第五章-微生物检验方法

合集下载

微生物学第五章微生物的代谢

微生物学第五章微生物的代谢
细胞膜透性的调节
通过改变细胞膜的通透性,控制代谢底物和产物的进出,从而调 节代谢过程。
微生物代谢的基因调控
01
原核生物的基因调 控
通过操纵子模型实现基因表达的 调控,包括正调控和负调控两种 方式。
02
真核生物的基因调 控
通过转录因子和顺式作用元件的 相互作用,实现基因表达的精确 调控。
03
基因表达的诱导和 阻遏
03 氮的转化代谢
微生物还可以通过氮的转化代谢将一种含氮化合 物转化成另一种含氮化合物,如硝酸盐还原成氨 的过程。
04Βιβλιοθήκη 微生物代谢的调节与控制代谢调节的方式与机制
酶活性的调节
通过改变酶的构象或修饰酶活性中心,从而调节代谢途径中关键 酶的活性。
代谢物浓度的调节
代谢物浓度的变化可以影响酶的活性,从而调节代谢速率。
用、液相色谱-质谱联用等。
核磁共振法
利用核磁共振技术对微生物代 谢产物进行结构和构象分析, 可以获得代谢产物的详细化学
信息。
生物信息学分析
利用生物信息学方法对微生物 代谢组学数据进行处理和分析, 包括代谢途径分析、代谢网络 构建、代谢物鉴定和代谢调控 研究等。
THANKS
感谢观看
微生物代谢产物的生物活性与应用
抗生素
由微生物代谢产生的具有抗菌活 性的化合物,用于治疗细菌感染。

微生物代谢产生的生物催化剂,广 泛应用于食品、医药、化工等领域。
激素
某些微生物代谢产物具有激素活性, 可用于调节动植物生长发育。
微生物代谢在环境保护和能源领域的应用
污水处理
利用微生物代谢降解污水中的有机污染物,净化水质。
02
微生物的能量代谢
能量代谢的基本过程

食品微生物第五章微生物的生长与控制

食品微生物第五章微生物的生长与控制

生长曲线以少量纯培养细菌接种有限的液体培养基,并在培养过程中定时取样测数,可以发现细菌的生长有一定的规律,若以时间为横坐标,菌数的对数为纵坐标,可以绘出一条类似于S形的曲线,这就是细菌的生长曲线。

由生长曲线可将细菌的群体生长划分为4个时期:延迟期、对数期、稳定期、衰亡期。

延迟期这个时期内的细菌细胞通常表现为个体变长,体积增大和代谢活跃,细胞内的RNA含量增加使细胞质的嗜碱性增强,并由于代谢活性的提高而使贮藏物消失;细胞对外界理化因子(如NaCl、热、紫外线、x—射线等)的抵抗能力减弱。

细菌延滞期的长短取决于菌种的遗传特性、菌龄及接种前后培养条件的差异等。

将处于对数期的培养物接种到相同的培养环境中可以缩短乃至消除延滞期。

对数期生长旺盛,代谢活力增强,分裂速度加快,菌数以几何级数增加,代时稳定,其生长曲线表现为一条上升的直线。

稳定期在对数末期,由于营养物质(包括限制性营养物质)的逐渐消耗,有生理毒性的代谢产物在培养基中的积累及培养环境条件中pH和氧化还原电位Eh等对细菌生长不利的变化,使细菌的生长速度降低,增殖率下降而死亡率上升,当两者趋于平衡时,就转入稳定期。

可以通过补料,调节pH、温度或通气量等措施来延长稳定期衰亡期细菌在经过稳定期后,由于营养和环境条件进一步恶化,死亡率迅速增加,以致明显超过增殖率,这时尽管群体的总菌数仍然较高,但活菌数急剧下降,其对数与时间呈反比,表现为按几何级数下降,生长曲线直线下垂,有人又称其为对数死亡期。

这个时期的细胞常表现为多形态,产生许多大小或形态上变异的畸形或退化型,其革兰氏染色亦不稳定,许多G+细菌的衰老细胞可能表现为G-。

恒浊法和恒化法培养核心内容是什么?大概过程是指什么?1.恒浊连续培养不断调节流速而使细菌培养液浊度保持恒定的连续培养方法叫恒浊连续培养。

在恒浊连续培养中装有浊度计,借光电池检测培养室中的浊度(即菌液浓度),并根据光电效应产生的电信号的强弱变化,自动调节新鲜培养基流入和培养物流出培养室的流速。

第五章沙门氏菌的检验ppt课件

第五章沙门氏菌的检验ppt课件
10~42 ℃都可生长,最适生长温 度为37℃,最适pH为6.8~7.8。 营养琼脂平板上:35~37℃培养 18~24h,其菌落大小一般为2~ 3mm,光滑、湿润、无色、半透 明、边缘整齐。
血平板:中等大小、灰白色菌落。
生物学特性
生化反应:
不发酵乳糖和蔗糖,不产生吲 哚,不分解尿素,VP试验阴 性,大多产生硫化氢。发酵葡 萄糖、麦芽糖和甘露醇,除伤 寒杆菌产酸不产气外,其他沙 门氏菌均产酸产气。
ONPG -
沙门氏菌血清学试验 沙门氏菌血清学试验 沙门氏菌血清学试验
非沙门氏菌
报告
沙门氏菌在BS平板上
沙门氏菌在HE平板上
沙门氏菌的TSI试验
三糖铁(TSI)琼脂试验
本试验可同时观察乳糖和蔗糖发酵产酸或产酸产气(变黄);产生硫化氢 (变黑)。葡萄糖被分解产酸可使斜面先变黄,但因量少,生成的少量酸 ,因接触空气而氧化,加之细菌利用培养基中含氮物质,生成碱性产物, 故使斜面后来又变红,底部由于是在厌氧状态下,酸类不被氧化,所以仍 保持黄色。
商品化生化鉴定系统
API 20E API 20E 生化鉴定 是根据快速酶促反应 及代谢产物的检测技 术发展的一种细菌编 码鉴定法,广泛应用 于临床、食品中革兰 氏阴性杆菌的快速鉴定。
API 20E
第1位数
O AL N DD P HC G
第2位数 第3位数 第4位数 第5位数
O CI H U T
1、未接种 2、尿素酶阳性 3、尿素酶阴性
KCN生长试验
右:抑制生长
沙门氏菌在TSI和赖氨酸脱羧酶试验培养基内的结果
斜面 底层 产气 硫化氢 赖氨酸脱羧酶 初步判断
K A +(- ) +(- )

K A +(- ) +(- )

微生物化验方法

微生物化验方法

微生物化验方法
微生物化验的方法有很多,以下为您推荐:
1.琼脂平板培养法:因培养基不同,琼脂平板法分为选择性培养基检测法和显色培养基检测法。

选择性培养基是在培养基中加入选择性抑制剂来抑制非目标微生物生长;显色培养基是在培养基中加入细菌特异性酶的显色底物,以菌落颜色区分目的菌落与非目的菌落。

2.显微镜镜检法:将待测样品中的微生物富集后,于油镜下直接计数。

显微镜镜检法通常与琼脂平板培养法结合使用,通过琼脂平板培养法对菌落进行定性分析,再用显微镜进行定量计数。

3.微生物测试片检测技术:一般情况下,微生物测试片由印有网格的聚丙烯薄膜和覆盖有培养基和显色物质的聚乙烯薄膜组成。

待测样品经过处理后可直接接种在微生物测试片上,然后放置在适宜的温度下培养——使固定在测试片上的显色物质与待检微生物生长产生的特异性酶发生显色反应,形成有颜色的菌落,通过对这些菌落进行计数便可实现检测。

第五章 微生物生长与培养

第五章 微生物生长与培养
同一种微生物的菌体生长和生产性状的表现对营 养物质的要求也会表现出不同。
1.选择和配制培养基的原则和方法
(1)营养物质组成合理,浓度适当,满足菌体 生长需要; (2)在一定条件下,各原料之间不发生化学反 应,理化性质相对稳定; (3)粘度适中,具有适当渗透压; (4)生产中选用的原材料尽量因地制宜,以降 低成本; (5)理化性质适宜,pH、氧化还原电动势也要 满足一定的要求。
样。
在微生物培养和发酵研究中,也需要研究微生物
培养的最佳氮源
生理酸性盐:
微生物代谢后形成酸性物质的某些无
机氮源 如(NH4)2SO4
生理碱性盐: 微生物代谢后产生碱性物质的某些无 机氮源 如 KNO3 生理酸性盐和生理碱性盐具有稳定调节发酵过程中 PH的积极作用。
表 氮源对恶臭假单胞菌 NA-1 菌株生长和酶形成的影响 氮源 硫酸铵 氯化铵 蛋白胨 酵母粉 尿素 谷氨酸 肉汁 硝酸钠 生物量(mg/mL) 1.45 1.33 3.88 4.07 2.53 5.07 3.74 2.62 烟酸羟基化酶活性(unit/mL) 0.002 0.000 0.301 0.288 0.111 0.045 0.371 0.114
②液体好氧培养方法
a. 摇瓶震荡培养箱
b. 台式磁力搅拌不锈钢发酵罐
c. 工业通用型搅拌发酵罐
2.厌氧培养方法
微生物厌氧培养箱
(二)微生物纯培养与混合培养
含有一种以上微生物的培养称作混合培养。自 然环境如土壤和水中,通常栖息着的是许多不同微 生物混杂在一起的群体。 微生物学中将在实验条件下从一个单细胞繁殖得 到的后代称为纯培养。 研究微生物生长通常采用微生物纯培养。
成分中,可以满足微生物生长的需要,一般不需要 额外添加。

8 第五章 第1~2节 微生物的生长及其影响因素

8 第五章 第1~2节 微生物的生长及其影响因素
25
应用意义: 发酵生产形成的重要时期(抗生素、氨基酸 等),生产上应尽量延长此期,提高产量,措 施如下: • 补充营养物质(补料) • 调pH • 调整温度
26
④. 衰亡期(decline phase)
特点: ① 细胞死亡数增加,死亡数大大超过新增殖的细胞数,群体 中的活菌数目急剧下降,出现“负生长”。 ② 细胞进行内源性呼吸(因为营养缺乏),出现多形态、畸 形或衰退形,芽孢开始释放。
9
原理:将1mm2×0.02mm的薄层空间划分为400小格,
从中均匀分布地选取80小格,计数其中的细胞数目, 换算成单位体积中的细胞数。
适用范围:个体较大细胞或颗粒,如血球、酵母菌
等。不适用于细菌等个体较小的细胞,因为(1)细 菌细胞太小,不易沉降;(2)在油镜下看不清网格 线,超出油镜工作距离。不适用于运动细菌计数
30
恒化器Chemostat 或bactogen
31
恒浊连续培养
概念:调节培养基流速,使培 养液浊度保持恒定的连续培养 方法。 原理:通过调节新鲜培养基流 入的速度和培养物流出的速度 来维持菌浓度不变,即浊度不变。 主要采用恒浊器,当浊度高时, 使新鲜培养基的流速加快,浊 度降低,则减慢培养基的流速。 特点:基质过量,微生物始终 以最高速率进行生长,并可在 使用范围:用于生产大量菌 允许范围内控制不同的菌体密 体、生产与菌体生长相平行 度;但工艺复杂,烦琐。 的某些代谢产物,如乳酸、 32 乙醇等。
★误差:多次稀释造成的误差是主要来源,其次还有由于
样品内菌体分布不均匀、以及不当操作
7
(二)血球计数板法
8
(a)计数室为一个大方格,面积为1mm2,深度为 0.01mm,因此计数室容积为0.1mm3.常见的计数 板,一个大方格分为25个中格,每个中格分为16个 小格,故计数室共有400个小格。 (c) 数对角线上5个中格(80个小格)的 细胞总数,A; 稀释倍数:B 细胞个数=50000A*B(mL-1) (A*400/80)*B/(0.1*10-3)

《微生物学 》第五章 原核生物

《微生物学 》第五章 原核生物

第一节 细菌的分类与鉴定
二、细菌分类鉴定的依据和方法
(一)经典方法(依据细菌形态、细胞结构、生理生化特性)
1、细胞的形状、大小、结构和染色反应
(1)形状:
细菌的基本形状
二、细菌的分类鉴定的依据和方法
最多
杆菌
其次 球菌
螺旋菌
最少
自然界中哪种最多?
第一节 细菌的分类与鉴定
二、细菌分类鉴定的依据和方法
表型特征:形态学、生理生化学、 生态学等,推断微生物的系统发育。
微生物系统学: 按亲缘关系和进 化规律分类
表型特征结合分子水平上的基因型特 征(如16S rRNA),探讨微生物进化地 位、系统发育关系并进行分类鉴定。
第一节
细菌分类和鉴定
微生物分类学的三个任务:分类、鉴定及命名 分类 (classification) 是根据微生物的相似性和亲缘关系,将微生物归入不同 的分类类群。 鉴定(identification) 通过系统测定,确定菌株在类群中的所属关系。
ATCC =American Type Culture Collection美国模式菌种保藏 中心
当文章中前面已出现过某学名时,后面的可将其属名缩写成 1~3个字母。 如:Escherichia coli 可缩写成 E. coli Staphylococcus aureus可缩写成 S. aureus
细菌(Bacteria)
微生物的类群
单细胞藻类、 原生动物等
古生菌在进化谱系上与真细菌及真核生物相互并列, 且与后者关系更近,而其细胞构造却与真细菌较为接 近,同属于原核生物。
第一节
细菌分类和鉴定
一门按微生物的亲缘关系把它们安排成条 理清楚的各种分类单元或分类群的科学。

微生物检测方法

微生物检测方法

微生物检测方法微生物检测是指对环境、食品、药品、生物制品等中的微生物进行检测和监测的过程。

微生物检测的方法多种多样,根据不同的检测对象和要求,可以选择合适的方法进行检测。

下面将介绍几种常见的微生物检测方法。

首先,传统的培养方法是一种常见的微生物检测方法。

这种方法是将样品在适宜的培养基上培养一段时间,然后观察培养基上是否有微生物生长,根据生长的数量和形态来判断样品中是否存在微生物。

这种方法简单易行,但需要较长的时间,且对于某些难以培养的微生物可能无法检测出来。

其次,PCR方法是一种快速准确的微生物检测方法。

PCR方法是利用聚合酶链式反应技术,通过扩增微生物DNA片段来进行检测。

这种方法具有高度的特异性和敏感性,可以快速准确地检测出微生物的存在和数量。

但是,PCR方法需要设备和技术的支持,成本较高,且对样品的前处理要求较高。

另外,免疫学方法也是一种常用的微生物检测方法。

这种方法是利用抗体与特定的微生物抗原结合的原理进行检测。

免疫学方法具有高度的特异性和灵敏度,可以快速准确地检测出微生物的存在和数量。

但是,免疫学方法需要较长的培养时间,且受到环境因素的影响较大。

此外,基因测序技术也是一种新兴的微生物检测方法。

这种方法是通过对微生物的基因进行测序分析,来确定微生物的种属和数量。

基因测序技术具有高度的准确性和全面性,可以对微生物进行全面的检测和分析。

但是,基因测序技术需要较长的分析时间和复杂的数据处理,且对设备和技术要求较高。

综上所述,微生物检测方法有传统的培养方法、PCR方法、免疫学方法和基因测序技术等多种选择。

在实际应用中,可以根据检测对象和要求选择合适的方法进行检测。

随着科学技术的不断发展,相信微生物检测方法会更加快速、准确、全面,为微生物监测和控制提供更好的技术支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章微生物检验方法1 微生物检验方法总则General principles1 范围本部分规定了化妆品微生物学检验的基本要求。

本部分适用于化妆品样品的采集、保存及供检样品制备。

2 仪器和设备2.1 天平,0-200g,精确至0.1g。

2.2 高压灭菌器。

2.3 振荡器。

2.4 三角瓶,250mL、150mL。

2.5 玻璃珠。

2.6 玻璃棒。

2.7 灭菌刻度吸管,10mL、1mL。

2.8 恒温水浴箱。

2.9 均质器或研钵。

2.10 灭菌均质袋。

3 培养基和试剂3.1 生理盐水成分:氯化钠8.5g蒸馏水加至1000mL制法:溶解后,分装到加玻璃珠的三角瓶内,每瓶90mL,121℃高压灭菌20min。

3.2 SCDLP液体培养基成分:酪蛋白胨17g大豆蛋白胨3g氯化钠5g磷酸氢二钾2.5g葡萄糖2.5g卵磷脂1g吐温80 7g蒸馏水1000mL制法:先将卵磷脂在少量蒸馏水中加温溶解后,再与其他成分混合,加热溶解,调pH为7.2—7.3分装,每瓶90mL,121℃高压灭菌20min。

注意振荡,使沉淀于底层的吐温80充分混合,冷却至25℃左右使用。

注:如无酪蛋白胨和大豆蛋白胨,也可用多胨代替。

3.3 灭菌液体石蜡。

制法:取液体石蜡50mL,121℃高压灭菌20min。

4703.4 灭菌吐温80。

制法:取吐温80 50mL,121℃高压灭菌20min。

4 样品的采集及注意事项4.1 所采集的样品,应具有代表性,一般视每批化妆品数量大小,随机抽取相应数量的包装单位。

检验时,应从不少于2个包装单位的取样中共取10g或10mL。

包装量小于20g的样品,采样时可适当增加样品包装数量。

4.2 供检样品,应严格保持原有的包装状态。

容器不应有破裂,在检验前不得打开,防止样品被污染。

4.3 接到样品后,应立即登记,编写检验序号,并按检验要求尽快检验。

如不能及时检验,样品应置于室温阴凉干燥处,不要冷藏或冷冻。

4.4 若只有一个样品而同时需做多种分析,如微生物、毒理、化学等,则宜先取出部分样品做微生物检验,再将剩余样品做其他分析。

4.5 在检验过程中,从打开包装到全部检验操作结束,均须防止微生物的再污染和扩散,所用器皿及材料均应事先灭菌,全部操作应在符合生物安全要求的实验室中进行。

5 供检样品的制备5.1 液体样品5.1.1 水溶性的液体样品,用灭菌吸管吸取10mL样品加到90mL灭菌生理盐水中,混匀后,制成1:10检液。

5.1.2 油性液体样品,取样品10g,先加5mL灭菌液体石蜡混匀,再加10mL•灭菌的吐温80,在40℃—44℃水浴中振荡混合10min,加入灭菌的生理盐水75mL(在40℃—44℃水浴中预温),在40℃—44℃水浴中乳化,制成1:10的悬液。

5.2 膏、霜、乳剂半固体状样品5.2.1 亲水性的样品:称取10g,加到装有玻璃珠及90mL•灭菌生理盐水的三角瓶中,充分振荡混匀,静置15min。

用其上清液作为1:10的检液。

5.2.2 疏水性样品:称取10g,置于灭菌的研钵中,加10mL灭菌液体石蜡,研磨成粘稠状,再加入10mL灭菌吐温80,研磨待溶解后,加70mL灭菌生理盐水,在40℃—44℃水浴中充分混合,制成1:10检液。

5.3 固体样品称取10g,加到90mL灭菌生理盐水中,充分振荡混匀,使其分散混悬,静置后,取上清液作为1:10的检液。

使用均质器时,则采用灭菌均质袋,将上述水溶性膏、霜、粉剂等,称10g样品加入90mL灭菌生理盐水,均质1min—2min;疏水性膏、霜及眉笔、口红等,称10g样品,加10mL灭菌液体石蜡,10mL吐温80,70mL灭菌生理盐水,均质3min—5min。

4712 菌落总数检验方法Aerobic Bacterial Count1 范围本规范规定了化妆品中菌落总数的检验方法。

本规范适用于化妆品菌落总数的测定。

2 定义2.1 菌落总数Aerobic bacterial count化妆品检样经过处理,在一定条件下培养后(如培养基成分、培养温度、培养时间、pH值、需氧性质等),1g (1mL)检样中所含菌落的总数。

所得结果只包括一群本方法规定的条件下生长的嗜中温的需氧性和兼性厌氧菌落总数。

测定菌落总数便于判明样品被细菌污染的程度,是对样品进行卫生学总评价的综合依据。

3 仪器和设备3.1 三角瓶,250mL。

3.2 量筒,200mL。

3.3 pH计或精密pH试纸。

3.4 高压灭菌器。

3.5 试管,18mm×150mm。

3.6 灭菌平皿,直径90mm。

3.7 灭菌刻度吸管,10mL、1mL。

3.8 酒精灯。

3.9 恒温培养箱,36℃±1℃。

3.10 放大镜。

3.11 恒温水浴箱,55℃±1℃。

4 培养基和试剂4.1 生理盐水:见总则中3.1。

4.2 卵磷脂、吐温80—营养琼脂培养基成分:蛋白胨20g牛肉膏3g氯化钠5g琼脂15g卵磷脂1g吐温80 7g蒸馏水1000mL制法:先将卵磷脂加到少量蒸馏水中,加热溶解,加入吐温80,将其他成分(除琼脂外)加到其余的蒸馏水中,溶解。

加入已溶解的卵磷脂、•吐温80,混匀,调pH值为7.1472—7.4,加入琼脂,121℃高压灭菌20min,储存于冷暗处备用。

4.3 0.5%氯化三苯四氮唑(2,3,5-triphenyl terazolium chloride,TTC)成分:TTC 0.5g蒸馏水100mL制法:溶解后过滤除菌,或115℃高压灭菌20min,装于棕色试剂瓶,置4℃冰箱备用。

5 操作步骤5.1 用灭菌吸管吸取1:10稀释的检液2mL,分别注入到两个灭菌平皿内,每皿1mL。

另取1mL注入到9mL 灭菌生理盐水试管中(注意勿使吸管接触液面),更换一支吸管,并充分混匀,制成1:100检液。

吸取2mL,分别注入到两个灭菌平皿内,每皿1mL。

如样品含菌量高,还可再稀释成1:1000,1:10000,……等,每个稀释度应换1支吸管。

5.2 将融化并冷至45℃—50℃的卵磷脂吐温80营养琼脂培养基倾注到平皿内,每皿约15mL,随即转动平皿,使样品与培养基充分混合均匀,待琼脂凝固后,翻转平皿,置36℃±1℃培养箱内培养48h±2h。

另取一个不加样品的灭菌空平皿,加入约15mL卵磷脂吐温80营养琼脂培养基,待琼脂凝固后,翻转平皿,置36℃±1℃培养箱内培养48h±2h,为空白对照。

5.3 为便于区别化妆品中的颗粒与菌落,可在每100mL卵磷脂吐温80营养琼脂中加入1mL 0.5%的TTC溶液,如有细菌存在,培养后菌落呈红色,而化妆品的颗粒颜色无变化。

6 菌落计数方法先用肉眼观察,点数菌落数,然后再用5倍—10倍的放大镜检查,以防遗漏。

记下各平皿的菌落数后,求出同一稀释度各平皿生长的平均菌落数。

若平皿中有连成片状的菌落或花点样菌落蔓延生长时,该平皿不宜计数。

若片状菌落不到平皿中的一半,而其余一半中菌落数分布又很均匀,则可将此半个平皿菌落计数后乘以2,以代表全皿菌落数。

7 菌落计数及报告方法7.1 首先选取平均菌落数在30—300之间的平皿,作为菌落总数测定的范围。

当只有一个稀释度的平均菌落数符合此范围时,即以该平皿菌落数乘其稀释倍数报告之(见表1中例1)。

7.2 若有两个稀释度,其平均菌落数均在30—300之间,•则应求出两菌落总数之比值来决定,若其比值小于或等于2,应报告其平均数,若大于2•则以其中稀释度较低的平皿的菌落数报告之(见表1中例2及例3)。

7.3 若所有稀释度的平均菌落数均大于300,则应按稀释度最高的平均菌落数乘以稀释倍数报告之(见表1中例4)。

7.4 若所有稀释度的平均菌落数均小于30,则应按稀释度最低的平均菌落数乘以稀释倍数报告之(见表1例5)。

7.5 若所有稀释度的平均菌落数均不在30—300之间,其中一个稀释度大于300,而相邻的另一稀释度小于30时,则以接近30或300的平均菌落数乘以稀释倍数报告之(见表1中例6)。

7.6 若所有的稀释度均无菌生长,报告数为每g或每mL小于10CFU。

7.7 菌落计数的报告,菌落数在10以内时,按实有数值报告之,大于100时,采用二位有473精品资料可编辑修改效数字,在二位有效数字后面的数值,应以四舍五入法计算。

为了缩短数字后面零的个数,可用10的指数来表示(见表1报告方式栏)。

在报告菌落数为“不可计”时,应注明样品的稀释度。

表1 细菌计数结果及报告方式 例次 不同稀释度平均菌落数 10-1 10-2 10-3 两稀释度 菌数之比菌落总数 (CFU/mL 或CFU/g )报告方式 (CFU/mL 或CFU/g )11365 164 20─ 16400 16000或1.6×1042 2760 295 46 1.638000 38000或3.8×1043 2890 271 60 2.22710027000或2.7×104 4 不可计 4650 513 ─ 513000510000或5.1×105527 11 5─270270或2.7×1026 不可计 305 12 ─3050031000或3.1×104 7 0 0 0 ─ <1×10<10。

相关文档
最新文档