、先化简,再求值:,其中,24、因式分解:﹣3x3+6x2y﹣3xy2.25、÷题号 1 2 3 4 5 6 7 8 9 10 答案 B A D D B A D C A A11、12、﹣x5.13、﹣18 .14、16cm .15、4 .16、x≠-且x≠2__.17、证明:(1)∵DE⊥AB于E,DF⊥AC于F ∴∠DEB=∠DFC=90°∵D是BC的中点∴BD=CD…在Rt△BED和Rt△CFD中 BD=CD BE=CF ∴Rt△BED≌Rt△CFD(HL) ∴DE=DF ∵DE⊥AB DF⊥AC ∴AD平分∠BAC 18、解:∵AB∥CD,∴∠B=∠D,∵BE=DF,∴BE+EF=DF+EF,即BF=DE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS).19、解:(1)所建立的平面直角坐标系如下所示:(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);(3)所作△A'B'C'如下图所示.20、解:∵AD⊥CE,∴∠E=∠ADC=90°,即∠CAD+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠BCE=∠CAD,又∵AC=BC,∴△BCE≌△CAD(AAS),∴CE=AD,BE=CD,∵AD=2.5cm,DE=1.7cm,∴DE=CE﹣DC=2.5﹣1.7=0.8cm.21、解:(1)①∵秒,∴厘米,∵厘米,点为的中点,∴厘米.又∵厘米,∴厘米,∴.又∵,∴,∴.②∵,∴,又∵,,则,∴点,点运动的时间秒,∴厘米/秒.(2)设经过秒后点与点第一次相遇,由题意,得,解得秒.∴点共运动了厘米.∵,∴点、点在边上相遇,∴经过秒点与点第一次在边上相遇.四、计算题22、解:原方程变形为23、解:当,时,原式=24、﹣3x3+6x2y﹣3xy2=﹣3x(x2﹣2xy+y2)=﹣3x(x﹣y)2.25、解:原式=(ax-2ax+4ax)÷ax= -2a+4ax。
八年级上册数学12月月考试题含答案

XXXX 市XXX 中学20XX 年八年级(上)12月月考数学试卷班级 姓名 得分一. 选择题(每小题2分,共20分.每小题都有四个选项,其中有且只有一个选项是正确的) 1、下列说法正确的是…………………………………………… ( )A .1的立方根是1±;B .24±=;C 、81的平方根是3±;D 、0没有平方根;2、下列说法:①有理数和数轴上点一一对应;②不带根号的数一定是有理数;③负数没有立方根; ④17-是17的平方根,其中正确的有( ) A .0个B .1个C .2个 D .3个3、 下列计算结果正确的是…………………( )A.. 336x x x +=B. 34b b b ⋅=C. 326428a a a ⋅=D. 22532a a -=. 4、已知a 、b 、c 为一个三角形的三边长,则22)(c b a --的值( )A .一定是负数B .一定是正数C .可能为零D .可能为正数,也可能为负数5、如m x +与3+x 的乘积中不含..x 的一次项....,则m 的值为…………………( ) A .3- B .3 C . 0 D . 16、下列式子从左到右的变形中,属于因式分解的是 …………………( )A 、2(1)(1)1x x x +-=-B 、221(2)1x x x x -+=-+C 、22()()a b a b a b -=+- D 、()()mx my nx ny m x y n x y +++=+++ 7.由下列条件不能判断△ABC 是直角三角形的是( ) A .∠A :∠B :∠C=3:4:5 B .a :b :c=2:3:5 C .∠A -∠C =∠B D .222AC BC AB =-8、如图,在△ABC 与△DEF 中,给出以下六个条件:(1)AB =DE ,(2)BC =EF ,(3)AC =DF ,(4)∠A =∠D ,(5)∠B =∠E ,(6)∠C =∠F ,以其中三个作为已知条件,不能..判断△ABC 与 △DEF 全等的是( )A .(1)(5)(2) B .(1)(2)(3) C .(2)(3)(4) D .(4)(6)(1)FEDC BA第9题 第10题9. 如图,DEF ABC ∆∆≌,点A 与D ,点B 与E 分别是对应顶点,BC=5cm ,BF=7cm ,则EC 的长为( )A. 1cm B. 2cm C. 3cm D. 4cm10、如图, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE=DF ,连结BF ,CE .下列说法: ① △ABD 和△ACD 面积相等; ② ∠BAD=∠CAD ③ △BDF ≌△CDE ;④ BF ∥CE ;⑤ CE =AE 。
2023-2024学年八年级上学期第三次月考数学试题(原卷版)

2023-2024学年八年级上学期12月份质量监测数学(本试卷共6页,25题,全卷满分:120分,考试用时:120分钟)1.答题前,先将自己的姓名、准考证号写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上相应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,将答题卡上交.一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.体育是一个锻炼身体,增强体质,培养道德和意志品质的教育过程,是培养全面发展的人的一个重要方面,下列体育图标是轴对称图形的是()A. B. C. D.2.如图,空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是()A.三角形两边之差小于第三边B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性3.用下列长度的三条线段能组成三角形的是()A.2cm,3cm,5cmB.8cm,12cm,2cmC.5cm,10cm,4cmD.3cm,3cm,5cm4.2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为()A.102.810-⨯ B.82.810-⨯ C.62.810-⨯ D.92.810-⨯5.下列运算正确的是()A.()1432a a = B.236a a a ⋅= C.()32626a a -=- D.842a a a ÷=6.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4B.5C.6D.77.下列等式成立的是()A.22(1)1x x -=- B.22(1)1x x x +=++C.2(1)(1)1x x x +-+=- D.2(1)(1)1x x x -+--=--8.下列说法:①三角形的外角等于两个内角之和;②三角形的重心是三条垂直平分线的交点;③有一个角等于60︒的等腰三角形是等边三角形;④分式的分子与分母乘(或除以)同一个整式,分式的值不变,其中正确的个数有()A.0个 B.1个 C.2个 D.3个9.如图,在ABC 中,AB AC =,点D ,P 分别是图中所作直线和射线与AB ,CD 的交点.根据图中尺规作图的痕迹推断,以下结论错误的是()A.PBC ACD ∠=∠B.ABP CBP ∠=∠C.A ACD ∠=∠D.AD CD=10.如图,在ABC 中,90BAC ︒∠=,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,给出以下结论:①BE BCE S S =△A △;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =;⑤::AC AF BC BF =.其中结论正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:316y y -=______.12.在平面直角坐标系中,点P (3,﹣2)关于y 轴对称的点的坐标是____.13.若分式211x x --的值为0,则x 的值为______.14.如图,PA OA ⊥,PB OB ⊥,PA PB =,26POB ∠=︒,则APO ∠=________°.15.如图,等边ABC 中,D 为AB 的中点,过点D 作DFAC ⊥于点F ,过点F 作FE BC ⊥于点E ,若4AF =,则线段BE 的长为________.16.如图,在平面直角坐标系中,点()7,0A ,()0,12B ,点C 在AB 的垂直平分线上,且90ACB ∠=︒,则点C 的坐标为________.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小逪9分,第24、25题每小题10分,共72分,解答应写出必要的文字说明,证明过程或演算步骤)17.计算:()2202301|3|120243-⎛⎫-+-+- ⎪⎝⎭.18.先化简,再求代数式221122x x x x ⎡⎤-⎛⎫-÷⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦的值,其中2x =.19.如图,在ABC 中,DE 是线段AB 的垂直平分线.(1)若35B ∠=︒.求ADC ∠的度数:(2)若AD CD =.求证:AC AB ⊥.20.如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上.(1)作△ABC 关于直线MN 对称的图形△A'B'C';(2)若网格中最小正方形的边长为1,则△ABC 的面积为;(3)点P 在直线MN 上,当△PAC 周长最小时,P 点在什么位置,在图中标出P 点.21.如图,在四边形ABCD 中,AB CD ,连接BD ,点E 在BD 上,连接CE ,若12∠=∠,AB ED =.(1)求证:BD CD =.(2)若13555A BCE ∠=︒∠=︒,,求DBC ∠的度数.22.【阅读理解】若x 满足(32)(12)100x x --=.求()()223212x x -+-的值.解:设32x a -=,12x b -=.则()()3212100x x a b --=⋅=,()()321220a b x x +=-+-=.()()()22222232122202100200x x a b a b ab -+-=+=+-=-⨯=.我们把这种方法叫做换元法.利用换元法达到简化方程的目的.体现了转化的数学思想.【解决问题】(1)若x 满足()()1025x x --=.则()()22102x x -+-=________;(2)若x 满足()()222025202266x x -+-=.求()()20252022x x --的值;(3)如图,在长方形ABCD 中,25cm AB =,点E ,F 是边BC ,CD 上的点,13cm EC =,且cm BE DF x ==.分别以FC ,CB 为边在长方形ABCD 外侧作正方形CFGH 和CBMN ,若长方形CBQF 的面积为2300cm ,求图中阴影部分的面积之和.23.ABC 中,AB AC =,点D 是边AB 上一点,BCD A ∠=∠.(1)如图1,试说明CD CB =的理由;(2)如图2,过点B 作BE AC ⊥,垂足为点E ,BE 与CD 相交于点F .①试说明2BCD CBE ∠=∠的理由;②如果BDF V 是等腰三角形,求A ∠的度数.24.如图,在平面直角坐标系中,A 点在第二象限、坐标为(,)m m -.(1)若关于x 的多项式24x x m ++是完全平方式,直接写出点A 的坐标:________;(2)如图1,ABO 为等腰直角三角形.分别以AB 和OB 为边作等边ABC 和等边OBD ,连接OC ,AD ;①若4=AD ,求OC 的长;②求COB ∠的度数.(3)如图2,过点A 作AM y ⊥轴于点M ,点E 为x 轴正半轴上一点,K 为ME 延长线上一点,以MK 为直角边作等腰直角三角形MKJ ,90MKJ ∠=︒,过点A 作AN x ⊥轴交MJ 于点N ,连接EN .试猜想线段AN ,OE 和NE 的数量关系,并证明你的猜想.25.定义:若分式A 与分式B 的差等于它们的积.即A B AB -=,则称分式B 是分式A 的“可存异分式”.如11x +与12x +.因为()()1111212x x x x -=++++,11112(1)(2)x x x x ⨯=++++.所以12x +是11x +的“可存异分式”.(1)填空:分式12x +________分式13x +的“可存异分式”(填“是”或“不是”;)(2)分式4x x -的“可存异分式”是________;(3)已知分式2333x x ++是分式A 的“可存异分式”.①求分式A 的表达式;②若整数x 使得分式A 的值是正整数,直接写出分式A 的值;(4)若关于x 的分式22n mx m n +++是关于x 的分式21m mx n-+的“可存异分式”,求2619534n n ++的值.。
八年级数学上册12月月考考试卷

(总分: 150 分,考试时间: 120 分钟)
一、选择题(每小题 4 分,共 40 分)
1 .下列图形中,不是轴对称图形的是
(
)
A
B.
C.
D.
2
2. 3x 可以表示为(
)
A. 9x
B. 3x 3x
C. x 2 x2 x 2
D. x2 x2 x 2
3. 下列运算正确的是(
是,请说明理由 .
A D
P
E
A
D
P E
B
图 1 25.( 14 分)在平面直角坐标系中,点
CQB
C
Q
图 2
A( a, b)的坐标满足 ( a﹣ 2) 2+( b+2) 2=0
( 1) A 点坐标为
,则 OA=
=
;
( 2) y 轴上是否存在点 P 使△ OAP 为等腰三角形,若存在请求出 P 点坐标; ( 3)若直线 l 过点 A,且平行于 y 轴,如果点 N 的坐标是(﹣ n, 0),其中 n> 0,点 N 关于 y 轴的对 称点是点 N1,点 N1 关于直线 l 的对称点是点 N2,求 NN2 的长.
离相等
B.他发现 CE DE ,理由是垂直平分线上的点到线段两个端点距离相等
C.他发现 AE BE ,理由是角平分线上的点到角两边的距离相等
D.他发现 AE BE ,理由是垂直平分线上的点到线段两个端点距离相等
8.下面是芳芳同学计算 (a a 2 )3 的过程:
解: (a
23 3
a ) =a
23
a K①
) 定理,
Байду номын сангаас
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学练习题
一、精心选一选.(本大题共10小题,每小题3分,满分30分)
1.下面有4个汽车标致图案,其中是轴对称图形的有()
A.1个 B.2个 C.3个 D.4个
2.下列运算中,正确的是().
A.2
2a
a
a=
⋅ B.4
2
2)
(a
a=
C.6
3
2a
a
a=
⋅ D.3
2
3
2)
(b
a
b
a⋅
=
3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运
用的几何原理是()
A.三角形的稳定性 B.两点之间线段最短
C.两点确定一条直线 D.垂线段最短
4.下列各式从左到右的变形是因式分解的是().
A. 2
)1
(
3
22
2+
+
=
+
+x
x
x B.2
2
)
)(
(y
x
y
x
y
x-
=
-
+
C. x2-xy+y2=(x-y)2
D.)
(2
2
2y
x
y
x-
=
-
5. 等腰三角形一边长等于5,一边长等于9,则它的周长是().
A.14 B.23 C.19 D.19或23
6.三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的()
A、三条中线的交点;
B、三边垂直平分线的交点;
C、三条高的交战;
D、三条角平分线的交点;
7. 如图,△ABC≌△A’B’C ,∠ACB=90°,∠A’C B=20°,
则∠BCB’的度数为()
A.20° B.40° C.70° D.900
8、如果把分式
xy
y
x
2
+
中的x和y都扩大2倍,那么分式的值().
A.不变B.扩大2倍 C.扩大4倍D.缩小2倍
9.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC
于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()
A、6cm
B、4cm
C、10cm
D、以上都不对
10.如果25
92+
+kx
x是一个完全平方式,那么k的值是()
A、30
B、±30
C、15 D±15
二、耐心填一填.(本大题共10小题,每小题2分,满分20分)
11.等腰三角形的一个角为100°,则它的底角为.
12.计算()32
4
5)
(a
a-
•
-=_______。
13.点M(3,-4)关于x轴的对称点的坐标是,关于y轴的对称点的坐标是.
14. 当x=__________时,分式
3
1
-
x
无意义.
15、分式
2
2
|
|
-
-
x
x
的值为零,则x =
16. ()3
2+
-m(_________)=9
42-
m; ()23
2+
-ab=__________.
17. 某公路急转弯处设立了一面圆型大镜子,从镜子中看
到汽车车的部分号码如图所示,则该车牌照的部分号码为__________.
18、如图,∠ABC=∠DCB,请补充一个条件:,使△ABC≌△DCB.
19、如图,ABC
∆中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD= 。
20.已知:
3
2
2
3
2
22⨯
=
+,
8
3
3
8
3
32⨯
=
+,
15
4
4
15
4
42⨯
=
+,…若
b
a
b
a
⨯
=
+2
10
10(a、
b为正整数),则______
=
+b
a;
三、用心做一做.(注意:解答时必须写出必要的解题过程或推理步骤,共50分)
21.(本题12分,每小题4分)分解因式:
(1)2
28
8
2n
mn
m-
+
-(2))
1(
)1
(2
2x
b
x
a-
+
-
A
C
D
B
E
第9题图
A'
B'
C
B
A
19题图18题图
17题图
班
级
姓
名
学
号
B
C
A
(3)2
22224)(n m n m -+
22.(本题6分)先化简,再求值:)3)(3()3(2
y x y x y x -+-+,其中23-==y x ,
23、(本题6分)化简:2
2
8241681622+-•+-÷++-a a a a a a a
24. (6分)已知:如图,已知△ABC , (1)分别画出与△ABC 关于x 轴、y 轴对称的 图形△A 1B 1C 1 和△A 2B 2C 2 ;
(2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标;
25. (本题6分) 如图,AC 和BD 相交于点O ,且AB//DC ,OC=OD
求证:OA =OB 。
26、(本题6分)已知,如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE ,BF =CE 。
求证:AC=DF ;
27.(8分) 如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE⊥DF,交AB 于点E ,连结EG 、EF.
(1)求证:BG =CF.
(2)请你判断BE+CF 与EF 的大小关系,并说明理由.
O A
B
C
D
F
E D
C
B
A
G。