三极管特性仿真
基于Multisim的三极管放大电路仿真分析

基于Multisim的三极管放大电路仿真分析来源:大比特半导体器件网引言放大电路是构成各种功能模拟电路的基本电路,能实现对模拟信号最基本的处理--放大,因此掌握基本的放大电路的分析对电子电路的学习起着至关重要的作用。
三极管放大电路是含有半导体器件三极管的放大电路,是构成各种实用放大电路的基础电路,是《模拟电子技术》课程中的重点内容。
在课程学习中,一再向学生强调,放大电路放大的对象是动态信号,但放大电路能进行放大的前提是必须设置合适的静态工作点,如果静态工作点不合适,输出的波形将会出现失真,这样的“放大”就毫无意义。
什么样的静态工作点是合适的静态工作点;电路中的参数对静态工作点及动态输出会产生怎样的影响;正常放大的输出波形与失真的输出波形有什么区别;这些问题单靠课堂上的推理及语言描述往往很难让学生有一个直观的认识。
在课堂教学中引入Multisim仿真技术,即时地以图形、数字或曲线的形式来显示那些难以通过语言、文字表达令人理解的现象及复杂的变化过程,有助于学生对电子电路中的各种现象形成直观的认识,加深学生对于电子电路本质的理解,提高课堂教学的效果。
实现在有限的课堂教学中,化简单抽象为具体形象,化枯燥乏味为生动有趣,充分调动学生的学习兴趣和自主性。
1 Multisim 10 简介Multisim 10 是美国国家仪器公司(NI公司)推出的功能强大的电子电路仿真设计软件,其集电路设计和功能测试于一体,为设计者提供了一个功能强大、仪器齐全的虚拟电子工作平台,设计者可以利用大量的虚拟电子元器件和仪器仪表,进行模拟电路、数字电路、单片机和射频电子线路的仿真和调试。
Multisim 10 的主窗口如同一个实际的电子实验台。
屏幕中央区域最大的窗口就是电路工作区,电路工作窗口两边是设计工具栏和仪器仪表栏。
设计工具栏存放着各种电子元器件,仪器仪表栏存放着各种测试仪器仪表,可从中方便地选择所需的各种电子元器件和测试仪器仪表在电路工作区连接成实验电路,并通过“仿真”菜单选择相应的仿真项目得到需要的仿真数据。
Proteus的虚拟仿真工具

作业
将以上仿真数据,波形图等用word文档上交,
格式可参考“仿真结果.doc”,每位同学以姓 名和学号命名建文件夹,同时将仿真电路图 和word文档一并放在文件夹中上交。
图4-2 二极管元件拾取对话框
(3) 电阻 电阻的分类为“Resistors”,子类有0.6W和2W金属 膜电阻、3W、7W和10W绕线电阻、通用电阻、热电 阻(NTC)、排阻(Resistor Packs)、可变电阻 (Variables)及家用高压系列加热电阻丝。 常用电阻可直接输入通用电阻“RES”拾取即可,然 后再修改参数。这里我们主要说一下比较常用的可变 电阻。直接输入“POT”或“POT-”可找到四个或三个 相关元件。 “POT”为一般滑动变阻器,触头不能拉动,需选中 后打开元件属性对话框,修改“STATE”来改变触头 的位置,“STATE”的初始值为5,触头位于中间,改 为10后,触头位于最上,如图4-3所示。由于调整不 方便,一般不使用此元件,而使用下面的几个滑动变 阻器。
图4-1 三极管元件拾取对话框
(2) 二极管 二极管的种类很多,包括整流桥、整流二极管、肖 特基二极管、开关二极管、隧道二极管、变容二极 管和稳压二极管。打开Proteus的元件拾取对话框, 选中“Category”中的“Diodes”,出现如图4-2所示 的对话框,一般来说,选取子类“Sub-category”中 的“Generic”通用器件即可,图4-2右边给出通用器 件的查寻结果,可以单击来看看需要使用哪种元件。
(5) 电感和变压器 电感和变压器同属电感“Inductors”这一分类,只不 过在子类中,又分为通用电感、表面安装技术(SMT) 电感和变压器。一般来说,使用电感时直接拾取 “INDUCTOR”元件,使用变压器时,要看原、副 边的抽头数而定。 打开元件拾取对话框,选取“Inductors”大类下的子 类“Transformers”,如图4-4所示,在右侧显示出 变压器可选元件。常用的是前四种,名称前缀为 “TRAN-”,也可以直接输入这个前缀来搜寻变压器。 为了帮助大家记忆变压器的名称,以第一个变压器 “TRAN-1P2S”为例来说明它的含义。“TRAN”是 变压器的英文“TRANSFORMER”的缩写,“P”是 原边“PRIMARY”的意思,“S”是副边 “SECONDORY”的意思。而后面三个变压器都是 饱和变压器,
三极管

Vceo
在选择晶体管时, 大约为所用电源电压2倍 在选择晶体管时,Vceo大约为所用电源电压 倍 S8050的Vceo为25V 的
S8050 NPN型三极管参数 型三极管参数
c
Ic
b
Ib Ie
Vce
+
e
最大集电极电流, 最大集电极电流,即流过三极管集电极的最大电流
Icm
在选择晶体管时, 在选择晶体管时,Icm大约为三极管正常工作时流过 集电极最大电流的2倍 集电极最大电流的 倍 S8050的Icm为0.5A 的
Ec = Ic x Rc + Vce
三极管仿真电路分析
Ib、Ic、Vce 波形 波形?
集电极电压V 集电极电压 c
NPN 型 集电极电源Ec 集电极电源
基极电源E 基极电源 b
三极管仿真电路分析
Vo 集电极电压(V) 集电极电压( Ic 集电极电流(mA) 集电极电流(
集电极电压V 集电极电压 c
驱动继电器(工作原理 驱动继电器 工作原理) 工作原理
+Vcc
3.R1、R2电阻取值
D IN4007
例如: 例如: 若Vcc=+5V,Ics=50mA,β=100, 且R2=4.7kΩ,计算R1取值。 Vcc-Vbe . . I . b= R 1 5V-0.7V R1 . . . Vbe R2 Ic > β
+Vcc
释放
D IN4007
继电器
c
输入Vi 输入 +Vcc OFF 0V R2 4.7K R1
续流二极管
S8050
b e
用NPN三极管驱动继电器电路图 三极管驱动继电器电路图
驱动继电器(工作原理 驱动继电器 工作原理) 工作原理
实验2 IV法测试二极管、三极管、MOS管的输入输出特性曲线

建立“学号+姓名”文件夹把仿真的实验分别建立文件夹,仿真的电路和结果放在对应的实验文件夹里面,统一发给学委。
实验2 IV分析仪测试二极管、三极管、MOS管的输入输出特性曲线一、实验目的1、学习Multisim12.0软件的基本使用方法。
学习元器件的选取、放置、电路连接、电路中各元件参数和标号的修改方法。
2、学会使用Multisim12.0中IV分析仪来测试二极管、NPN管、PNP管、NMOS管和PMOS 管的输入输出特性曲线。
二、实验内容1.用仿真软件仿真晶体管输出特性曲线和晶体管输入特性曲线。
测量放大倍数、阈值电压和三个区域的判断等(适当分析)。
二极管、NPN管、PNP管、NMOS管和PMOS管的型号可自由选定。
图1 二极管IV测试图2 IV法测试、NPN管、PNP管、NMOS管和PMOS管电路图三、实验原理下面仍以常见的NPN 三极管共发射极电路来说明半导体三极管的输入特性曲线和输出特性曲线。
测绘半导体三极管特性曲线的电路如图1-1 所示。
图中的电源EC用来供给发射结正向偏庄,而电源EC 则用来供给集电结反向偏压。
EB 和EC 都是可以调整的,以便可以得到从零到所需值的不同电压。
1.输入特性曲线当半导体三极管的集电极与发射极之间的电压VCE 为某一固定值时,基极电压VBE 与基极电流IB 间的关系曲线称为半导体三极管的特性曲线,即)(BE B U f I =常数=CB U如果将V CE 固定在不同电压值条件下.然后在调节EB 的同时测量不同IB 值对应的UBE 值,便可绘出半导体三极管的输入特性曲线。
图1-2 所示为3DG4管子的输入特性曲线。
从输入特性曲线上可以看出,UCE 越大,曲线越往右移,而实际上,当UCE > 1V 后,输入特性曲线彼此靠得很近,因此一般只作一条UCE > I V 的输入特性曲线,就可以代替不同UCE 的输入特性曲线。
图1-1 三极管特性曲线的电路 图1-2 3DG4管子的输入特性曲线2. 输出特性曲线当半导体三极管的基极电流I B 为某一固定值时,集电极电压U CE 与集电极电流I C 之间的关系曲线,称为半导体三极管的输出特性曲线,即)(CE c U f I =常数=B I对应I B 取不同定值时,改变U CE 并测量对应的I C , 则可得到半导体三极管的输出特性曲线组。
刚开始用PSPICE仿真的时候容易遇到的问题

刚开始用PSPICE仿真的时候容易遇到的问题刚开始用PSPICE仿真的时候容易遇到的问题刚开始用PSPICE仿真的时候容易遇到的问题真正的压力是自己给的,而不是别人;同样,你得到的成果也完全是你的,谁也拿不去。
——winston1:元件到哪里去找?元件当然是库里,但不是Capturer 的库,而是PSpice的库。
最好的办法是重新建一个PROJEC,T 建的时候选择那个模拟和混合仿真的,然后建一个新的SCH,这时加载元件库的时候加载的是PSPICE的库而不是Capture 的库了。
路径:Capture\Library\pspice。
重新加载库,重新Place元件。
直接从Capture 中直接Copy 过来,是不行的,那些元件都是没有模型的,RUN的时候会在该元件的一个角上出现一个绿色的小圆圈,点击它,会出现这样的错误提示:No PSpiceTemplate for U3, ignoring。
就是没模型。
下面是官方的说法,不动手做一正步还真不好理解:调用的器件必须有PSpice 模型。
首先,调用OrCAD 软件本身提供的模型库,这些库文件存储的路径为Capture\Library\pspice,此路径中的所有器件都有提供PSpice模型,可以直接调用。
其次,若使用自己的器件,必须保证*.olb 、*.lib 两个文件同时存在,而且器件属性中必须包含PSpice Template属性。
2:激励源怎么加?一般是这样,建一个GND,从这里引出一个电流源或者电压源,然后引出一个NET,和原理图上NET响应。
这样做的好处是不破坏原理图,而且看起来方便。
注意:PSPICE和CAPTURE的电源是不一样的,它长得和MULTISIM的差不多,是一个实体,而不是CAPTURE中的逻辑概念。
3:怎么老提示FLOATING PI?NSCH NET中一定要有一个网络地,并且其名称一定要为“ 0”。
如果没有,那么你连的再好,也总提示有N 多引脚悬空。
共射级三极管电路的Multisim仿真

一、背景资料本次课设选用常用的小功率NPN型三极管2N3904,是应用范围很广的一种常用半导体器件。
主要适用于低频放大电路和电子开关。
下面列出了2N3904三极管的一些参数:结构:NPN引脚:1.射极2.基极3.集电极极限参数特征频率:270MHz,最大直流电流增益h FE:300 。
二、研究任务1.使用模拟电路仿真软件Multisim搭建三极管共射级放大电路。
2.使用虚拟示波器观察放大电路在不同静态工作点时的输出波形。
3.用图表仿真的方法,分析放大器的静态工作点。
并简述放大器直流工作点对放大电路的影响。
三、仿真分析仿真电路如下图。
电路为单管共射级放大电路,R1,R2决定电路的放大倍数;R3,R4,C1决定电路的直流偏置电压。
C3为电路的电源去耦电容,用于滤除可能在电源处引入的噪声。
C2是耦合电容,只允许交流分量通过并输入三极管放大电路。
电源电压为9V,输入为50mV,1KHz的正弦信号。
1.共射级放大电路的静态工作点分析1.1静态工作点当输入信号为零时,放大电路工作在直流工作状态,也称为静态。
当放大电路所选的静态工作点不同时,会出现不同的工作状态。
当选取的静态工作点过低时,会导致电路在输入信号以后出现截止失真。
此时电路的静态工作点为:当选取的静态工作点过高时,会导致电路在输入信号后出现饱和失真。
此时电路的静态工作点为:当选取的静态工作点合适的时候放大电路才能正常的放大输入正弦波信号。
(其中蓝色为输入,红色为输出)此时的静态工作点为:仿真结果分析可以得到:对于共发射极放大电路来说,截止失真波形是输出波形的正半周失真,导致失真的原因是Q点设置过低,使得输入信号的负半周部分没有被正常放大;饱和失真波形是输出波形的负半周失真,导致失真的原因是Q点设置过高,使得输入信号的正半周部分没有被正常放大。
四、总结研究放大电路的静态工作点对于使用好放大电路具有重要意义。
只有确定好放大电路的静态工作点才能保证电路工作正常。
实验一 三极管输入输出特性实验报告

三极管输入输出特性姓名:班级:学号:指导老师:1.实验背景输入特性曲线(共射极)i=f(v BE) v CE=const.B(1)当v CE=0V时,相当于发射结的正向伏安特性曲线。
(2)当v CE≥1V时,v CB= v CE - v BE>0,集电结已进入反偏状态,开始收集电子,基区复合减少,同样的v BE下i B减小,特性曲线右移。
图1输出特性曲线(共射极)iC=f(vCE) iB=const.饱和区:vCE很小,iC iB,三极管如同工作于短接状态,一般vCE vBE,此管压降称为饱和压降。
此时,发射结正偏,集电结正偏或反偏电压很小。
截止区:iB=0,iC= iCEO0,三极管如同工作于断开状态,此时, vBE小于死区电压。
放大区: vBE >Vth,vCE反电压大于饱和压降,此时,发射结正偏,集电结反偏。
图22.实验目标1.掌握不同连接时的三极管的伏安特性曲线2.掌握利用PSpice A/D仿真功能中提供直流扫描分析(DC Sweep)以及参数分析(Parametric Analysis)3.实验方法1> 电路图中的参数用花括号括起,如下图中的{VCE}等2> 图中的PARAMETERS: place→part→add library后,添加special.olb3> 双击PARAMETERS:出现property editor,选择New column, name 中写入相应的参数名,例如下图中的VCE,初始值VCE=0V,IB=10uA,IE=1mA4> 仿真过程,需要先进行DC Sweep 设定,然后options中选择parametric sweep, 在sweep varaible栏中选择GLOBAL PARAMETER,在parameter name中将相应的参数名写入。
在sweep type栏中分别写入参数的变化,包括该参数的初始值、终值以及增量值。
PSpice仿真教程2--对静态工作点的温度特性分析

题目:对静态工作点的温度特性分析
电路如图所示,BJT为NPN型硅管,型号为2N3904,放大倍数为50,电路其他元件参数如图所示。
(1)求Q点。
(2)作温度特性分析。
观察温度在-30℃~+70℃范围内变化时,BJT的集电极电流Ic的变化范围?
步骤如下:
1. 绘制原理图如上图所示
2. 修改三极管的放大倍数Bf。
选中三极管→单击Edit→Model→Edit Instance Model,
在Model Ediror中修改放大倍数Bf=50。
题目要求“观察当温度在-30℃~+70℃范围内变化时,BJT的集电极电流Ic的变化范围”,所以加电流观测标识测量Ic,设置直流扫描分析,扫描变量设置为温度。
3. 加电流观测标识。
4.设置分析类型
选择Analysis→set up→DC Sweep,参数设置如下:
5. Analysis→Simulate,调用Pspice A/D对电路进行仿真计算。
6.在probe下观测仿真结果
选择Tools→Cursor→Display ,用游标测量曲线上的点。
问题:
1. 静态工作点Q (I C、I B、V CE)分别为多少?如何测量?
2. 当温度为-30℃和+70℃时,集电极电流Ic分别是多少?Ic的变化量是多少?这说明
了什么?
3. 分析该电路稳定静态工作点的原理?
4. 若将电源vs改为正弦源VSIN,是否能够得到同样的结果?VSIN为什么可用于直流扫
描分析?。