九年级数学上册第23章图形的相似23.2相似图形教案新版华东师大版
九年级数学上册 23.2 相似图形教案 (新版)华东师大版

相似图形教学目标:1.理解相似形的概念,了解相似形是两个图形之间的关系。
由于需要的不同,要制定出大小不一定相同的图形,培养学生的观察能力。
2.理解并掌握相似图形的性质:对应边成比例,对应角相等。
3.知道判别两个多边形相似的方法。
教学重点:相似图形的性质:对应边成比例,对应角相等。
教学难点:1、如何判别两个多边形相似2、借助相似图形的性质进行有关的计算导学过程:一、导入新课挂上大小不一样的中国地图两张及两张大小不同的花朵图片,供同学观察,并看课本第57页的图,提出问题:这几组图片有什么相同的地方呢?这些图片大小虽然不一样,但形状是相同的。
两个相似的平面图形之间有什么关系呢?为什么有些图形是相似的,而有些不是呢?相似图形有什么主要性质呢?【点题】二、讲解新课由于不同的需要,我们用同一底片冲洗、放大得到的相片有1寸的,也有2寸的,也有更大的,这些大小不一样的相片,其形状是相同的。
同学们想一想,在毕业证书贴的相片与学籍卡片上的相片、学习证的相片大小不一定一样,但形状相同,如果不相同会有什么后果呢?大小不相同的中国地图或世界地图,其形状也是相同的,只是由于需要的不同,印制成大小不一的图片。
对于某一地区,也经常会绘制成各种大小不同的建筑物、山岗等所处的位置都是相同,同学们想一想,如果两张地图(同一地区)的形状不一样,那就会给我们许多错觉,就会产生许多麻烦的事情。
在日常生活中我们会看到许多这样形状相同,而大小不一定相同的图形。
在数学上,我们把具有相同形状的图形称为相似形。
同学们你还能说出哪些相似的图形吗?(同学们思考、讨论、交换意见)国旗、国旗上的五角星。
画一个图形放在投影机上映射到屏幕上的图形与原图、平面镜上看到你自己的像等。
如图所示的是一些相似的图形。
想一想:放大镜下的图形和原来的图形相似吗?你看过哈哈镜吗?哈哈镜中的形像与你本人相似吗?还有一些图形,看起来有点相像,但它们不是相似的图形。
为什么有一部分图形看起来相像,但不相似呢?这就是数学上说的相似图形还有其特征,就是这节要探索的内容。
华师大版九年级上册23.2相似图形教案

华师大版九年级上册23.2相似图形教案教学内容:课本P57页~P60页。
教学目标:1、理解相似图形的性质;2、能够利用相似图形的性质进行有关的边角计算;3、通过探索相似图形的性质的过程,让学生体验从特殊到一般的研究方法; 教学重点:相似图形的性质;教学难点:相似图形的性质的应用教学准备:课件教学方法:探究学习教学过程一、复习与练习1、已知x :y=1:3,2y=3z ,求2x y z y+-的值。
2、已知≠0,则的值为 .3、如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE ∥BC ,EF ∥AB .若AD=2BD ,求的值二、探究学习1、回顾。
全等图形的性质:对应边相等,对应角相等。
2、猜想。
相似图形的性质:对应边 ,对应角 。
3、探究。
(1)如图,四边形ABCD和四边形A′B′C′D′是相似图形。
AB A B''= ,BCB C''= ,CDC D''= ,ADA D''= ,结论:ABA B''=BCB C''=CDC D''=ADA D'',用文字叙述:对应边成比例。
∠A=,∠B=,∠C=,∠D=;∠A′=,∠B′=,∠C′=,∠D′=;结论:∠A=∠A′,∠B=∠B′,∠C=∠C′,∠D=∠D′;用文字叙述:对应角相等。
(2)如图,四边形ABCD和四边形A′B′C′D′是相似图形。
AB A B''= ,BCB C''= ,CDC D''= ,ADA D''= ,结论:ABA B''=BCB C''=CDC D''=ADA D'',用文字叙述:对应边成比例。
∠A=,∠B=,∠C=,∠D=;∠A′=,∠B′=,∠C′=,∠D′=;结论:∠A=∠A′,∠B=∠B′,∠C=∠C′,∠D=∠D′;用文字叙述:对应角相等。
华东师大版数学九年上23.2《相似图形》教学设计

2.在判定相似图形时,对判定方法的选择和应用不够熟练,容易混淆。
3.在解决实际问题时,学生可能难以发现相似图形的应用场景,缺乏将理论知识运用到实际中的能力。
针对以上情况,教师在教学过程中应关注以下几点:
1.加强对相似图形定义的讲解,通过实例让学生直观地感受到相似图形的特点。
"提前预习,有助于同学们在课堂上更好地消化吸收新知识,提高学习效率。"
作业布置要求:
1.作业要按时完成,保持字迹清晰,书写规范。
2.对于难题和疑问,要及时与同学或老师交流,确保作业质量。
3.家长要关注孩子的作业进度,给予适当的指导和支持。
"今天我们学习了相似图形,它们具有对应角相等、对应边成比例的性质。我们通过AA、SAS、SSS相似准则来判断两个图形是否相似。这些知识不仅可以帮助我们解决几何问题,还可以应用到生活中的各种场景。"
2.强调相似图形在实际生活中的重要性,激发学生对数学学科的兴趣。
3.鼓励学生在课后继续探索相似图形的知识,为下一节课的学习打下基础。
(2)准备丰富的实物模型,让学生直观地感受相似图形的性质和判定方法。
(3)提供丰富的练习题库,满足不同层次学生的学习需求。
5.教学关注点:
(1)关注学生的几何直观能力培养,提高学生对几何图形的认识和理解。
(2)关注学生的逻辑推理能力,培养学生的几何思维能力。
(3)关注学生的应用意识,将相似图形知识运用到实际问题中,提高学生的实践能力。
2.教学过程:
(1)导入:以生活中的相似图形为例,引导学生观察、思考,导入新课。
(2)新知传授:详细讲解相似图形的定义、性质和判定方法,结合实例进行分析。
重庆市九年级数学上册 第23章 图形的相似 23.2 相似图形教案 (新版)华东师大版

相似图形
课题名称相似图形
三维目标 1.理解相似图形和相似多边形的概念,了解相似形是两个图形之间的关系。
2.由于需要的不同,要制定出大小不一定相同的图形,培养学生的观察
能力。
难点目标
重点目标理解相似图形和相似多
边形的概念,了解相似形
是两个图形之间的关系
导入示标理解相似图形和相似多边形的概念,了解相似形是两个图形之间的关系目标三导学做思一:
挂上大小不一样的中国地图两张及两张大小不同的长城图片,供同学观
察,提出问题:这几组图片有什么相同的地方呢?
学做思二:
在日常生活中我们会看到许多这样形状相同,而大小不一定相同的图
形。
在数学上,我们把具有相同形状的图形称为相似形。
同学们你还能
说出哪些相似的图形吗?
想一想:放大镜下的图形和原来的图形相似吗?你看过哈哈镜吗?哈哈镜
中的形像与你本人相似吗?
学做思三:
如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形相似。
1.在下面的两组图形中,各有两个相似三角形,试确定x,y,m,n的
值.
如有侵权请联系告知删除,感谢你们的配合!
2.如图,△ADE∽△ABC,AD =3cm ,AE =2cm ,CE =4cm ,BC =9cm ,求:
(1)BD 、DE 的长;
(2)求△ADE 与△ABC 的周长比.
E D
C
B
A
达标检测
反思总结
1.知识建构
2.能力提高
3.课堂体验
课后练习。
初中数学华东师大九年级上册(2023年新编)第23章 图形的相似《2三角形中位线》教学设计

《三角形的中位线》教学设计一、教材分析:1、教材中所处的地位:本节课是华东师大数学教材九年级上册第二十三章第四节内容。
三角形中位线是三角形中重要的线段,三角形中位线定理是一个重要性质定理,它是前面已学过的平行线、全等三角形、平行四边形等知识内容的应用和深化,尤其是在判定两直线平行和论证线段倍分关系时常常用到。
在三角形中位线定理的证明及应用中,处处渗透了化归思想。
由于解决这一问题需要师生、生生之间的合作与交流,利于发展学生的合作与交流的意识与能力;由于本节课学生需要经历观察、归纳、猜想、推理及应用的全过程,对于今后的学习具有重要的指导意义。
2、教学背景:通过教材和班级的实际情况,对教材中的三个地方需要稍加处理,才更适合我们的学生的实际情况,更符合学生的认知发展规律,抓住学生的最近发展区,提高课堂教学效率。
(1)设计困惑:①课堂上解决“如何把一个三角形分为四个全等的三角形”这个问题过于费时,学生很多想不到,就算是做出来也不明白为什么。
②教材中给出的定理证明方法为中位线倍长法,难度相当大,学生基本上都无法理解。
③中点四边形的证明如何作辅助线、为什么要这样作辅助线学生感到很困难。
(2)教材处理:①我校正在开展协同教育课题研究,学生是通过我校协同平台来完成学习任务的,于是我充分利用资源,让学生登陆协同平台完成我发布的作业,通过三个问题作铺垫:学生很快就搞定了。
②通过动画演示及教具演示,让学生直观感受中位线倍长法与旋转法、平行法的联系。
③通过教具演示,加上温馨提示,学生自然就明白作辅助线的奥妙了。
二、目标分析:1、教学目标:(一)知识目标:(1)理解三角形中位线的定义;(2)掌握三角形中位线定理证明及其应用。
(3)理解三角形中位线定理的本质与核心,培养学生的化归思想。
(新增)(二)能力目标:(1)通过动手操作与合作交流,发展学生的合作交流、实践操作及推理能力。
(2)通过对三角形中位线定理的猜想及证明,提高学生分析问题及解决问题的能力。
23.2 相似图形 初中数学华东师大版九年级上册教学课件

根据定义判定相似多边形
下面两个等边三角形对应角有什么关系?对应边有什么关
系?两个等边三角形又有什么关系?
二
A
60°
缩小 A1
60°
B
C B1
C1
∠A =∠A1,∠B =∠B1,∠C =∠C1
对应角相等
AB = BC = AC ,A1B1 = B1C1 = A1C1
F1 E1
C
D
AB = BC = CD = DE = EF = FA ,
C1
D1
A1B1 = B1C1 = C1D1 = D1E1 = E1F1 = F1A1
AB : A1B1 = BC : B1C1 = CD : C1D1 =DE : D1E1 =EF : E1F1
=FA : F1A1
对应边成比例
归纳
相似多边形的定义: 两个边数相同的多边形,如果各边对应成比例,各
角对应相等,就称这两个多边形相似.
相似比:相似多边形对应边的比(相似比大于零).
当堂练习 1.根据下图所示,这两个多边形相似吗?说说你的理由.
不相似,因为这两个多边形对应角相等,但对应边不成比例.
2.如图,正方形的边长a=10,菱形的边长b=5,它们相 似吗?请说明理由.
3.相似比:相似多边形对应边的比(相似比大于零).
第23章 图形的相似
23.2 相似图形
学习目标
1.理解相似多边形的定义,并能根据定义判断两个多边形是 否相似;(重点)
2.掌握相似比的概念并会求相似比; (重点) 3.理解并且掌握相似多边形的性质与判定.(难点)
观察与思考 请观察下面几组图片,是我们前面学过的相似图形吗?
华师版九年级上册数学第23章 图形的相似 【教案】相似三角形的应用

相似三角形的应用【知识与技能】会应用相似三角形的有关性质,测量简单的物体的高度或宽度.自己设计方案测量高度,体会相似三角形在解决实际问题中的广泛应用.【过程与方法】通过利用相似解决实际问题,进一步提高学习应用数学知识的能力.【情感态度】【教学重点】构建相似三角形解决实际问题.【教学难点】把实际问题抽象为数学问题,利用相似三角形来解决.一、情境导入,初步认识复习1.相似三角形有哪些性质?2.如图,B、C、E、F是在同一直线上,AB⊥BF,DE⊥BF,AC∥DF.(1)△DEF与△ABC相似吗?为什么?(2)若DE=1,EF=2,BC=10,那么AB等于多少?((1)△DEF∽△ABC.(2)AB=5)二、思考探究,获取新知第二题我们根据两个三角形相似,对应边成比例,列出比例式计算出AB的长.人们从很早开始,就懂得应用这种方法来计算那些不能直接测量的物体的高度或宽度.例1 古代的数学家想出了一种测量金字塔高度的方法:为了测量金字塔的高度OB,先竖一根已知长度的木棒O′B′,比较木棒的影长A′B′与金字塔的影长AB,即可近似算出金字塔的高度OB,如果O′B′=1米,A′B′=2米,AB=274米,求金字塔的高度OB.【分析】因为太阳光是互相平行的,易得△A′O′B′∽△AOB,从而求得OB的长度.解:∵太阳光是平行光线即O′A′∥OA,∴∠OAB=∠O′A′B′.又∵∠ABO=∠A′B′O′=90°,∴△OAB∽△O′A′B′.答:金字塔的高度OB为137米.例2 如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一这一边上选定点B 和C ,使AB ⊥BC ,然后选定点E ,使EC ⊥BC ,用视线确定BC 和AE 的交点D ,此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD ∽△ECD (两角分别相等的两个三角形相似),∴ABEC=BDCD,解得AB=6050120⨯=⨯CD EC BD =100(米).答:两岸间的大致距离为100米.这些例题向我们提供了一些利用相似三角形进行测量的方法.例3 如图,已知D 、E 是△ABC 的边AB 、AC 上的点,且∠ADE=∠C.求证:AD ·AB=AE ·AC.【分析】把等积式化为比例式ABAC AE AD =,猜想△ADE 与△ABC 相似,从而找条件加以证明.证明:∵∠ADE=∠C,∠A=∠A,∴△ADE ∽△ACB (两角分别相等的两个三角形相似). ∴AB AE AC AD , ∴AD ·AB=AE ·AC.三、运用新知,深化理解1.如图,一条河的两岸有一段是平行的,两岸岸边各有一排树,每排树相邻两棵的间隔都是10m ,在这岸离开岸边16m 处看对岸,看到对岸的两棵树的树干恰好被这岸两棵树的树干遮住,这岸的两棵树之间有一棵树,但对岸被遮住的两棵树之间有四棵树,这段河的河宽是多少米?【教学说明】先由实际问题建立相似的数学模型,可先证得△ABE ∽△ACD,再根据对应线段成比例可求出河宽,即线段BC 的长.2.亮亮和颖颖住在同一幢住宅楼,两人用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M ,颖颖的头顶B 及亮亮的眼睛A 恰好在一条直线上时,两人分别标定自己的位置C 、D ,然后测出两人之间的距离CD=1.25m ,颖颖与楼之间的距离DN=30m (C 、D 、N 在一条直线上),颖颖的身高BD=1.6m ,亮亮蹲地观测时眼睛到地面的距离AC=0.8m ,你能根据以上测量数据帮助他们求出住宅楼的高度吗?【答案】1.24m 2.20.8m【教学说明】过点A作MN的垂线段,构造相似三角形.四、师生互动,课堂小结这节课你学习了哪些知识,有哪些收获?还有哪些疑问?【教学说明】学生小组讨论,分小组陈述演示,教师归纳板书.1.布置作业:从教材相应练习和“习题23.3”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课以生活实例为情境,引导学生探究如何建立相似的数学模型,构造相似三角形,把实际问题转化为数学问题(相似)来解决,进一步提高学生应用数学知识的能力.。
23.2相似图形-华东师大版九年级数学上册教案

23.2 相似图形-华东师大版九年级数学上册教案一、教学目标1.了解相似图形的定义与性质;2.能够判断两个图形是否相似;3.掌握相似比的概念;4.能够求解相似图形的周长、面积等问题。
二、教学重点1.相似图形的概念与性质;2.相似比的概念及应用。
三、教学难点1.基于相似图形的周长、面积的应用问题的解决方法。
四、教学内容及安排第一课时相似图形的认识1.通过例子引入相似图形的概念与性质;2.讲解相似图形的定义和相似性的性质;3.讨论两个图形是否相似的判断方法。
第二课时相似比1.引入相似比的概念及性质;2.对于已知两个相似图形的相似比,能够求解任意长度的比例;3.应用相似比解决相似图形的周长、面积等问题。
第三课时相似图形的周长和面积1.讲解相似图形的周长、面积的计算公式;2.利用相似图形的性质解决已知条件求周长、面积的问题;3.针对应用题解决周长、面积问题。
五、教学方法针对教学目标和难点,本课程采用讲解、引导探究和解题演练相结合的方法。
通过举例说明、让学生进行讨论、引导学生自主思考获取相关知识点,并通过练习巩固学生学习内容。
六、教学效果评估1.提问检测:对学生提出相似图形的性质、定义和相似比等问题,检查学生的基本概念掌握情况;2.练习检测:选取相似图形的性质、相似比及周长、面积等作业题目,检查学生对知识点的掌握情况;3.课堂测试:设立简单的模拟考试,检查学生在时间限制下的自主解题能力和应用能力。
七、教学资源及参考书目教学资源1.多媒体教学设备;2.相关教学工具书。
参考书目1.《初中数学九年级下册》,华东师范大学出版社,张宇等编著;2.《初中数学九年级下册》,人教版,高俊芳主编;3.《初中数学九年级下册》,北师大版,吕新华等编著。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.2 相似图形
知道相似图形的两个特征:对应边成比例,对应角相等,识别两个多边形是否相似的方法.
重点
相似图形的定义和性质.
难点
相似图形的性质.
一、情境引入
回顾
1.若线段a=6 cm,b=4 cm,c=3.6 cm,d=2.4 cm,那么线段a,b,c,d会成比例吗?
2.两张相似的地图中的对应线段有什么关系?(都成比例)
二、探究新知
教师多媒体展示问题,提出问题,引导学生分析.
相似的两张地图中的对应线段都会成比例,对于一般的相似多边形,这个结论是否成立呢?同学们动手量一量,算一算,用刻度尺和量角器量一量课本第58页两个相似四边形的边长,量一量它们的内角,由一位同学把量得的结果写在黑板上,其他同学把量得的结果与同伴交流.
同学们会发现有什么关系呢?经过观察、计算得出这两个相似四边形的对应边会成比例,对应角会相等,再观察课本中两个相似的五边形,是否也具有一样的结果?反映它们的边之间、角之间的关系是什么关系?
同学们用格点图画相似的两个三角形,观察、度量,它们是否也具有这种关系(对应边成比例,对应角相等)?
由此可以得到两个相似多边形的特征:
(由同学回答,教师板书)对应边成比例,对应角相等.
实际上这两个特征,也是我们识别两个多边形是否相似的方法,即如果两个多边形的对应边成比例,对应角相等,那么这两个多边形相似.
识别两个多边形是否相似的标准有:(数相同),对应边要(成比例),对应角要(都相等).(括号内要求同学填)
填一填:
(1)两个三角形一定是相似图形吗?两个等腰三角形呢?两个等边三角形呢?两个等腰直角三角形呢?
(2)所有的菱形都相似吗?所有的矩形呢?正方形呢?
学生小组内交流,代表发言,教师点评.教师课件展示例1,例2,学生可自主完成,小组内交流,点名展示,教师点评.
例1 矩形ABCD与矩形A′B′C′D′中,AB=1.5 cm,BC=4.5 cm,A′B′=0.8 cm,B′C′=2.4 cm,这两个矩形相似吗?为什么?
解:相似,∵AB A′B′=BC B′C′=AD A′D′=DC D′C′=158
. 例2 如图,四边形ABCD 与四边形A′B′C′D′相似,求∠A 的度数与x 的值.
解:由相似图形的性质知
∠A =∠A′=107°,4x =52
, ∴x =85
. 三、练习巩固
教师多媒体展示,学生独立完成,点名展示,并讲解,师生共同点评.
1.在矩形ABCD 与矩形A′B′C′D′中,已知AB =16 cm ,AD =10 cm ,A ′D ′=6 cm ,矩
形A′B′C′D′的面积为54 cm 2,这两个矩形相似吗?为什么?
2.如图,四边形ABCD 与四边形A′B′C′D′是相似的,且C′D′⊥B′C′,根据图中的条件,求出未知的边x 、y 及角α.
四、小结与作业
小结
1.相似多边形的性质:对应边成比例,对应角相等.
2.相似多边形的判定.
布置作业
从教材相应练习和“习题23.2”中选取.
本节课学生通过动手测量,探究相似图形的有关性质,经历观察、实验归纳等思维过程,从中获得数学知识与技能,体验数学活动的方法,同时升华学生的情感、态度和价值观.。