08约数个数和完全平方数
完全平方数及应用(一).教师版

1. 学习完全平方数的性质;2. 整理完全平方数的一些推论及推论过程3. 掌握完全平方数的综合运用。
一、完全平方数常用性质 1.主要性质1.完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
2.在两个连续正整数的平方数之间不存在完全平方数。
3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
4.若质数p 整除完全平方数2a ,则p 能被a 整除。
2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则2|n p N .性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.3.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。
6.完全平方数的个位数字为6时,其十位数字必为奇数。
7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。
完全平方数(二)

【例2】(★★) 10000以内的自然数中, 有且仅有3个因数的自然数有多少个?
【例3】(★★★) 一个房间中有100盏灯, 用自然数1, 2, …, 100编号, 每盏灯各有一个开关. 开始时, 所有的灯都不亮. 有100个人依次进入房间, 第1个人进入房间后, 将编号为1的倍数的灯的开关按一下, 然后离开;第2个人进入房间后, 将编号为2的倍数的灯的开关按一下, 然后离开;如此下去, 直到第100 个人进入房间, 将编号为100的倍数的灯的开关按一下, 然后离开. 问: 第100个人离开房间后, 房间里哪些灯还亮着?
2
【例4】(★★★) 学而思运动会上, 五年级的女生们准备出一个团体操的节目. 现在的人 数刚好排成一个方阵(每一行人数和每一列人数相等). 后来又加入了23 个女生, 恰好还可以组成一个方阵. 那么你能算出加入23人之前, 方阵共 有多少人吗?
【例5】(★★★) 一个正整数加上132和231后都等于完全平方数, 求这个正整数是多少?
1
知识大总结 1、 A=a2, 质因数成对出现. 2、 完全平方数, 约数个数一定奇数个. 3、 平方差公式: a2 b2 (a b)(a b) 性质:完全平方数除以5只能余0、1、4.
完全平方数除以3只能余0、1. 完全平方数除以4只能余0、1.
【今日讲题】 例2, 例3, 例5
本讲主线
Hale Waihona Puke 完全平方数(二)1. 完全平方数的约数个数
2. 平方差公式的应用.
【知识要点屋】
1、 约数个数: ⑴ 分解质因数到指数形式. ⑵ 约个等于指数+1连乘.
2、 平方差公式: a2 b2 (a b)(a b) 其中 a b,a b 奇偶性相同.
1到n中所有整数的约数个数和数论

1到n中所有整数的约数个数和数论
数论中关于整数的约数个数的问题是一个经典的数论问题,也与著名的数论函数σ(n)(约数函数)相关。
σ(n)表示n的所有正约数之和,包括1和n本身。
首先,我们知道一个数n的约数是成对出现的,例如对于数m,如果它是n的约数,那么n/m也是n的约数。
但是当m等于n/m时,即m的平方等于n,那么m就是n的唯一的约数(平方数的约数个数为奇数个)。
因此,我们可以得出结论:当n不是完全平方数时,它的约数个数是偶数;当n是完全平方数时,它的约数个数是奇数。
现在,我们来具体分析一下1到n中所有整数的约数个数的和。
我们可以利用上面的结论,对1到n中每个数的约数个数进行分类讨论。
1. 对于非完全平方数m,它的约数个数是偶数,设为2k,则它的约数对中包括k对,每对的和为m,因此1到n中所有非完全平方数的约数个数和为2 * (1 + 2 + ... + k) = k * (k + 1)。
2. 对于完全平方数m,它的约数个数是奇数,设为2k + 1,则它的约数对中包括k对,每对的和为m,另外还有一个m的平方根没有配对,因此1到n中所有完全平方数的约数个数和为(k * (k + 1)) + m = k * (k + 1) + m。
通过以上分析,我们可以得出结论:1到n中所有整数的约数个数和为k * (k + 1) + m,其中k为非完全平方数的个数,m为完全平方数的个数。
因此,我们可以通过统计1到n中完全平方数的个数和非完全平方数的个数,然后套入上述公式,就可以计算出1到n中所有整数的约数个数的和。
完全平方数

完全平方数一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。
完全平方数的数字特征:性质1:完全平方数的末位数只能是0,1,4,5,6,9。
个位数是2,3,7,8的整数一定不是完全平方数。
性质2:奇数的平方的个位数字为奇数(1,5,9),十位数字为偶数。
性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。
个位数和十位数都是奇数的整数一定不是完全平方数。
性质4:完全平方数的数字之和只能是0,1,4,7,9。
数字和是2,3,5,6,8的整数一定不是完全平方数。
完全平方数的同余特征:性质5:偶数的平方是4的倍数;奇数的平方是4的倍数加1。
形如4n+2和4n+3型的整数一定不是完全平方数。
性质6:奇数的平方是8n+1型;偶数的平方为8n或8n+4型。
形如8n+2, 8n+3, 8n+5, 8n+6,8n+7型的整数一定不是完全平方数。
性质7:平方数的形式必为下列两种之一:3k,3k+1。
形如3k+2型的整数一定不是完全平方数。
性质8:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k 型。
形如5n±2型的整数一定不是完全平方数。
性质9:平方数的形式具有下列形式之一:16m,16m+1, 16m+4,16m+9。
完全平方数的因子特征:性质10:如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数。
性质11:在两个相邻的整数的平方数之间的所有整数都不是完全平方数,即若性质12:一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n本身)。
例有四个数①921438,②76186,③750235,④2660161,其中只有____是完全平方数。
例试证:12345678987654321是完全平方数。
例设正整数d不等于2、5、13。
证明在2,5,13,d四个数中可以找到两个不同的数a、b使得ab-1不是完全平方数.例是否存在自然数n与d,使得2n2能被d整除且n2+d是完全平方数.例由非零的偶数码组成一个四位数,它又恰是某个由偶数码组成的数的完全平方,求这个四位数.例有一个四位数恰好是个完全平方数,它的千位数字比百位数字多1,比十位数字少1,比个位数字少2,这个四位数是。
小学数学精讲解析:完全平方数

完全平方数完全平方数的定义一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。
完全平方数的一般性质①完全平方数的末位数只能是0,1,4,5,6,9;②奇数的平方的个位数字为奇数,十位数字为偶数;③如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数;⑤平方数除以3余0或者余1;⑥平方数除以16余0或者余1或者余4或者余9;⑦平方数除以余0或者1或者4;⑧在两个相邻的整数的平方数之间的所有整数都不是完全平方数;⑨一个正整数n是完全平方数的充分必要条件是有奇数个因数(包括1和n本身)。
例1如从200到1800的自然数中有奇数个约数的数有多少个?例2有一个四位数的个位数字与千位数字相等,且正好等于其十位数字的5倍与1的和的完全平方,求这个四位数。
例3在2500以内所有完全平方数中,能被9整除的有多少个?例4(04浙江五年级夏令营)袋子里共有415只小球,第一次从袋子里取出1只小球,第二次从袋子里取出3只小球,第三次从袋子里取出5只小球…依次地取球,如果剩下的球不够取,则将剩下的球留在袋中。
那么,最后袋中留下()个球。
例5能不能找到一个自然数n,是完全平方数,且n+1999也是完全平方数?例6有两个两位数,它们的差是56,它们的平方数末两位数字相同,这两个两位数分别是()。
测试题1.从1到2000的所有正整数中,有多少个数乘以72后是完全平方数?2.请说明任意两个相邻的正整数的积不是平方数。
3.有一个由不同数字组成的四位数A,2;已知A的千位数字是2,十位数字是1,且A各个位数上的数A B字相加的和为3的倍数。
那么这个四位数是几?4.所有六位数中,末四位是2004的完全平方数有多少个?它们的和是多少?答案1.【解析】因为327223=⨯,而根据一个完全平方数的分解质因数形式中所有质因数的个数都必须是偶数的特征,可以得出与72相乘的这个正整数一定是2的倍数,还要再乘以一个完全平方数,这样得到的结果还是完全平方数,乘数应该是221⨯、222⨯、223⨯、 、22n ⨯。
五年级奥数专题 约数、倍数、完全平方数(学生版)

学科培优数学“约数、倍数、完全平方数”学生姓名授课日期教师姓名授课时长知识定位本讲中的知识点并不难理解,对于约数、最大公约数;倍数、最小公倍数的定义我们在学校的课本上都已经学习过,所以重点在于一些性质的应用,完全平方数在考试中经常出现,所以对于平方差公式还有一些主要性质一定要记住.知识梳理一、最大公约数与最小公倍数的常用性质(1)两个自然数分别除以它们的最大公约数,所得的商互质。
即若(,),(,),=⨯=⨯那么(,)1a b=A a a bB b a b(2)两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
即(,)[,]⨯=⨯a b a b a b(3)对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍二、约数个数与所有约数的和(1)求任一整数约数的个数:一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。
(2)求任一整数的所有约数的和:一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。
三、完全平方数常用性质1.主要性质●完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
●在两个连续正整数的平方数之间不存在完全平方数。
●完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
●若质数p整除完全平方数2a,则p能被a整除。
2.一些推论●任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
●一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
●自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
第 9 讲 完全平方数(学习指导)

第9讲完全平方数第一部分基本知识点——这是重中之重一个自然数平方后所得到的数叫完全平方数,也叫平方数。
0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,……都是完全平方数,同学们要数记前20个完全平方数。
观察这些完全平方数,可以得到完全平方数的一些常用性质:性质1:完全平方数的末位数字只能是0,1,4,5,6,9。
推论:个位数是2,3,7,8的整数一定不是完全平方数;性质2:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数。
性质3:完全平方数除以3余0或1;完全平方数除以4余0或1;。
性质4:如果一个完全平方数的个位数字是6,则是位数字是奇数。
性质5:完全平方数分解质因数后,每个质因数的次数都是偶数。
性质6:一个正整数如果是完全平方数,那么它有奇数个约数(包括1和它本身)。
一个正整数如果它有奇数个约数(包括1和它本身),那么它是完全平方数。
约数个数为3的自然数一定是某个质数的平方。
性质7:平方差公式A2-B2=(A+B)(A-B),其中A+B与A-B的奇偶性相同。
第二部分学案[学案1] 完全平方数的个位数字只能是0、1、4、5、6、9,可是个位数字是0、1、4、5、6、9的不一定都是完全平方数,那么我们定义:个位数字是0、1、4、5、6、9且不是完全平方数的自然数为“伪平方数”,那么在两位数中,偶数与伪平方数那个多?分析:⑴两位数从10到99共90个,其中偶数90÷2=45(个)。
⑵两位数中个位数字是“0、1、4、5、6、9”的有6×9=54(个),其中完全平方数有16、25、36、49、64、81这6个,伪平方数有54-6=48个。
⑶两位数中偶数45个,伪平方数48个,伪平方数比偶数多。
[学案2] 将16分解成若干个质数(可以相同)相加的形式,如果这些质数的乘积正好是平方数,那么这个平方数可能是几?分析:⑴要使这些质数的乘积是完全平方数,那么质数必须成对出现,我们把16分成8+8的两组,每组用相同的方式分解成一些质数相加的形式即可。
小学奥数专题之-数论专题典型结论汇总

小学奥数专题之-数论专题典型结论汇总整除一、常见数字的整除判定方法1.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2.一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。
【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1如果数a和数b都能被数c整除,那么它们的和或差也能被c 整除.即如果c︱a,c︱b,那么c︱(a±b).性质2如果数a能被数b整除,b又能被数c整除,那么a也能被c 整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3某4)∣12.性质5如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;质数合数一、判断一个数是否为质数的方法根据定义如果能够找到一个小于p的质数q(均为整数),使得q能够整除p,那么p就不是质数,所以我们只要拿所有小于p的质数去除p就可以了;但是这样的计算量很大,对于不太大的p,我们可以先找一个大于且接近p的平方数K2,再列出所有不大于K的质数,用这些质数去除p,如没有能够除尽的那么p就为质数.例如:149很接近1441212,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.二、唯一分解定理a3aka1a2np1p2p3pk任何一个大于1的自然数n都可以写成质数的连乘积,即:其中为质数,a1a2ak为自然数,并且这种表示是唯一的.该式称为n的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2某3某5某7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337;100171113;1111141271;1000173137;199535719;1998233337;200733223;2022222251;10101371337.约数倍数一、求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711,25222327,所以(231,252)3721;21812②短除法:先找出所有共有的约数,然后相乘.例如:396,所以(12,18)236;32③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********;6003151285;315285130;28530915;301520;所以1515和600的最大公约数是15.二、最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n,所得的积的最大公约数等于这几个数的最大公约数乘以n.三、求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a;求出各b个分数的分子的最大公约数b;即为所求.a四、约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数五、求最小公倍数的方法①分解质因数的方法;例如:2313711,25222327,所以231,25222327112772;②短除法求最小公倍数;21812例如:396,所以18,12233236;32ab③[a,b].(a,b)六、最小公倍数的性质①两个数的任意公倍数都是它们最小公倍数的倍数.②两个互质的数的最小公倍数是这两个数的乘积.③两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数.七、求一组分数的最小公倍数方法步骤先将各个分数化为假分数;求出各个分数分子的最小公倍数a;求出各个分数分母的最35[3,5]15b大公约数b;即为所求.例如:[,]412(4,12)4a注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数.例如:141,42,32,34八、倍数、公倍数、最小公倍数的关系(1)倍数是对一个数说的;(2)最小公倍数是公倍数的约数,公倍数是最小公倍数的倍数九、最大公约数与最小公倍数的常用性质1.两个自然数分别除以它们的最大公约数,所得的商互质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础知识
四、求约数个数与所有约数的和
1.求任一整数约数的个数
一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。
如:1400严格分解质因数之后为32257⨯⨯,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个。
(包括1和1400本身)
约数个数的计算公式是本讲的一个重点和难点,授课时应重点讲解,公式的推导过程是建立在开篇讲过的数字“唯一分解定理”形式基础之上,结合乘法原理推导出来的,不是很复杂,建议给学生推导并要求其掌握。
难点在于公式的逆推,有相当一部分常考的偏难题型考察的就是对这个公式的逆用,即先告诉一个数有多少个约数,然后再结合其他几个条件将原数“还原构造”出来,或者是“构造出可能的最值”。
2.求任一整数的所有约数的和
一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。
如:33210002357=⨯⨯⨯,所以21000所有约数的和为
2323(1222)(13)(1555)(17)74880
++++++++=此公式没有第一个公式常用,推导过程相对复杂,需要许多步提取公因式,建议帮助学生找规律性的记忆即可。
3.约数的积:设M 的约数个数为x 个,那么M 所有约数的积为2x M 。
(如果是完全平方数,
先开方求得值为A,再计算
x A 的值,即为所求)。
如:21分解质约数为3×7,所以有(1+1)×(1+1)=4个,所以21的所有约数的积为2421=441。
又如:9分解质约数为23,所以有(1+2)=3个约数,为完全平方数,9开方为3,所以9的所有约数的乘积为33=27。
1.平方数的概念:一个数能写成两个相同数相乘的形式的数是平方数。
偶指性,奇约性。
(根据概念得到)平方数的因数个数是奇数个。
2.20以内的平方数要求记忆。
1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289.324,361,400平方数的判断:看个位:只能是0,1,4,5,6,9不能是2,3,7,8
3.平方数的末两位只有(00)(01,21,41,61,81)(04,24,44,64,84,)(25)(09,29,49,69,89,)(16,36,56,76,96),因个位是0,1,4,5,6,9得到。
思维数学第08讲
约数个数和平方数(一)
4.平方数的判断看末两位:十位数字是奇数时,个位只能是6,即平方数的奇6性。
末两位相同只能时,只能是00或44
5.平方数除以某个数的余数,是小于这个数的平方数。
如:除以3的余数只能是0和1这两个平方数,除以4的余数只能是0和1这两个平方数。
除以5的余数只能是0,1,4三个平方数,除以8的余数只能是0,1,4三个平方数。
除以16的平方数只能是0,1,4,9四个平方数。
性质1:奇数的平方的个位数字为奇数十位数字为偶数。
性质2:偶数的平方是4的倍数,奇数的平方是4的倍数加1.
性质3:奇数的平方是8n+1型,偶数的平方是8n或8n+4型。
在性质4的证明中,由k(k+1)一定为偶数可得到(2K+1)是8n+1型的数,由为奇数或偶数可得(2K)为8n型或8n+4型的数。
性质4:平方数的形式必为下列两种之一:3k,3k+1.
性质5:不能被5整除的数的平方为5k 1型,能被5整除的数为5k型。
性质6:平方数的形式具有下列形式之一,16m,16m+1,16m+4,16m+9。
技巧总结
1.哥德巴赫猜想:每个大于4的偶数都可以表示成两个质数之和。
2.在连续的三个奇数中一定有一个数是3的倍数。
3个连续的偶数中一定有一个数是3的倍数。
3.只有完全平方数才有奇数个约数,只有质数的平方才有3个约数。
4.4.构造n个连续合数的方法:(n+1)+2,(n+3)+3,……,(n+1)+(n+1),这n个数分别能被2,3,4,……,(n+1)整除,它们是连续的n个合数,其中n表示从1一直乘到n的积,即:1×2×3×……×n.
5.平方数:因子个数平均分给2个人。
立方数:因子个数平均分给3个人。
4次方:因子个数平均分给四个人。
课堂中的例题建议重做一遍,再做课后练习,1-3道不会为正常现象。