大学物理答案第17章
《新编大学物理》(上、下全册)桑建平教材习题答案解析武汉大学出版社

第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5; t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t=⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200t dvv v dt t dt =+=⎰,11/t vm s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v t g t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴= 又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴ (2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dv a kv dt ==- 0v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰ 2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m g a M M+==题2.4 :答案:[D] 提示:a a A22A BA B m g T m a T m a aa ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45A a g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos 60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=- 由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N 8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k g a== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰ 当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx Lμμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。
大学物理下第17章习题详解

第17章习题解答【17-1】解 首先写出S 点的振动方程若选向上为正方向,则有:-=0 21cos 0-=ϕ 0=-A sin 0>0, sin 0<0即 πϕ320-= 初始位相 πϕ320-= 则 m t y s )32cos(02.0πω-= 再建立如图题17-1(a )所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为:ux t =∆ 则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0 若坐标原点不选在S 点,如图题17-1(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为:uL x t -=∆ 则该波的波动方程为:m u L x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0 若P 点选在S 点左侧,如图题17-1(c )所示,则m u L x t y ⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0 【17-2】解(1)由图题17-2可知,波长 =0.8m振幅 A=0.5m频率 Hz Hz u v 1258.0100===λ 周期 s vT 31081-⨯== (2)平面简谐波标准动方程为:⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u x t A y 由图可知,当t=0,x=0时,y=A=,故=0。
将A 、(v)、u 、代入波动方程,得: m x t y ⎥⎦⎤⎢⎣⎡-=)100(250cos 5.0π 【17-3】解 (1)由图题17-3可知,对于O 点,t=0时,y=0,故2πϕ±= 再由该列波的传播方向可知,0<0取 2πϕ= 由图题17-3可知,m OP 40.0==λ,且u=0.08m/s ,则s rrad s rad uv /52/40.008.0222ππλππω==== 可得O 点振动表达式为:m t y )252cos(04.00ππ+= (2)已知该波沿x 轴正方向传播,u=0.08m/s ,以及O 点振动表达式,波动方程为: m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ (3)将x==代入上式,即为P 点振动方程:m t y p ⎥⎦⎤⎢⎣⎡-=ππ3252cos 04.0 (4)图题17-3中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。
大学物理下17章习题参考答案中国石油大学

17章习题参考答案17-3 如图所示,通过回路的磁场与线圈平面垂直且指出纸里,磁通量按如下规律变化()Wb 1017632-⨯++=Φt t式中t 的单位为s 。
问s 0.2=t 时,回路中感应电动势的大小是多少? R 上的电流方向如何?[解] ()310712d d -⨯+=Φ-=t tε ()23101.3107212--⨯=⨯+⨯=V根据楞次定律,R 上的电流从左向右。
17-4如图所示,两个半径分别为R 和r 的同轴圆形线圈,相距x ,且,R >>r ,x >>R 。
若大线圈有电流I 而小线圈沿x 轴方向以速度v 运动。
试求x =NR 时(N >0),小线圈中产生的感应电动势的大小。
[解] 因R>>r 可将通过小线圈的B 视为相等,等于在轴线上的B()2322202xR IR B +=μ由于x >>R ,有 3202x IR B μ=所以 t xxIS R t d d 32d d 420μ=Φ-=ε 而v t x=d d 因此 x =NR 时, 242023R N v r I πμ=ε17-5 如图所示,半径为R 的导体圆盘,它的轴线与外磁场平行,并以角速度ω转动(称为法拉第发电机)。
求盘边缘与中心之间的电势差,何处电势高?当R =0.15m ,B =0.60T ,rad 30=ω时,U 等于多大?[解] 圆盘可看成无数由中心向外的导线构成的,每个导线切割磁力线运动且并联,因此有2021d d )(BR r rB R L ωω==⋅⨯=⎰⎰l B v 感ε因电动势大于零,且积分方向由圆心至边缘,所以边缘处电位高(或由右手定则判断)代入数据得201506030212...=⨯⨯⨯==εU V 17-6 一长直导线载有电流强度I =5.0A 的直流电,在近旁有一与它共面的矩形线圈,线圈长l =20cm ,宽a =10cm ,共1000匝,如图所示。
大学物理第十七章波动光学(二)双缝干涉

的极限宽度:
b B
d
d B
b
光场的空间相干性:
*描述光源线宽度对干涉条纹的影响。 *反映扩展光源不同部分发光的独立性。
光源沿y轴方向扩展时,各点光源的各套干涉纹 发生非相干性叠加,条纹更加明亮,所以用狭 缝线光源
(c)光的非单色性对条纹可见度的影响
实际光源都发出非严格单色波,
I
条纹的移动 x D
d
(1)d,D一定时,若λ变化,则Δx将怎样变化?
(2) λ,D一定时,条纹间距Δx与d的关系如何?
(3)白光照射双缝: 零级明纹:白色 其余明纹:彩色光谱
高级次重叠。 S*
零级
一级
二级 三级
(4)光源S的移动对条纹的影响
S沿x轴平移,条纹整体沿相反方向上下移动, 其余不变
I0
I0/2
L
P
可度以证有明关波系L列:长度2L与波长波宽列通过谱PO线点宽持度续时间 t
L c
干涉条纹可见度 V 1 Δ L
定义相干长度为能产生干涉条纹的最大光程差
V 1 Δ L
相干长度和相干时间越长, 光源的相干性越好,条纹 可见度越高。
相干长度: L 2
高等教育大学教学课件 大学物理
同学们好!
§17-2 双缝干涉
一、杨氏双缝实验
Thomas Young 1773--1829
英国医生、科学家托马斯.杨1801年 用双缝干涉实验证明了光的波动性, 并首先测出太阳光的平均波长:
杨氏 570 nm
现代 555 nm
该实验对光的波动说的复苏起到关键 作用,在物理学史上占重要地位。
S沿y轴平移,条纹不动
思考: (1)条纹的定域
大学物理习题答案第十七章

[习题解答]17-5 将20g的氦气分别按照下面的过程,从17℃升至27℃,试分别求出在这些过程中气体系统内能的变化、吸收的热量和外界对系统作的功:(1)保持体积不变;(2)保持压强不变;(3)不与外界交换热量。
设氦气可看作理想气体,且。
解(1)保持体积不变:外界对系统不作功,系统内能的变化为,吸收的热量为.这表示,在系统体积不变的情况下,外界对系统不作功,系统从外界获得的热量全部用于内能的增加。
(2)保持压强不变:,系统内能的变化,外界对系统作功.这表示,在系统保持压强不变的情况下,系统从外界获得的热量,一部分用于增加系统的内能,另一部分用于系统对外界作功。
(3)不与外界交换热量,即绝热过程:吸收的热量,系统内能的变化,外界对系统作功.这表示,在绝热条件下,系统与外界无热量交换,外界对系统所作的功全部用于内能的增加。
17-6 把标准状态下的14 g氮气压缩至原来体积的一半,试分别求出在下列过程中气体内能的变化、传递的热量和外界对系统作的功:(2)绝热过程;(3)等压过程。
设氮气可看作为理想气体,且。
解(1)等温压缩过程:外界对系统所作的功;在等温过程中系统内能不变;传递的热量:根据热力学第一定律,有.这表示,在等温过程中,系统内能不变,外界对系统所作的功全部以热量的形式释放到外界。
(2)绝热压缩过程:;,根据绝热方程,,其中,所以;外界对系统所作的功.这表示,在绝热压缩过程中,外界对系统所作的功,全部用于系统内能的增加。
(3)等压过程:根据物态方程,在初态和末态分别有,,两式相除,得或 ,所以.内能的增加为;系统获得的热量为;外界对系统所作的功为.这表示,在等压过程中,系统向外界释放热量,此热量来自于外界对系统所作的功和自身内能的减小。
17-7 在标准状态下的16 g氧气经过一绝热过程对外界作功80 J。
求末态的压强、体积和温度。
设氧气为理想气体,且,。
解系统对外界作功80 J,即,在绝热过程中系统与外界无热量交换,所以,根据热力学第一定律,这表示,在绝热过程中系统降低自身的内能而对外界作功。
大学物理答案第17章

第十七章 光的衍射17-1 波长为700nm 的红光正入射到一单缝上,缝后置一透镜,焦距为0.70m ,在透镜焦距处放一屏,若屏上呈现的中央明条纹的宽度为2mm ,问该缝的宽度是多少?假定用另一种光照射后,测得中央明条纹的宽度为1.5mm ,求该光的波长。
解:单缝衍射中央明条纹的宽度为afx λ2=∆m xf a 739109.4102107007.022---⨯=⨯⨯⨯⨯=∆=λfx a2∆=λ代入数据得 nm 5257.02105.1109.437=⨯⨯⨯=--λ17-2一单缝用波长为λ1和λ2的光照明,若λ1的第一级衍射极小与λ2的第二级衍射极小重合。
问(1)这两种波长的关系如何?(2)所形成的衍射图样中是否还有其它极小重合? 解:(1)单缝衍射极小条件为λθk a =sin依题意有 212λλ= (2)依题意有11sin λθk a = 22sin λθk a =因为212λλ=,所以得所形成的衍射图样中还有其它极小重合的条件为212k k =17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。
解:单缝衍射中央明条纹的宽度为af x λ2=∆代入数据得mm x 461.5101.0101.54610502392=⨯⨯⨯⨯=∆---17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。
解:单缝衍射极小的条件λθk a =sin依题意有m a μλ26.70872.0108.6325sin 9=⨯==-17-5 波长为20m 的海面波垂直进入宽50m 的港口。
在港内海面上衍射波的中央波束的角宽是多少?解:单缝衍射极小条件为λθk a =sin依题意有 0115.234.0sin52sin20sin 50===→=--θθ中央波束的角宽为0475.2322=⨯=θ17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。
大学物理第十七章课后答案

习题十七17-1 按照原子核的质子一中子模型,组成原子核X AZ 的质子数和中子数各是多少?核内共有多少个核子?这种原子核的质量数和电荷数各是多少?答:组成原子核X AZ 的质子数是Z ,中子数是Z A -.核内共有A 个核子.原子核的质量数是A ,核电荷数是Z .17-2 原子核的体积与质量数之间有何关系?这关系说明什么?答:实验表明,把原子核看成球体,其半径R 与质量数A 的关系为310A R R =,说明原子核的体积与质量数A 成正比关系.这一关系说明一切原子核中核物质的密度是一个常数.即单位体积内核子数近似相等,并由此推知核的平均结合能相等.结合能正比于核子数,就表明核力是短程力.如果核力象库仑力那样,按照静电能的公式,结合能与核子数A 的平方成正比,而不是与A 成正比.17-3 什么叫原子核的质量亏损?如果原子核X AZ的质量亏损是m ∆,其平均结合能是多少? 解:原子核的质量小于组成原子核的核子的质量之和,它们的差额称为原子核的质量亏损.设原子核的质量为x M ,原子核X A Z 的质量亏损为:x n p M m Z A Zm m --+=∆])([平均结合能为A mc A E E 20ΔΔ== 17-4 已知Th 23290的原子质量为u 232.03821,计算其原子核的平均结合能.解:结合能为MeV 5.931])([ΔH ⨯--+=M m Z A Zm E nTh 23290原子u M 03821.232=,90=Z ,232=A ,氢原子质量u m 007825.1H =, u m n 008665.1=MeV1.766.56MeV5.931]03821.232008665.1)90232(007825.190[Δ=⨯-⨯-+⨯=∴E∴平均结合能为 MeV614.723256.1766Δ0===A E E17-5什么叫核磁矩?什么叫核磁子(N μ)?核磁子N μ和玻尔磁子B μ有何相似之处?有何区别?质子的磁矩等于多少核磁子?平常用来衡量核磁矩大小的核磁矩I μ'的物理意义是什么?它和核的g 因子、核自旋量子数的关系是什么?解:原子核自旋运动的磁矩叫核磁矩,核磁子是原子核磁矩的单位,定义为:227m A 10.05.51.18361π4⋅⨯===-B p N m eh μμ式中pm 是质子的质量.核磁子与玻尔磁子形式上相似,玻尔磁子定义为e B m ehπμ4=,式中e m 是电子的质量.质子的磁矩不等于N μ.质子的磁矩N P μμ79273.2=.平常用来衡量核磁矩大小的是核磁矩在外磁场方向分量的最大值I μ',它和原子核g 因子、自旋量子数的关系是N I II g μμ='. 17-6 核自旋量子数等于整数或半奇整数是由核的什么性质决定?核磁矩与核自旋角动量有什么关系?核磁矩的正负是如何规定的?解:原子核是由质子和中子组成.质子和中子的自旋均为21.因此组成原子核的质子和中子数的奇、偶数决定了核自旋量子数为零或21的奇、偶倍数.核磁矩与自旋角动量的关系是:IpI I P m e g 2=μ I μ的正负取决于I g 的正负.当I μ与I P 平行时I μ 为正,当I μ 与I P 反平行时,I μ为负.17-7 什么叫核磁共振?怎样利用核磁共振来测量核磁矩?解:原子核置于磁场中,磁场和核磁矩相互作用的附加能量使原子核能级发生分裂.当核在电磁辐射场中时,辐射场是光子组成的,当光子的能量hv 等于核能级间隔时,原子核便吸收电磁场的能量,称为共振吸收,这一现象称为核磁共振.在磁场中核能级间隔为:B g E N I μ=∆共振吸收时,B g E h N I μυ=∆=通常用核磁矩在磁场方向分量的最大值I μ'来衡量磁矩的大小,N I I I g μμ=',则有BIh Iμυ'=∴B h II υμ=',已测出I ,υ,现测得B 就可以算出I μ'.17-8 什么叫核力?核力具有哪些主要性质?答:组成原子核的核子之间的强相互作用力称为核力.核力的主要性质:(1)是强相互作用力,主要是引力.(2)是短程力,作用距离小于m 1015-,(3)核力与核子的带电状况无关.(4)具有饱和性. 17-9 什么叫放谢性衰变?α,β,γ射线是什么粒子流?写出U 23890的α衰变和Th 23490的β衰变的表示式.写出α衰变和β衰变的位移定则.解:不稳定的原子核都会自发地转变成另一种核而同时放出射线,这种变化叫放射性衰变.α射线是带正电的氦核He 42粒子流,β射线是高速运动的正、负电子流,γ射线是光子流.e e υ~Pa Th He Th 012349123490422349023892++→+→-α衰变和β衰变的位移定则为:α衰变 He Y X 4242+→--A z A z β衰变的位移定则为:e A z A z υ~e Y X 0++→-+e A z A zυ++→+-e Y X 01117-10 什么叫原子核的稳定性?哪些经验规则可以预测核的稳定性?答:原子核的稳定性是指原子核不会自发地从核中发出射线而转变成另一种原子核的性质. 以下经验规则可预测核的稳定性:(1)原子序数大于84的核是不稳定的.(2)原子序数小于84的核中质子数和中子数都是偶数的核稳定.(3)质子或中子数等于幻数2、8、20、28、50、82、126的原子核特别稳定.(4)质子数和中子数之比1=p n 的核稳定.比值越大,稳定性越差.17-11 写出放射性衰变定律的公式.衰变常数λ的物理意义是什么?什么叫半衰期21T ?21T 和λ有什么关系?什么叫平均寿命τ?它和半衰期21T 、和λ有什么关系?解:tN N λ-0e=,衰变常数N tN d /d -=λ.的物理意义是表示在某时刻,单位时间内衰变的原子数与该时刻原子核数的比值.是表征衰变快慢的物理常数.原子核每衰变一半所需的时间叫半衰期.λT 2ln 21=平均寿命τ是每个原子核衰变前存在时间的平均值.λτ1=2ln 21τ=T .17-12 测得地壳中铀元素U 23592只点0.72%,其余为U 23892,已知U 23892的半衰期为4.468×109年,U 23592的半衰期为7.038×108年,设地球形成时地壳中的U 23892和U 23592是同样多,试估计地球的年龄.解:按半衰期λλ693.02ln ==T对年:/110847.910038.7693.0693.0U 10181123592-⨯=⨯==T λ对年:/110551.110468.4693.0693.0U 1092223892-⨯=⨯==T λ按衰变定律tN N λ-=e 0,可得ttt N N N N )(00211221e e e λλλλ---==则地球年龄:1221ln λλ-=N N t 年9101094.510)847.9551.1(28.9972.0ln⨯=⨯-=-17-13 放射性同位素主要应用有哪些?答:放射性同位素主要在以下几个方面应用较广泛:医学上用于放射性治疗和诊断;工业上用于无损检测;农业上用放射性育种;考古学、地质学中用于计算生物或地质年代;生物学中作示踪原子等等.17-14 为什么重核裂变或轻核聚变能够放出原子核能?答:轻核和重核的平均结合能较小,而中等质量)60~40(=A的核平均结合能较大,因此将重核裂变成两个中等质量的核或轻核聚变成质量数较大的核时平均结合能升高,从而放出核能.17-15 原子核裂变的热中子反应堆主要由哪几部分组成?它们各起什么作用?答:热中子反应堆的主要组成部份有堆芯、中子反射层、冷却系统、控制系统、防护层.堆芯是放置核燃料和中子减速剂的核心部份,维持可控链式反应,释放原子核能.冷却系统与换能系统合二为一,再通过冷却系统将堆芯释放出的核能输送到堆芯以外.控制系统是通过控制棒插入堆芯的长度,控制参加反应的中子数,使反应堆保持稳定的功率.中子反射层是阻挡中子从反应堆中逸出.防护层是反应堆的安全屏障.17-16 试举出在自然界中存在负能态的例子.这些状态与狄拉克真空,结果产生1 MeV的电子,此时还将产生什么?它的能量是多少?答:例如物体在引力场中所具有的引力势能;正电荷在负电荷电场中的静电能,都是自然界中的负能态.这些负能态是能够观测到的,具有可观测效应.狄拉克的负能态是观测不到的,没有可观测效应.17-17 将3MeV能量的γ光子引入狄拉克真空,结果产生1MeV的电子,此时还将产生什么?它的能量是多少?答:把能量大于电子静能两倍MeV022.122=>cmE的γ光子引入真空,它有可能被负能量电子的一个电子所吸收,吸收了这么多能量的电子有可能越过禁区而跃迁到正能量区,并表现为一个正能量的负电子-e;同时,留下的空穴表现为一个正能量的正电子+e.这一过程称为电子偶的产生,可写为-++→eeγ按题意,根据能量守恒,正电子的能量为MeV 217-18 试证明任何能量的γ光子在真空中都不可能产生正、负电子对.答:证明:设由γ光子转化成的一对正负电子其动量分别为1p和2p,在电子的质心系中应有21=+pp并且正负电子的总能量应大于22cme.按照相对论,光子动量与能量的关系为pcE=,动量等于零而能量不等于零的光子是不存在的.显然γ光子转换成正负电子,同时满足能量守恒和动量守恒是不可能的,即在真空中无论γ光子能量多大,都不可能产生正负电子对.但是γ光子与重原子核作用时便可转化为正负电子对.。
大学物理17章答案

第17章 量子物理基础17.1 根据玻尔理论,计算氢原子在n = 5的轨道上的动量矩与其在第一激发态轨道上的动量矩之比.[解答]玻尔的轨道角动量量子化假设认为电子绕核动转的轨道角动量为2π==n n hL mvr n ,对于第一激发态,n = 2,所以L 5/L 2 = 5/2.17.2设有原子核外的3p 态电子,试列出其可能性的四个量子数.[解答] 对于3p 态电子,主量子数为n = 3,角量子数为 l = 1,磁量子数为 m l = -l , -(l - 1), …, l -1, l ,自旋量子数为 m s = ±1/2.3p 态电子的四个可能的量子数(n ,l ,m l ,m s )为(3,1,1,1/2),(3,1,1,-1/2),(3,1,0,1/2),(3,1,0,-1/2),(3,1,-1,1/2),(3,1,-1,-1/2) .17.3 实验表明,黑体辐射实验曲线的峰值波长λm 和黑体温度的乘积为一常数,即λm T = b = 2.897×10-3m·K .实验测得太阳辐射波谱的峰值波长λm = 510nm ,设太阳可近似看作黑体,试估算太阳表面的温度.[解答]太阳表面的温度大约为392.8971051010λ--⨯==⨯m b T = 5680(K).17.4 实验表明,黑体辐射曲线和水平坐标轴所围成的面积M (即单位时间内从黑体单位表面上辐射出去的电磁波总能量,称总辐射度)与温度的4次方成正比,即M = σT 4,其中σ =5.67×10-8W·m -2·K -4.试由此估算太阳单位表面积的辐射功率(太阳表面温度可参见上题).[解答]太阳单位表面积的辐射功率大约为M = 5.67×10-8×(5680)4 = 5.9×107(W·m -2).17.5宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于3K 黑体辐射.求:(1)此辐射的单色辐射强度在什么波长下有极大值?(2)地球表面接收此辐射的功率是多少?[解答](1)根据公式λm T = b ,可得辐射的极值波长为λm = b/T = 2.897×10-3/3 = 9.66×10-4(m).(2)地球的半径约为R = 6.371×106m ,表面积为 S = 4πR 2.根据公式:黑体表面在单位时间,单位面积上辐射的能量为 M = σT 4,因此地球表面接收此辐射的功率是P = MS = 5.67×10-8×34×4π(6.371×106)2= 2.34×109(W).17.6 铝表面电子的逸出功为6.72×10-19J,今有波长为λ = 2.0×10-7m 的光投射到铝表面上.试求:(1)由此产生的光电子的最大初动能;(2)遏止电势差;(3)铝的红限波长.[解答](1)光子的能量为E = hν = hc/λ,根据爱因斯坦光电效应方程hν = E k + A,产生的光电子的最大初动能为E k= hν - A= 6.63×10-34×3×108/2.0×10-7-6.72×10-19= 3.23×10-19(J).(2)遏止电势差的公式为eU s = E k,遏止电势差为U s = E k/e = 3.23×10-19/1.6×10-19=2.0(V).(3)铝的红限频率为ν0= A/h,红限波长为λ0= c/ν0= hc/A= 6.63×10-34×3×108/6.72×10-19= 2.96×10-7(m).17.7 康普顿散射中入射X射线的波长是λ = 0.70×10-10m,散射的X 射线与入射的X射线垂直.求:(1)反冲电子的动能E K ;(2)散射X 射线的波长;(3)反冲电子的运动方向与入射X 射线间的夹角θ.[解答](1)(2)根据康普顿散射公式得波长变化为21222sin 2 2.42610sin 24ϕπλΛ-∆==⨯⨯= 2.426×10-12(m),散射线的波长为λ` = λ + Δλ = 0.72426×10-10(m).反冲电子的动能为`k hchcE λλ=-34834810106.6310310 6.63103100.7100.7242610----⨯⨯⨯⨯⨯⨯=-⨯⨯= 9.52×10-17(J).(3)由于 /`tan /`hc hc λλθλλ==,0.70.96650.72426==,所以夹角为θ = 44°1`.17.8 求波长分别为λ1 = 7.0×10-7m 的红光;λ2 = 0.25×10-10m 的X 射线的能量、动量和质量.[解答]X 射线的能量为E = h ν = hc/λ,动量为 p = h/λ;由E = hc/λ = mc 2,得其质量为m = h/cλ.对于红光来说,能量为348176.6310310710E --⨯⨯⨯=⨯= 2.84×10-19(J),动量为34176.6310710p --⨯=⨯= 9.47×10-25(kg·m·s -1),质量为341876.6310310710m --⨯=⨯⨯⨯= 3.16×10-36(kg).对于X 射线来说,能量为3482106.63103100.2510E --⨯⨯⨯=⨯= 7.956×10-15(J),动量为342106.63100.2510p --⨯=⨯= 2.652×10-23(kg·m·s -1),质量为3428106.63103100.2510m --⨯=⨯⨯⨯= 8.84×10-32(kg).17.9 处于第四激发态上的大量氢原子,最多可发射几个线系,共几条谱线?那一条波长最长.[解答]第四激发态的氢原子处于第5个能级,最多可发射四个线系.(1)能级5到4,1条谱线;(2)能级5和4到3,2条谱线;(3)能级5、4和3到2,3条谱线;(3)能级5、4、3和2到1,4条谱线.共10条谱线.从能级5跃迁到4发射的光谱频率最小,波长最长.17.10 设氢原子中电子从n = 2的状态被电离出去,需要多少能量.[解答]氢原子能级公式为4222018n me E h n ε=-,当n =1时,基态能级的能量为412208me E h ε=-≈-2.18×10-18(J) = -13.6(eV),因此 12n E E n =.当电子从n 能级跃迁到m 能级时放出(正)或吸收(负)光子的能量为12211()n m E E E E n m ∆=-=-.电离时,m 趋于无穷大.当电子从n = 2的能级电离时要吸收能量 221113.6()2E ∆=--∞= -3.4(eV),因此需要3.4eV 的能量.17.11 质量为m 的卫星,在半径为r 的轨道上环绕地球运动,线速度为v .(1)假定玻尔氢原子理论中关于轨道角动量的条件对于地球卫星同样成立.证明地球卫星的轨道半径与量子数的平方成正比,即r = Kn 2,(式中K 是比例常数);(2)应用(1)的结果求卫星轨道和下一个“容许”轨道间的距离,由此进一步说明在宏观问题中轨道半径实验上可认为是连续变化的(利用以下数据作估算:普朗克常数h = 6.63×10-34J·s ,地球质量M = 6×1024kg ,地球半径R = 6.4×103km ,万有引力常数G =6.7×10-11N·m 2·kg -2.[解答](1)卫星绕地球运动的向心力是万有引力22Mm mv G r r =;根据玻尔理论,角动量为mvr = nh /2π.将前式乘以mr 3得2222()()4nh GMm r mvr π==,所以 222224h n r Kn GMm π==,即:卫星的轨道半径与量子数的平方成正比.(2)假设卫星质量m = 100kg ,比例系数为2224h K GMm π=342211242(6.6310)4 6.710610(100)π--⨯=⨯⨯⨯⨯⨯ = 2.77×10-87.可见:比例系数很小.当r = R 时,地球表面的量子数为460 4.810n ⨯.可见:地球表面处的量子数很大.地面以上的量子数设为n `,(n` = 1,2,3,…),则总量子数可表示为两个量子数之和:n =n 0 + n`.轨道间的距离为Δr = K [(n 0 + n` + 1)2 - (n 0 + n`)2]= K [2(n 0 + n`) + 1].由于n 0>>1,所以Δr = 2Kn 0 + 2Kn`.设n` = kn 0,即:取地面以上的量子数为地球表面量子数的倍数,有n = (k + 1)n 0,则r = Kn 02(k + 1)2,Δr = 2Kn 0(k + 1) = 2.66×10-40(k + 1).这说明:当地面以上的量子数按k + 1成倍地增加时,半径将按k + 1的平方的规律增加,而轨道之间的距离只按k + 1的一次方的规律增加;由于Δr 的系数很小,所以轨道间距是非常非常小的,因此可认为轨道半径是连续变化的.17.12 电子和光子各具有波长2.0×10-10m ,它们的动量和总能量各是多少?[解答]它们的动量都为34106.6310210h p λ--⨯==⨯= 3.315×10-24(kg·m·s -1).根据公式E 2 = p 2c 2 + m 02c 4,电子的总能量为E ==3×108×[(3.315×10-24)2+ (9.1×10-31×3×108)2]1/2=8.19×10-14(J).光子的静止质量为零,总能量为E = cp= 3×108×3.315×10-24 = 9.945×10-16(J).17.13 室温下的中子称为热中子T = 300K ,试计算热中子的平均德布罗意波长.[解答]中子热运动的平均速度为=v其中k为玻尔兹曼常数k= 1.38×10-23J·K-1,m p是电子的质量m p= 1.675×10-27kg,可得平均速度为v= 2.509×104(m·s-1),平均动量为=np m v= 4.2×10-27(kg·m·s-1).平均德布罗意波长为/λ=h p= 1.58×10-10(m) = 0.158(nm).17.14 一束动量是p的电子,通过缝宽为a的狭缝,在距离狭缝为R 处放置一屏,屏上电子衍射图样中央最大的宽度是多少?[解答]根据动量和位置的不确定关系Δp x·Δx≧h,其中位置不确定量为Δx = a,动量的不确定量为Δp x = p sinθ.设电子衍射图样的中央最大半宽度为w,则sinθ = w/R,可得wp a hR⋅≥,宽度为22hRwpa≥.[注意]如果将h改为ћ/2,则宽度为2w≧ћR/pa.两者相差很小.17.15 一宽度为a的一维无限深势阱,试用不确定关系估算阱中质量为m的粒子最低能量为多少?[解答]粒子坐标的不确定范围是Δx ≦a ,动量的不确定范围是Δp ≧h /Δx ≧h /a .这也就是动量p 的范围.因此能量为E = p 2/2m ≧ h 2/2ma 2,最低能量可估计为E min = h 2/2ma 2.17.16 设有一宽度为a 的一维无限深势阱,粒子处于第一激发态,求在x = 0至x = a /3之间找到粒子的几率?[解答]粒子在一维无限深势阱中的定态波函数为(0)(),(1,2,3,...)πψ≤≤==n x a n x x n a ,Ψ(x ) = 0,(x < 0,x > a ).当粒子处于第一激发态时,n = 2,在x = 0至x = a /3之间被发现的几率为/3220|()|d ψ⎰a x x /32022sin d π=⎰a x x a a23== 0.391.17.17 设粒子在宽度为a 的一维无限深势阱运动时,其德布罗意波在阱内形成驻波,试利用这一关系导出粒子在阱中的能量计算式.[解答]当粒子在势阱中形成稳定驻波时,势阱宽度必然为半波长的整数倍,即n (λ/2) = a ,(n = 1,2,3,…).根据德布罗意假设 λ = h/p ,可得粒子的动量为2λ==h nhp a 能量为 222228==p h E n m ma .17.18假定对某个粒子动量的测定可精确到千分之一,试确定这个粒子位置的最小不确定量.(1)该粒子质量为5×10-3kg ,以2m·s -1的速度运动;(2)该粒子是速度为1.8×108m·s -1的电子.[解答]粒子的动量为 p = mv ,动量的不确定量为 Δp = p /1000,根据动量和位置的不确定关系Δp ·Δx ≧ћ/2,位置的不确定量为 Δx = ћ/2Δp .(1)100024h x p mv π∆≥=∆h3431000 6.631045102-⨯⨯=π⨯⨯⨯= 5.276×10-30(m).(2)100024h x p mv π∆≥=∆h343181000 6.631049.110 1.810--⨯⨯=π⨯⨯⨯⨯= 3.22×10-10(m).17.19设有某线性谐振子处于第一激发态,其波函数为2221ψ-=a x .式中a =,k 为常数,则该谐振子在何处出现的概率最大?[解答]第一激发态的概率为22221||a xw e ψ-==,对x 求导得222222d (2)]d a x a x w xe x a x e t --=+-2222(1)a xx x a e -=-,令d w /d t = 0,得概率最大的位置为x = ±1/a .17.20一维运动的粒子,处于如下的波函数所描述的状态,(0);()0,(0).x Axe x x x λψ-⎧>=⎨<⎩式中λ > 0,A 为常数.(1)将此波函数归一化;(2)求粒子位置的概率分布函数;(3)粒子在在何处出现的概率最大?[解答](1)归一化得222201||d d x x A xe x λψ∞∞--∞==⎰⎰ 22201d 2x A x e λλ∞--=⎰2222001{2d }2x x A x e xe x λλλ∞∞---=-⎰222012()d 2xA x e λλ∞--=-⎰ 22220012(){d }2xx A xe e x λλλ∞∞---=--⎰22323012()24xA A e λλλ∞--==,所以A =2λ3/2 .归一化波函数为3/22,(0);()0,(0).x xe x x x λλψ-⎧>=⎨<⎩([注]利用Γ函数的性质可简化积分过程.10()d n x n x e x∞--Γ=⎰,当n 为整数时,Γ(n ) = (n - 1)!.设y = 2λx ,则d x = d y /2λ,可得22331001d ()d 2x y x ex y e y λλ∞∞---=⎰⎰ 3311()(3)2()22λλ=Γ=,可以得出同一结果.)(2)粒子坐标的几率分布函数为32224,(0);()|()|0,(0).x x e x w x x x λλψ-⎧>==⎨<⎩(3)利用上一题的方法求导可得几率最大的位置为x = 1/λ.17.21 设有某一维势场如下:0,(0);,(0,).≤≤⎧=⎨<>⎩x LVV x x L该势场可称为有限高势阱,设粒子能量E < V0,求E所满足的关系式.[解答]粒子运动的薛定谔方程为222()0mE Vψψ∇+-=h.在三个区域的方程为210122d2()0,(0);dmE V xxψψ+-=<h22222d20,(0);dmE x Lxψψ+=<<h230322d2()0,().dmE V x Lxψψ+-=>h设1k=h,2k=h,则得221112d0,(0);dk xxψψ-=<(1)222222d0,(0);dk x Lxψψ+=<<(2)223132d0,().dk x Lxψψ-=>(3)方程的通解为ψ1(x) = A1exp(k1x) + B1exp(-k1x),(x<0);(4)ψ2(x ) = A 2cos(k 2x ) + B 2sin(k 2x ),(0<x <L );(5)ψ3(x) = A 3exp(k 1x ) + B 3exp(-k 1x ),(x >L ).(6)当x →-∞时,ψ1有限,所以B 1 = 0;当x →∞时,ψ3有限,所以A 3 = 0.当x = 0时,ψ1(0) = ψ2(0),可得A 1 = A 2; (7)同时ψ1`(0) = ψ2`(0),可得k 1A 1 = k 2B 2. (8)当x = L 时,ψ2(L ) = ψ3(L ),ψ2`(L ) = ψ3`(L ),可得A 2cos k 2L +B 2sin k 2L = B 3exp(-k 1L );(9)-k 2A 2sin k 2L + k 2B 2cos k 2L = -k 1B 3exp(-k 1L )(10)将(9)乘以k 1加(10)得k 1A 2cos k 2L + k 1B 2sin k 2L-k 2A 2sin k 2L + k 2B 2cos k 2L = 0.即 (k 1A 2 + k 2B 2)cos k 2L = (k 2A 2 - k 1B 2)sin k 2L ,亦 122222212t a n k A k B k L k A k B +=-. (11)由(7)和(8)得k 1A 2 = k 2B 2,即 B 2 = k 1A 2/k 2, (12)(12)代入(11)式得12222212tan kk k L k k =-,即0t a n =h (13)这就是总能量满足的关系式.17.22 原子内电子的量子态由n 、l 、m l 、m s 四个量子数表征,当n 、l 、m l 一定时,不同的量子态数目为多少?当n 、l 一定时,不同量子态数目为多少?当n 一定时,不同量子态数目为多少?[解答]当n 、l 、m l 一定时,m s 只取两个值,所以量子态数目为2. 当n 、l 一定时,m l 有(2l + 1)种不同取值,所以量子态数目为2(2l + 1).当n 一定时,l 从0到(n - 1)共有n 种不同取值,量子态数目为1110002(21)421n n n l l l l l ---===+=+∑∑∑2(1)4222n n n n -=⨯+=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理答案第17章17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。
解:单缝衍射中央明条纹的宽度为afx λ2=∆代入数据得mm x 461.5101.0101.54610502392=⨯⨯⨯⨯=∆---17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。
解:单缝衍射极小的条件λθk a =sin依题意有m a μλ26.70872.0108.6325sin 9=⨯==-17-5 波长为20m 的海面波垂直进入宽50m 的港口。
在港内海面上衍射波的中央波束的角宽是多少?解:单缝衍射极小条件为λθk a =sin依题意有0115.234.0sin 52sin 20sin 50===→=--θθ中央波束的角宽为0475.2322=⨯=θ17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。
解:单缝衍射明纹条件为2)12(sin λθ+=k a 依题意有 2)122(2)132(21λλ+⨯=+⨯ 代入数据得nm 6.428760057521=⨯==λλ17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。
(1)瞳孔最大直径为7.0mm ,入射光波长为550nm 。
星体在视网膜上像的角宽度多大?(2)瞳孔到视网膜的距离为23mm 。
视网膜上星体的像的直径多大?(3)视网膜中央小凹(直径0.25mm )中的柱状感光细胞每平方毫米约1.5×105个。
星体的像照亮了几个这样的细胞?解:(1)据爱里斑角宽公式,星体在视网膜上像的角宽度为rad d 439109.1100.71055044.244.22---⨯=⨯⨯==λθ(2)视网膜上星体的像的直径为 mm l d 34104.423109.1 2--⨯=⨯⨯==θ(3)细胞数目应为3.2105.14)104.4(523=⨯⨯⨯⨯=-πn 个17-8 在迎面驶来的汽车上,两盏前灯相距120cm 。
试问汽车离人多远的地方,眼睛恰能分辨这两盏前灯?设夜间人眼瞳孔直径为5.0mm ,入射光波长为550nm.。
解:38.9101.22l L lLl D L mλδθλ∆∆∆⋅==⨯设两灯距为,人车距为。
人眼最小分辨角为,=1.22=D17-9 据说间谍卫星上的照相机能清楚识别地面上汽车的牌照号码。
(1)若被识别的牌照上的字划间的距离为5cm ,在160km 高空的卫星上的照相机的角分辨率应多大?(2)此照相机的孔径需多大?光的波长按500nm 计算。
解:装置的光路如图所示。
S 15cm S 2D(2)sin 1.22, 1.222rad rad D m Dδθλλθδθ⨯=⨯⨯===-2-73(1)角分辨率即最小分辨角为510=3101601017-10 一光栅每厘米刻有4000条线,计算在第二级光谱中,氢原子的α和δ谱线间的角间隔(以度为单位)已知α和δ谱线的波长分别为656nm 和410nm ,假定是正入射。
解:2.5400022656sin 2sin 2.522410sin 0.3282.531.655m mmb b m mb mθλλϕλϕλϕαϕδϕϕ⨯=⨯'⨯⨯'=∴=⨯''⨯⨯''⨯'''∴∆oo-2-6-9-6-9-6110(1)光栅常数b=10由光栅衍射明纹条件bsin =k 得正入射时10==0.5248,1010===10谱线第二级亮纹张角为=谱线第二级亮纹张角为=19.439两谱线第二级亮纹间的角距离为=12.216ϕϕ'''o-=17-11 两束波长分别为450nm 和750nm 的单色光正入射在光栅上,它们的谱线落在焦距为1.50m 的透镜的焦平面上,它们的第一级谱线之间的距离为6×10-2m ,试求光栅常数为多少? 解:750sin sin 450sin sin sin sin sin 61.5(mb b bmb bf f x f f m m b λϕλϕλϕϕϕϕϕϕϕ'⨯'=∴=''⨯'''''≈''''''≈''''''∴∆-=⨯∴=-9-9-210=10==750nm 谱线第一级距中心点的距离x =ftg 450nm 谱线第一级距中心点的距离x =ftg 两谱线第一级亮纹间的距离为=x -x =10光栅常数750450)7.56m m m m⨯-⨯=⨯⨯-9-9-6-21010101017-12 以氦放电管发出的光正入射某光栅,若测得波长为668nm 的单色光衍衍射角为200,如在同一衍射角下出现了更高级次的氦谱线,波长为447nm ,问光栅常数最小应为多少? 解:668 3.9sin sin 20447 1.3sin sin 201668 3.906sin 20k m b k umk m k um m m θλλθλθ⨯⨯==≈⨯'''⨯⨯'==≈⨯'⨯⨯=⨯ooo-9-9-9-6由光栅衍射明纹条件bsin =k 得正入射时k 10k 10或b 所以光栅常数随着级数的增大而增大,当k=1和k =3时,b 取最小值10b=1017-13 一束光线正入射到衍射光栅上,当分光计转过ϕ角时,在视场中可看到第三级光谱内波长为440nm 的条纹。
问在同一角ϕ上,可看见波长在可见光范围内的其它条纹吗? 解:33440sin 3sin sin 344075034407501.76 2.93,2sin 34406602mb b bb m kmm mkk k b mnmλϕλϕϕλλϕλ'⨯⨯=∴=⨯⨯''==''⨯≤≤⨯⨯⨯⨯≤≤⨯∴≤≤=⨯⨯''==-9-9-9-9-9-9-9-910=10k 由于可见光,所以4501010,即104501010即10该可见光波长为=k17-14 某单色光垂直入射到一每厘米刻有6000条的光栅上,如果第一级谱线的偏角为200,试问入射光的波长如何?它的第二级谱线将在何处?解:1.6676000sin 20 1.667sin 2057043.15439mmb m nmθλλλϕ⨯=⨯==⨯⨯='''==o o o o -2-6-6110(1)光栅常数b=10由光栅衍射明纹条件bsin =k 得正入射时102该谱线第二级亮纹张角为=arcsin b17-15 波长600nm 的单色光垂直入射在一光栅上,第二级明条纹分别出现在sin(=0.2处,第四级缺级,试问:(1)此光栅常数多少?(2)光栅上狭缝可能的最小宽度a 多少? (3)按上述选定的d 、a 值,试问在光屏上可能观察到的全部级数是多少? 解:2600 6.0sin 0.2(2)a d (a );4 1.5;(3)m d mkN N k m λϕϕλϕλϕϕϕ⨯⨯===⨯'''='''⋅⋅⋅=⨯-9-6-6k 1010由于光栅明纹位置由dsin =k 决定,单缝衍射极小位置由sin =k 决定,当=时光栅明纹位置和衍射极小位置重合,即缺级,此时=为整数),dk=Nk (k =1,2,3,4,因第级缺级,故a=104由dsin 90104,80,1,2,3,5,6,7,9,k k λλ==∴=±±±±±±±oQ dsin =k 可得所能看到的最大级数k=缺级所能看到的亮纹级数为共15条17-16 波长为500nm 的单色光,垂直入射到光栅上,如果要求第一级谱线的衍射角为300,问光栅每毫米应刻几条线?如果单色光不纯,波长在0.5%范围内变化,则相应的衍射角变化范围∆θ如何?如果光栅上下移动而保持光源不动,衍射角θ有何变化? 解:339sin 500110110,1000sin sin 30250010(2)5000.5497.5nmarcsin 29501000nm 502arcsin b k nm b N b nm ϕλλϕλϕλϕ---=⨯⨯====≈⨯⨯±''≈'o o :(1)由光栅衍射明纹条件得正入射时=1000nm 当波长在(1%)(即497.5nm 502.5nm )范围内波动时,则对于=497.5nm ,衍射角=对于=502.5nm ,衍射角=.5nm30101000nm10θ'≈'∴∆≈o∆ϕ=20/(3)如果光栅上下移动而保持光源不动则衍射角不发生变化。
17-17 波长为500nm 的单色光,以300入射角斜入射到光栅上,发现原正入射时的中央明条纹的位置现在改变为第二级光谱的位置。
求此光栅每毫米上共有多少条刻痕?最多能看到几级光谱?解:3936922sin 2sin ,tan sin 231101103210,50025001033(2)b b bx fbb m N bθλλλϕλϕϕϕϕλ-----=∴=≈='==⨯⨯∴=≈⨯==≈⨯⨯o (1)由光栅衍射明纹条件bsin =k 得正入射时第二级亮纹距中心点的宽度为x=ftg 当斜入射角和衍射角相等时出现中央极大,此时中央亮纹距中心点的宽度为x =ftg30=由光栅斜入射亮纹条件得sin ),sin )sin 126,k k ϕλϕϕλ±=±-==o o b(sin30b(sin30当=时,k=或所以最多能看到6级条纹17-18若单色光的波长不变,试画出下列几种情况下衍射的光强度分布曲线I -sin θ示意图,并标出各图横坐标标度值。
(1)N=1;(2)N=2,d/a=2(画出单缝衍射中央包络线的主极大即可)(3)N=4,d/a=4(画出单缝衍射中央包络线的主极大即可)(4)N=5,d/a=3(画出单缝衍射中央包络线的主极大即可)解:(1sin θ (λ/a )2)sin θ (λ/d )I/I 0(3)-4-3-2-101234sin θ (λ/d )(4)sin θ (λ/d )I/I 017-19 波长为600nm 的单色光垂直入射在一光栅上,第2、3级明条纹分别出现在sin θ=0.2与sin θ=0.3处,第4级缺级。