数模培训_数据拟合方法
数学建模~插值与拟合(课件ppt)

• 代数多项式插值是最常用的插值方式,其内容也 是最丰富的,它又可分为以下几种插值方式: (1)非等距节点插值,包括拉格朗日插值、利用 均差的牛顿插值和埃特金插值; (2)非等距节点插值,包括利用差分的牛顿插值 和高斯插值等; (3)在插值中增加了导数的Hermite(埃尔米特) 插值; (4)分段插值,包括分段线性插值、分段Hermite (埃尔米特)插值和样条函数插值; (5)反插值。 • 按被插值函数的变量个数还可把插值法分为一元 插值和多元插值。
引言2---插值和拟合的联系与区别
联系:二者都是函数逼近的主要方法
• 区别: •运算过程上的区别:
– 拟合:是将数据点用最恰当的曲线描述出来,以反映问题的规律, 是特殊到一般的过程。 – 插值:是在知道曲线的形状后得出某些具体点的性质的过程,是 从一般到特殊。
•求解误差上的区别:
– 拟合:考虑观察值的误差(误差不可避免时)。以偏差的某种最 小为拟合标准
n n ik
0 i k 而: lk xi 1 i k
22
例1
x1 1, x2 2, x3 4, f ( x1 ) 8, f ( x2 ) 1, f ( x3 ) 5
求二次插值多项式。
解:
按拉格朗日方法,有:
L( x) y1l1 x y2l2 x y3l3 x ( x 2)( x 4) ( x 1)( x 4) ( x 1)( x 2) 8 1 5 (1 2)(1 4) (2 1)(2 4) (4 1)(4 2) 3x 2 16 x 21
4.2 插值方法 选用不同类型的插值函数,逼近的效 果就不同,一般有: (1)拉格朗日插值(lagrange插值) (2)分段线性插值 (3)Hermite (4)三次样条插值。
数据拟合法

第四章 数据拟合法在科学实验和生产实践中,有许多函数关系仅能用由实验或观测得到的一组数据表(,)(0,1,,)i i x y i m =来表示,例如某种物质的化学反应,能够测得生成物的浓度与时间关系的一组数据表.而它们的解析表达式)(t f y =是不知道的。
但是为了要知道化学反应速度,必须要利用已知数据给出它的近似表达式,有了近似表达式,通过求导数便可知道化学反应速度。
可见已知一组数据求它的近似表达式是非常有意义的.如何求它的近似表达式呢?第二章介绍的插值方法是一种有效的方法.但是由于数据(,)(0,1,,)i i x y i m =是由测量或观测得到的,它本身就有误差,作插值时一定要通过型值点),(i i y x 似乎没有必要;其次当m 很大时,采用插值(特别是多项式插值)很不理想(会出现龙格现象),非多项式插值计算又很复杂。
为此,本章介绍一种“整体”近似的方法,即对于给定的数据(,),0,1,,i i x y i n =,选一个线性无关函数系)(,),(),(10x x x n ϕϕϕ ,以它们为基底构成的线性空间为{}0span (),,()n x x ϕϕ=Φ.在此空间内选择函数()()nj j j x x ϕαϕ==∑其中(0,1,,)j j n α=为待定常数。
要求它逼近真实函数)(x f y =的误差尽可能小,这就是数据拟合问题.§1 最小二乘法一、最小二乘法设有数据(,),0,1,,i i x y i m =,令()(),0,1,,ni i i i j j i j r y x y x i m ϕαϕ==-=-=∑.并称Tm r r r r ),,,(10 =为残向量,用)(x ϕ去拟合)(x f y =的好坏问题变成残量的大小问题。
判断残量大小的标准,常用的有下面几种:(1) 确定参数(0,1,,)j j n α=,使残量绝对值中最大的一个达到最小,即i mi r ≤≤0max 为最小。
数学建模Matlab数据拟合详解

刀具厚度 y/cm 26.8 26.5 26.3 26.1 25.7 25.3 24.8 24.0 拟合曲线为: 拟合曲线为 y=-0.3012t+29.3804
一个15.4cm×30.48cm的混凝土柱在加压实验中的 例3 一个 × 的混凝土柱在加压实验中的 应力-应变关系测试点的数据如表所示 应力 应变关系测试点的数据如表所示
用切削机床进行金属品加工时, 例2 用切削机床进行金属品加工时 为了适当地调整 机床, 需要测定刀具的磨损速度. 机床 需要测定刀具的磨损速度 在一定的时间测量刀 具的厚度, 得数据如表所示: 具的厚度 得数据如表所示 切削时间 t/h
0 1 2 3 4 5 6 7 8
刀具厚度 y/cm 30.0 29.1 28.4 28.1 28.0 27.7 27.5 27.2 27.0 切削时间 t/h
已知应力-应变关系可以用一条指数曲线来描述 已知应力 应变关系可以用一条指数曲线来描述, 即假设 应变关系可以用一条指数曲线来描述
σ = k1ε e
k 2ε
式中, 表示应力, 表示应变. 式中 σ 表示应力 单位是 N/m2; ε 表示应变
σ 令 z = ln , a0 = k2 , a1 = ln k1 , 则 z = a0ε + a1 ε
σ = k1ε e
k 2ε
式中, 表示应力, 表示应变. 式中 σ 表示应力 单位是 N/m2; ε 表示应变 选取指数函数作拟合时, 在拟合前需作变量代换, 指数函数作拟合时 解 选取指数函数作拟合时 在拟合前需作变量代换 化为 k1, k2 的线性函数 的线性函数.
σ 于是, 于是 ln = ln k1 k2ε ε σ 令 z = ln , a0 = k2 , a1 = ln k1 ε
《数据拟合方法》PPT课件

n
n
记 J(a1,a2,am)
2 i
[f(xi)yi]2
i1
i1
nm
[ akrk(xi)yi]2 (2) i1 k1
问题归结为,求 a1,a2, …am 使 J(a1,a2, …am) 最小。
最小二乘法的求解:预备知识
超定方程组:方程个数大于未知量个数的方程组
r11a1r12a2 r1mamy1 (nm) rn1a1rn2a2rnmamyn
第一步:先选定一组函数 r1(x), r2(x), …rm(x), m<n, 令
f(x)=a1r1(x)+a2r2(x)+ …+amrm(x)
(1)
其中 a1,a2, …am 为待定系数。
第二步: 确定a1,a2, …am 的准则(最小二乘准则):
使n个点(xi,yi) 与曲线 y=f(x) 的距离i 的平方和最小 。
即 Ra=y
其中
r11 r12 r1m
a1
y1
R ,
a
,
y
rn1 rn2 rnm
am
yn
超定方程一般是不存在解的矛盾方程组。
n
如果有向量a使得
(ri1a1ri2a2 rim amyi)2达到最小,
i1
则称a为上述超定方程的最小二乘解。
最小二乘法的求解
所以,曲线拟合的最小二乘法要解决的问题,实际上就是 求以下超定方程组的最小二乘解的问题。
(x)
( x ) ...
(x)
0
0
11
n
n
a a a y y ( , ,...,
0
1
m
*
) (
§4.常见的数学建模方法(1)---数据拟合(曲线拟合)法

实例. 找出基于下列数据的美国马萨诸塞州生产量、劳动力和投资之间变化的经
济增长模型(道格拉斯 Douglas 生产函数模型 )
实例 3. 某研究所为了研究三种肥料氮, 磷, 钾对于土豆和生菜的作
用, 分别对每种作物进行了三组试验. 实验数据如下列表格所示, 其 中 ha 表示公顷 , t 表示吨 , kg 表示千克. 试建立反映施肥量与产量 关系的数学模型. 氮施肥量(公斤/公顷)与土豆产量(吨/公顷)关系的实验数据
4
组数据应服 从的数学模型,如记 l - 1000 = l’ , l0 – 1000 = b, al0 = k , 则有 l’ = b + kt . 可以算得:
t 42.5,
2 ' t 8100 , l i i 1
4
(l 1000)
i 1
4
0.705,
' t l i i 34.6 i 1
§4. 常见的数学建模方法(1) --- 数据拟合(曲线拟合)法
在建立数学模型时,实际问题有时仅给出一组数据. 处理这类问题的 较简单易行的方法是通过数据拟合法求得 “最佳” 的近似函数式 --经验公式. 从几何上看就是找一条 “最佳” 的曲线, 使之和给定的 数 ( 1)决定经验公式的形式 . 根据所描绘的系统固有的特点 ,参照 据点靠得最近 , 即进行曲线拟合 . 根据一组数据来确定其经验公式 , 已知数据的图形和特点或者它应服从的规律来决定经验公式的形式 . 一般可 分为三步进行: 这一步是关键的一步. (2)决定经验公式中的待定参数 . 一般可用线性情况下的最小二 乘法 .它误差较小,适用于测定数据比较精确的情况.在使用最小二 乘法 时,如遇到数学模型是非线性经验公式时其中参数的待定,通
-数学建模-数据拟合

+
+
+ i (x+ i,yi)
+ +
+
y=f(x)
x
i 为点(xi,yi) 与曲线 y=f(x) 的距离
拟合与插值的关系 问题:给定一批数据点,需确定满足特定要求的曲线或曲面 解决方案: •若要求所求曲线(面)通过所给所有数据点,就是插值问题; •若不要求曲线(面)通过所有数据点,而是要求它反映对象 整体的变化趋势,这就是数据拟合,又称曲线拟合或曲面拟 合. 函数插值与曲线拟合都是要根据一组数据构造一个函数作 为近似,由于近似的要求不同,二者在数学方法上是完全不同 的. 实例:下面数据是某次实验所得,希望得到X和 f之间的关系?
超定方程组一般不存在解的矛盾方程组.
2 ( r a r a r a y ) 如果有向量a使得 i1 1 i 2 2 达到最小, im m i i 1
则称a为上述超定方程组的最小二乘解.
线性最小二乘法的求解 所以,曲线拟合的最小二乘法要解决的问题,实际上就是 求以下超定方程组的最小二乘解的问题. Ra=y r 1 ( x1 ) 其中 R 1 ( xn ) r (3) rm ( x1 ) a1 y1 , y , a rm ( xn ) am yn
942 1032
设 R=at+b a,b为待定系数
40
60
80
100
拟 合 问 题 引 例 2 已知一室模型快速静脉注射下的血药浓度数据(t=0注射300mg) t (h) 0.25 0.5 1 1.5 2 3 4 6 8
c (g/ml) 19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01
数学建模数据拟合教程

%作出数据点和拟合曲线的图形 作出数据点和拟合曲线的图形 20.1293 -0.0317
2)计算结果: A = -9.8108 )计算结果:
f ( x ) = 9 . 8108 x 2 + 20 . 1293 x 0 . 0317
17
用MATLAB作非线性最小二乘拟合 作非线性最小二乘拟合 Matlab的提供了两个求非线性最小二乘拟合的函数: Matlab的提供了两个求非线性最小二乘拟合的函数: 的提供了两个求非线性最小二乘拟合的函数 lsqcurvefit和lsqnonlin 两个命令都要先建立M 文件fun.m lsqnonlin。 fun.m, lsqcurvefit lsqnonlin。两个命令都要先建立M-文件fun.m, 在其中定义函数f(x) 但两者定义f(x)的方式是不同的, f(x), f(x)的方式是不同的 在其中定义函数f(x),但两者定义f(x)的方式是不同的,可参 考例题. 考例题 1. lsqcurvefit 已知数据点 数据点: xdata=(xdata1,xdata2,…,xdatan), xdata=( 数据点 , ydata=( ydata=(ydata1,ydata2,…,ydatan) , lsqcurvefit用以求含参量 用以求含参量x 向量) lsqcurvefit用以求含参量x(向量)的向量值函数 F(x,xdata)=( ),…, F(x,xdata)=(F(x,xdata1), ,F(x,xdatan))T 中的参变量x(向量),使得 中的参变量x(向量),使得 x(向量),
15
三
三
多
项
lines t 式 三
三
10
5
0 0 2 4 6 8 10 12 14 16 18
第三章 数据拟合法

第三章 数据拟合法3.1 最小二乘原理在科学实验或统计研究中,需要从一组测定的数据去求自变量与因变量之间的一个函数关系。
第二章中介绍过的插值方法在一定程度上解决了这个问题。
但实验或统计数据通常很多,在这种情况下,用插值方法来求自变量与因变量之间的插值多项式关系,往往多项式次数都比较高,对计算和应用都带来一定困难。
另一方面,实验数据或统计数据本身带有误差,在这种情况下,用插值方法的插值条件来求拟合曲线,要求所得拟合曲线精确地通过给定的所有数据点时就会使曲线保留数据原有的误差。
所以有必要考虑与插值方法不同的求自变量与因变量之间的函数关系的其它方法。
这里要介绍数据拟合法,数据拟合法是数学建模过程中常用的一个有效方法,在许多实际问题的研究和解决中都起到了重要的作用,在解决现实问题中应用非常广泛,见文献[18,19]。
1 最小二乘问题最小二乘问题的一般提法是:对于给定的数据点(,)i i x y (1,2,,)i n = ,要求在函数类01{,,,}m ϕϕϕΦ= 中寻找一个函数0011()m m x a a a ϕϕϕϕ=+++ ()m n < (3.1)使()x ϕ各点上的偏差()i i i y x δϕ=-的绝对值都尽可能小,即偏差平方和2211(())nniii i i yx δϕ===-∑∑达到极小。
设()(0)x ω≥是权函数,用来调解数据点(,)i i x y 的作用大小或准确程度,即数据点(,)i i x y 的作用越大,()i x ω取值也越大。
则偏差平方和2211(())nni ii i i yx δϕ===-∑∑达到极小等价于220111(,,,)()()(())nnm ii iii i i Q a a a x x yx ωδωϕ====-∑∑ (3.2)达到极小。
寻找函数()x ϕ就是在函数类01{,,,}m ϕϕϕΦ= 中构造(3.1),即根据(3.2)达到极小的条件来求待定系数01,,,m a a a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
10
1
10
0
10
0
2
4
6
8
半对数坐标系(semilogy)下的图形
Log10c(t)=a t + b
c(t) c0ekt c, k为待定系数
数据拟合问题的提法
数据拟合问题:已知一维(二维,…)数据,即平面上的n个点(xi,
yi),i=1,2,…,n,xi互不相同,寻求一个函数(曲线)y=f(x),使f(x)在某 种准则下与所有数据点最为接近,即曲线拟合的最好,如下图所示(图 中δi为(xi,yi)与y=f(x)的距离)。
y
(xi,yi)
δi
O
x
数据拟合问题的求解思路
线性最小二乘法是解决数据拟合最常用的方法。
基本思路:
令 f(x)=a1r1(x)+a2r2(x)+…+amrm(x)
(1)
其中rk(x)是事先选定的一组函数,ak是待定系数
(k=1,2,…,m,m<n)。
拟合准则是使n个点(xi,yi),i=1,2,…,n,与y=f(xi)的距离 δ 的平方和最小,称为最小二乘准则。
例1 已知观测数据点如表所示
x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 y -0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.3 11.2
分别用3次和6次多项式曲线拟合这些数据点.
编写Matlab程序如下:
x=0:0.1:1 y=[-0.447,1.978,3.28,6.16,7.08,7.34,7.66,9.56,9.48,9.3,11.2] plot(x,y,'k.','markersize',25) axis([0 1.3 -2 16]) p3=polyfit(x,y,3) p6=polyfit(x,y,6)
线性最小二乘法原理
3. 求解方法
l 描出数据的图示; l 观察并选择不同的数学函数进行拟合; l 比较多种拟合结果,选择其中较好的一种或者某几种作为备选结果;
注·意:通常需要将非线性函数rk(x)的转化成线性的函数Rk(x), 然后再用Rk(x)进行拟合,计算中通常需要列下表:
i
0
1
…
n
xi yi=f(xi) R1(x)
算例
5.10
1
RTY 1
1
11..1525625112.5.205113.7.05621524..0000765...457539 8.46
33.330 52.090 85.495
求解法方程组得到 a=3.6294,b=0.5406,c=0.9371,
于是得到该模型下的最小二乘拟合曲线为
a=eA= 3.072525924,
于是得到此模型下的最小二乘拟合曲线
g(x)= 3.072525924e0.5057x 。
算例
(3) 比较上面的结果如下:
i
0
1
2
3
4
xi
1.00
1.25
1.50
1.75
2.00
f(xi)
5.10
5.79
6.53
7.45
8.46
直线模型
4.99
5.83
6.67
7.50
下:
i
0
1
2
3
4
xi
1.00
1.25
1.50
1.75
2.00
f(xi)
5.10
5.79
6.53
7.45
8.46
Yi=1/f(xi) 0.196078 0.172712 0.153139 0.134228 0.118203
r1(x)
1
1
1
1
1
r2(x) 1
1
R 1
1
1
1.00
1.25
1.50
选取y=a+bx,此时,r1(x)=1,r2(x)=x。要求y=a+bx与(xi,yi),
i=0,1,2,3,4,做最小二乘拟合,yi=f(xi)。 列表计算如下:
i
0
1
2
3
4
xi
1.00
1.25
1.50
1.75
2.00
yi=f(xi) 5.10
5.79
6.53
7.45
8.46
r1(x)
1
1
1
1
1
r2(x)
in1r1(xi
m
)[akrk
k1
(xi
)
yi
]
0
... ... ... ...
(3)
n
m
i1rm(xi
)[akrk
k1
(xi
)
yi
]
0
线性最小二乘法原理
r1(x1) ... rm(x1)
记
...
...
...
,A=(a1,a2,…,am)T,y=(y1,…,yn)T,
r1(xn ) ... rm(xn )nm
x0
x1
…
y0
y1
…
R1(x0)
R1(x1)
…
………………
xn yn R1(xn)
Rm(x)
Rm(x0)
Rm(x1)
…
Rm(xn)
这样就容易确定出法方程组RTRA=RTy。上表中后面的m行即为RT。
算例
【例】给定数据(xi,f(xi)),i=0,1,2,3,4,见下表,使选择适当的模型,
求最小二乘拟合函数g(x)。
i
xi f(xi) Yi=lnf(xi)
0 1.00 5.10 1.629
1 1.25 5.79 1.756
【解】:(1)、先描出数据的图示
2 1.50 6.53 1.876
3 1.75 7.45 2.008
4 2.00 8.46 2.135
算例
(2)选定不同的数学函数(模型)或者rk(x)进行拟合 l 直线模型 y=a+bx
u 直线y=a1x+a2 u 多项式 y=a1xm+…+amx+am+1 (一般m=2,3,不宜过高) u 双曲线(一支) y=a1/x+a2 u 指数曲线 :拟合前需作变量代换,化为线性函数。 对已知数据,用什么样的曲线拟合最好,可以在直观判断的基础上,选
择几种曲线分别作拟合,然后比较,看那条曲线的最小二乘指标J最小。
g(x)=3.6294+0.5406x+0.9371x2。
算例
l 双曲线模型 y=1/(a0+a1x)
选取y=1/(a0+a1x),令Y=1/y=a0+a1x,此时,r1(x)=1,r2(x)=x。要求
Y=a0+a1x与(xi,yi),i=0,1,2,3,4,做最小二乘拟合,Yi=1/f(xi)。列表计算如
1.75
2.00
1
1 1
1 . 25
1 . 50
1 . 75
RTR11
11 1 1.25 1.50 1.75
21.00111
1.25 1.50 1.75
75.50
7.50 11.875
2 . 00
1 2.00
算例
0.196078
RTY11
1 1.25
1 1.50
11.75 12.00000...111357432217231892
1 1.00
1.25 5.79 1.756132292
1 1.25
1.50
6.53
1.8764069 4 1
1.50
1.75
7.45
2.0082140 3 1
1.75
2.00
8.46
2.1353491 7 1
2.00
1 1
RTR
1 1
11 1 1.25 1.50 1.75
21.00111
1.25 1.50 1.75
要求Y=A+bx与(xi,Yi),i=0,1,2,3,4,做最小二乘拟合,Yi=lnf(xi)。计算结果 如下:
i
0
1
2
3
4
xi f(xi) Yi=lnf(xi)
r1(x)
r2(x)
1
1
R 1
1
1
1
1 . 25
1 . 50
1 . 75
2 . 00
1.00 5.10 1.629240540
方程组(3)可表为
RTRA=RTy
(4)
(4)称为法方程组,当{r1(x),…,rm(x)}线性无关时,R列满秩,RTR可 逆,于是方程组(4)有唯一解
A=(RTR)-1RTy
(5)
可以看出,只要f(x)关于待定系数a1,…,am线性,在最小二乘准则 (2)下得到的方程组(3)关于a1,a2,…,am也一定是线性的,故称线 性最小二乘法。
线性最小二乘法原理
2.理论______函数rk(x)的选取
对数据(xi,yi)用线性最小二乘法作拟合时,首要的、也是关键的一步是 恰当地选取r1(x),r2(x),…,rm(x)。 n 如果通过机理分析,能够知道y与x之间应该有什么样的函数关系, 则r1(x),…,rm(x)容易确定。 n 若无法知道y与x之间的关系,可以将数据(xi,yi),i=1,2,…,n作图, 直观地判断应该用什么样的曲线去作拟合。常用的曲线有
75.50
7.50 11.875
1 2.00