圆中的专题

圆中的专题
圆中的专题

圆中小专题

专题一、圆中折叠问题

AMB上一点,则∠APB的度数为例1、如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧

____________

1、如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连接CD,若点D与圆心不重合,∠BAC=22.5°,则∠DCA的度数为_______.

BC恰好经过点O,则∠ABC=__________ 2、如图,AB是半圆O的直径,C是半圆O上一点,将半圆沿弦BC折叠,

例2、以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若AD:DB=2:3,且AB=10,则CB的长为()

1、将弧BC沿弦BC折叠交直径AB于点D,若AD=4,DB=5,则BC的长是______

2、如图,半圆形纸片的直径AB=10,AC是弦,∠BAC=15°,将半圆形纸片沿AC折叠,弧AC交直径AB于点D,则线段AD的长为____________

3、如图,已知半圆O的直径AB=4,沿它的一条弦折叠.若折叠后的圆弧与直径AB相切于点D,且AD:DB=3:1,则折痕EF的长.

例3、有一张矩形纸片ABCD,已知AB=2cm,AD=4cm,上面有一个以AD为直径的半圆,如图甲,将它沿DE 折叠,使A点落在BC上,如图乙,这时,半圆还露在外面的部分(阴影部分)的面积是()

1、如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)

2、如图,点C在以AB为直径的半圆弧上,∠ABC=30°,沿直线CB将半圆折叠,直径AB和弧BC交于点D,已知AB=6,则图中阴影部分的面积和周长分别等于________________.

专题二、弧长和面积

练习1、如右图,将直径AB为3的半圆绕A逆时针旋转60°,此时AB到达AC的位置,求阴影部分的面积为_______________

练习2、将△ABC绕点B逆时针旋转到△A′BC′使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为____________________

练习3如图,E是正方形ABCD内一点,连接EA、EB并将△BAE以B为中心顺时针旋转90°得到△BFC,若BA=4,BE=3,在△BAE旋转到△BCF的过程中AE扫过区域面积是___________

例、如图,A是半径为2的⊙O外一点,OA=4,AB是⊙O的切线,B为切点,弦BC∥0A,连接AC,求阴影部分的面积____________

1、如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE,若E是弧AC的中点,⊙O的半径为2,求图中阴影部分的面积._____________

2、如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O 作AC的平行线交两弧于点D、E,则阴影部分的面积是________________

圆中角度计算

7. 如图,在⊙O 中,弦AD200 B . 300 C400 D. 500 第3题 ; 1. 如图,四边形ABCD 内接于⊙O ,∠BOD=1600, 则∠BAD 的度数是 ,∠BCD 的度数是 . 2. 如图,正方形ABCD 内接于⊙O ,点P 在AB 上,则∠DPC = . 3. 如图, AB 是⊙O 的直径,弦CD ⊥AB, E 是AD 上一点,若∠BCD=350,求∠AED 的度数. } (第11题) 7. 如图,弦AB, CD 相交于点E , 弧AD =600, 弧BC =400,则∠AED= . (第12题) 8. 如图,P 为圆外一点,PA 交圆于点A,B ,PC 交圆于点C, D, 弧BD =750, 弧AC =150,则∠P= _____ 9.一条弦把圆分成1:3两部分,则弦所对的圆心角为________. ^ 10.弦心距是弦的一半时,弦与直径的比是________,弦所对的圆心角是_____. 11.如图11,AB 为圆O 的直径,弧BC=弧BD,BC BD =,∠A=25°,则∠BOD=______. 12.如图12所示,在△ABC 中,∠A=70°,⊙O 截△ABC?的三边所得的弦长相等,?则∠BOC=( ) A .140° B .135° C .130° D .125° 13、 如图,在⊙O 中,已知AB=BC ,且弧AB:弧AmC=3:4,:3:4,AB AmC = 求∠AOC 的度数. ' ' B C A D O B C A O CA B O O …

第20题 A P C B O (第13题) (第14题) (第15题) 14. 如图,在△ABC 中,∠BAC = 900,以AB 为直径画圆,交BC 于点D .如果CD=BD,则AD 等于( ) B. 450 C. 600 D. 900 ) 15. 如图15,A,B,C 为⊙O O 上三点,若50OAB ∠=,则ACB ∠= 度. 16. 如图16,PA 、PB 是O 圆的切线,AC 是O 圆的直径,20BAC ∠=,则P ∠的大小是 度. 17. 如图17,在 O 中,50BOC OC AB ∠=,∥.则BDC ∠的度数为 . & 图17 图18 图19 18. 如图18,ABC △内接于⊙O ,30B ∠= ,2cm AC =,则⊙O 半径的长为 19. 如图19,在⊙O 中,∠AOB=100°,C 为优弧AB 的中点,则CAB ∠= 20. 如图20,圆心角∠AOB =120?,P 是弧AB 上任一点(不与A ,B 重合),点C 在AP 的延长线上,∠BPC 等于( ) · A.45? B.60? C.75? D.85? 21. 如图,AB 是半圆直径,∠BAC=200,D 是AC 的中点, 则∠DAC 的度数是( ) A . 300 B. 350 C. 450 D . 700 第21题目 4. 如图,A, B, C 为⊙O 上三点,∠ABO=650,则∠BCA 等于( ) A. 250 B. 32.50 C . 300 D. 450 5. 已知:如图,四边形ABCD 是⊙O 的内接四边形,∠BOD=1400,则∠DCE= . 6. 如图,AB 是⊙O 的直径,C, D, E 都是⊙O 上的点,则∠1+∠2 = . A B C ( O A C ¥ B C ] A B

和圆有关的角(含答案)

O F E C B A O E D C B A 和圆有关的角 与圆有关的角我们学习了圆心角、圆周角、弦切角以及它们的大小与它们所对(或夹)的弧的度数之间的关系. 角的顶点和边与圆位置关系在运动和变化过程中也可能形成另外的两种角.?如果角的顶点在圆内,则称这样的角为圆内角,如图1中所示的∠AEB 即为圆内角.圆内角的大小究竟与弧有何关系呢?延长AE 、BE 分别交圆于C 、D 两点,再连结AD,?则∠AEB=∠A+∠D.∵∠A 的度数等于 12CD ,∠D 的度数等于12AB ,∴∠AEB 的度数等于1 2 (?AB +CD ).即圆内角的度数等于它和它的对顶角所对的两弧度数和的一半,其中圆心角是特殊的圆内角. E D C B A E D C B A (1) (2) 如果角的顶点在圆外,且角的两边都与同一个圆相交,则称这样的角为圆外角,?如图2所示,∠AEB 即为圆外角,圆外角又有什么性质呢?连结AD,则∠E=∠CAD-∠D,?∵∠CAD 的度数等于 12CD ,∠D 的度数等于12AB ,∴∠E 的度数等于 1 2 (CD -AB ).即圆外角的度数等于它所夹的两弧度数的差的绝对值的一半. 圆心角、圆周角、弦切角、圆内角和圆外角,弧是联系它们的中介,即“由角看弧,由弧看角”是促使它们互相转化的基本方法。 例1 已知:如图,△ABC 内接于⊙O,∠A=60°,∠B=80°,E 是BC 上一点,F?是AC 的中点,求∠BEF 的度数. 解析 ∵∠C=∠AEB,∠C=180°-(∠BAC+∠ABC)=180°-(60°+80°)=40°, ∴∠AEB=40°. ∵AF FC ,∴∠ABF= 1 2 ∠ABC=40°. 又∵∠AEF=∠ABF=40°. ∴∠BEF=∠AEB+∠AEF=80°. 点评 若所求的角是与圆有关的角,如圆心角、圆周角、弦切角、?内接四边形的内角和外角,要设法利用相关的定理进行计算,若所求的角与圆无关,要设 法转化为与圆有关的角去解决。 例2 如图,设P 为正三角形ABC 外接圆⊙O 的劣弧BC 上一点,AP 交BC 于点D. 证明:PB 、PC 是方程x 2-PAx+PA ·PD=0的两个根.

圆中的最值问题

圆中的最值问题 Prepared on 24 November 2020

圆中的最值问题 【考题展示】 题1 (2012年武汉中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 题2 (2013年武汉元调)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧AB上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,BC=a,AC=b,求a b +的最大值.(有修改) 题3 (2013年武汉四调)如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为_________. 题4 (2013年武汉五模)在△ABC中,120 A BC=.若△ABC的内切圆半径为r,则r的最 ∠=?,6 大值为_________.(有修改) 题5 (2013年武汉中考)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF 交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是 _________. 题1图题2 图题3 图

题4图题5图 【典题讲练】 类型1(相关题:题5) 如图,边长为a的等边△ABC的顶点A,B分别在x轴正半轴和y轴正半轴上运动,则动点C到原点O的距离的最大值是_________. 在直角坐标系中,△ABC满足,∠C=90°,AC=8,BC=6,点A,B分别在x轴、y轴上,当A点从原点开始在正x轴上运动时,点B随着在正y轴上运动(下图),求原点O到点C的距离OC的最大值,并确定此时图形应满足什么条件. 如图,在平面直角坐标系中,已知等腰直角三角形ABC,∠C=90°,AC=BC=2,点A、C分别在x轴、y轴上,当点A从原点开始在x轴的正半轴上运动时,点C在y轴正半轴上运动. (1)当A在原点时,求点B的坐标; (2)当OA=OC时,求原点O到点B的距离OB; (3)在运动的过程中,求原点O到点B的距离OB的最大值,并说明理由.

圆中角度计算

7. 如图,在⊙O 中,弦AD//BC ,DA=DC, ∠AOC=1600,则∠BCO 等于( ) A. 200 B . 300 C400 D. 500 第3题 1. 如图,四边形ABCD 内接于⊙O ,∠BOD=1600, 则∠BAD 的度数是 ,∠BCD 的度数是 . 2. 如图,正方形ABCD 内接于⊙O ,点P 在AB 上,则∠DPC = . 3. 如图, AB 是⊙O 的直径,弦CD ⊥AB, E 是AD 上一点,若∠BCD=350,求∠AED 的度数. (第11题) 7. 如图,弦AB, CD 相交于点E , 弧 AD =600, 弧 BC =400,则∠AED= . (第12题) 8. 如图,P 为圆外一点,PA 交圆于点A,B ,PC 交圆于点C, D, 弧 BD =750, 弧 AC =150,则∠P= _____ 9.一条弦把圆分成1:3两部分,则弦所对的圆心角为________. 10.弦心距是弦的一半时,弦与直径的比是________,弦所对的圆心角是_____. 11.如图11,AB 为圆O 的直径,弧BC=弧BD, BC BD =,∠A=25°,则∠BOD=______. 12.如图12所示,在△ABC 中,∠A=70°,⊙O 截△ABC?的三边所得的弦长相等,?则∠BOC=( ) A .140° B .135° C .130° D .125° 13、 如图,在⊙O 中,已知AB=BC 3:4,= 求∠AOC 的度数. (第13题) (第14题) (第15题) 14. 如图,在△ABC 中,∠BAC = 900,以AB 为直径画圆,交BC 于点D .如果CD=BD,则 AD 等于( ) A.300 B. 450 C. 600 D. 900 B A C C第16题

圆中有关最值问题一.doc

圆中有关最值问题(1)教学设计 一、设计思路: 圆中有关最值问题是中考数学中的重要内容,是综合性较强的问题,它贯穿初中数学的 始终,是中考的热点问题。其运用性质有:圆中直径是最长的弦、垂线段最短、三边关系定 理、对称法等。本节课以例题入手来研究圆中的有关最值问题。 二、学情分析 学生知识技能基础:学生在前面几节课已经认识了圆,学习了圆的有关知识,以及数学 的基本结论:圆中直径是最长的弦、垂线段最短、三角形三边关系等基本知识,这些为本节 课的学习奠定了良好的知识技能基础。 学生活动经验基础:通过以往的数学学习,学生已经具有了一些数学活动经验的基础; 另一方面,在以往的数学活动中,学生已经经历了很多合作交流的学习过程,具有了一定的 合作学习的经验,具备了一定的合作交流的能力。 三、教学目标 知识与技能: 1、会利用直径是圆中最长的弦这一基本结论解决有关最值问题; 2、会利用圆外一点与圆上各点的连线中最短与最近距离这一基本事实,解决圆中有关最值问题。 方法与途径: 通过观察、操作、想象、推理、交流等活动,发展空间观念,培养学生动手动脑、发现 问题及解决问题的能力,以及推理能力和有条理的表达能力。 情感与评价: 通过实际操作、画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思 维变得更加灵活。 现代教学手段: 多媒体和几何画板的合理应用,增加了课时内容,激发了学生学习的积极性,突破了教 学重点、难点的同时,更重要的是使复杂问题更加简单化,通过清楚的动画演示,使学生进 一步感受何时取得最大值问题。 四、教学重点与难点 教学重点:将试题转化为最值中的有关模型 教学难点:将试题转化为最值中的有关模型的方法

圆的有关证明与计算题专题

A B 《圆的证明与计算》专题研究 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 一、考点分析: 1.圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。 三、解题秘笈: 1、判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:(1)如图,AB是⊙O的直径,BC⊥AB,AD∥OC交⊙O于D点,求证:CD为⊙O的切线; (2)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于D,点E为BC的中点,连结DE,求证:DE是⊙O 的切线. (3)如图,以等腰△ABC的一腰为直径作⊙O,交底边BC于D,交另一腰于F,若DE⊥AC于E(或E为CF中点),求证:DE是⊙O的切线. (4)如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB 的延长线于点C,求证:CD是⊙O的切线. 2、与圆有关的计算: 计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有:

人教版九年级数学上册:探解圆中最值问题的三种 基本思路

探解圆中最值问题的三种基本思路 圆中探求最值是近几年中考的一个凸显亮点,背景丰富有创意,解法灵活有创新,可谓八仙过海,各显其能,是一个值得深思和探究的好课题.下面就结合2019年的考题,向大家推荐这类最值的探解基本思路,供学习时借鉴. 一、直径是圆中最长的弦为依据求最值 1.探求三角形中位线的最大值 例1 (2019年东营)如图1,AC 是⊙O 的弦,AC=5,点B 是⊙O 上的一个动点,且∠ABC=45°, 若点M 、N 分别是AC 、BC 的中点,则MN 的最大值是 . 解析:因为点M ,N 分别是BC ,AC 的中点,所以MN=2 1AB ,所以当弦AB 取得最大值时,MN 就取得最大值,因为直径是圆中最大的弦,所以当弦AB 是直径时,AB 最大,如图1,连接 AO 并延长交⊙O 于点B ′,连接CB ′,因为AB ′是⊙O 的直径,所以∠ACB ′=90°. 因为∠ABC=45°,AC=5,所以∠AB ′C=45°,所以AB ′=2255 =52,所以MN 的最大 值为最大MN =225.所以应该填. 点评:当线段是圆的某条弦时,熟记直径是圆中最大的弦是解题的关键. 2.探求圆上动点到定弦的最大值 例2(2019?广元)如图2,△ABC 是⊙O 的内接三角形,且AB 是⊙O 的直径,点P 为⊙O 上 的动点,且∠BPC=60°,⊙O 的半径为6,则点P 到AC 距离的最大值是 . 解析:如图2,过O 作OM ⊥AC 于M ,延长MO 交⊙O 于P ,则此时,点P 到AC 的距离最大,且点P 到AC 距离的最大值=PM ,因为OM ⊥AC ,∠A=∠BPC=60°,⊙O 的半径为6,

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算 1.如图,已知△ABC 内接于△O , P 是圆外一点,P A 为△O 的切线,且P A =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D . (1)求证:PB 为△O 的切线; (2)若P A =4 5PO ,△O 的半径为10,求线段 PD 的长. 第1题图 (1)证明:△△△△△△OA △OB △ 第1题解图 △P A △PB △OA △OB △OP △OP △ △△OAP △△OBP (SSS)△ △△OAP △△OBP △ △P A △△O △△△△ △△OAP △90°△ △△OBP △90°△ △OB △△O △△△△ △PB △△O △△△△

△△Rt△AOP △△OA △PO 2 △△4 5PO △2△10△ △△PO △50 3△ △cos△AOP △AO OP △OD AO △ △OD △6△ △PD △PO △OD △32 3. 2. △△△△△ABC △△AB △AC △△D △BC △△△△△AD △DC △△A △B △D △△△△O △AE △△O △△△△△△DE . △1△△△△AC △△O △△△△ △2△△cos C △3 5△AC △24△△△△AE △△. 第2题图 (1)证明:△AB △AC △AD △DC △ △△C △△B △△DAC △△C △ △△DAC △△B △ △△△E △△B △ △△DAC △△E △ △AE △△O △△△△ △△ADE △90°△ △△E △△EAD △90°△ △△DAC △△EAD △90°△ △△EAC △90°△

△OA △△O △△△△ △AC △△O △△△△ (2)解:△△△△△△D △DF △AC △△F △ 第2题解图 △DA △DC △ △CF △1 2AC △12△ △Rt△CDF △△△cos C △CF CD △3 5△ △DC △20△ △AD △20△ △Rt△CDF △△△△△△△△1622==CF CD DF -△ △△ADE △△DFC △90°△△E △△C △ △△ADE △△DFC △ △AE DC △AD DF △ △AE 20△1620 △△△AE △25△ △△O △△△AE △25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作△O ,交BC 于点D ,交AC 于点E ,过点E 作△O 的切线EF ,交BC 于点F . (1)求证:EF △BC ; (2)若CD =2,tan C =2,求△O 的半径.

简单数学之与圆有关的角的复习(含答案)

各部分设计意图说明 一、入门:力求整合相关知识,减少学生记忆,增强认知,选用基本问题作为习题,提升学生基础知识应用能力。 二、提高:总结相关知识推衍出的常用结论,学生可以通过这些结论的证明实际演练基础知识的应用,选择教学进度内、提升难度后的例题和练习再次强化学生分析问题、解决问题能力。 三、中考视角:选题以中考考查范围为视角,提高学生各部分知识的综合应用能力。题目中将加入部分原创试题,目的是让学生开拓视野,给老师中考复习增加素材。 简单数学之与圆有关的角复习 一、入门 (一)、定义: 圆心角:顶点在圆心的角叫作圆心角。如图1,∠AOB是圆心角,它所对的弧是劣弧⌒ AB, 其实,这个图里还有一个圆心角,就是∠AOB优弧⌒ AB所对的圆心角,很多时候我们都忽略 它的存在,有时候它也很有用,比如,证明圆内接四边形性质时。 圆周角:顶点在圆周上,并且两边都与圆相交的角叫作圆周角。换个角度看,圆周角就 是两条有公共端点的弦所夹成的角。如图1,∠AOB是圆周角,它是由弦AC、弦BC所夹成 的,点C是它的顶点,而剩余的两个弦的端点,恰好构成了圆周角作对弧⌒ AB。 由此,可知,圆周角和圆心角同根同源,圆心角、圆周角的转化都以它们所对的弧为基础(二)、定理与性质: 1、课本上,我们有弧、弦、圆心角的关系定理,还有圆周角定理及其推论,如果我们将它们整合一下可以得到五量关系定理: 在同圆或等圆中,两个圆心角,两个圆周角,两条弦,两条弦的弦心距、两条弧中,有一组量相等,其余各组量分别对应相等。应用五量关系,证明圆中相关要素的相等关系是比较好的选择。 例题1:如图2,⊙O中,弦AB、CD交于点E,且AB=CD,求证:AC=BD 解析:因为是在同圆中,已知弦相等,我们可以推出弦所对的弧相等,也可以推出 弦所对的圆周角相等. 方法一:证明:如图2,∵AB=CD ∴⌒AB =⌒ CD ∴⌒AC =⌒ BD ∴AC=BD 方法二:证明:如图3,连OA,OB,OC,OD ∵AB=CD ∴∠AOB=∠COD ∴∠AOC=∠BOD 图1 B 图 2 B

(完整版)圆最值问题题型归纳

x 圆中最值问题 类型一 圆上一点到直线距离的最值问题 例1 已知P 为直线y=x +1上任一点,Q 为圆C : 22(3)1x y -+=上任一点,则PQ 的最小值为 . 变题1:已知A (0,1),B (2,3),Q 为圆C 22 (3)1x y -+=上任一点,则QAB S V 的最小值为 . 变题2:由直线y=x +1上一点向圆C :22 (3)1x y -+=引切线,则切线长的最小值为 变题3:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则当PC= 时,APB ∠最大. 变题4:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则四边形PACB 面积的最小值为 . 例2已知圆C :222430x y x y ++-+=,从圆C 外一点11(,)P x y 向该圆引一条切线,切点为M ,O 为坐标原点,且有PM=PO ,求使得PM 取得最小 值的点P 坐标. 类型二 利用圆的参数方程求最值(或几何意义) 例3若实数x 、y 满足22240x y x y ++-=,求x-2y 的最大值. 如在上例中,改为求 12 y x --,22(2)(1)x y -+-,1x y --的取值范围,该怎么求解? 类型三:转化成函数或不等式求最值 例4已知圆O :22 1x y +=,PA 、PB 为该圆的两条切线,A 、B 为两切点,则PA PB ?u u u r u u u r 的最小值为

例5已知圆C : 22+24x y +=(), 过点(1,0)A -做两条互相垂直的直线12l l 、,1l 交圆C 与E 、F 两点,2l 交圆C 与G 、H 两点, (1)EF +GH 的最大值.(2) 求四边形EGFH 面积的最大值. 6、已知e C 过点)1,1(P ,且与e M :222(2)(2)(0)x y r r +++=>关于直线20x y ++=对称. (Ⅰ)求e C 的方程; (Ⅱ)设Q 为e C 上的一个动点,求PQ MQ ?u u u r u u u u r 的最小值; (Ⅲ)过点P 作两条相异直线分别与e C 相交于B A ,,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由. 7、如图,在矩形ABCD 中,3,1AB BC ==,以A 为圆 心1为半径的圆与AB 交于E (圆弧DE 为圆在矩形内的部 分) (Ⅰ)在圆弧DE 上确定P 点的位置,使过P 的切线l 平分 矩形ABCD 的面积; (Ⅱ)若动圆M 与满足题(Ⅰ)的切线l 及边DC 都相切, 试确定M 的位置,使圆M 为矩形内部面积最大的圆. l P E C M

专题复习二 与圆有关的角

与圆有关的角专题复习二 圆中确定角相等一般圆周角定理为圆中角的等量关系提供了丰富的理论依据,圆心角定理、按弧所对角来确定,要特别注意直径与直角的关 系. ). ,∠AOC=40°,则所对的圆心角的度数为(A1.如图所示,AE∥CD,连结AO D.30°C.60° A.40° B.50° ) 4题题)(第第(第1题)(第2题)(3 所对的圆周角∠DEB=35°,则∠AODC的一条弦,且OD⊥AB于点,2.如图所示,AB是⊙O). 的度数是(C C.70° D.110°A.35° B.55°3). 所对圆心角 的度数为AB在⊙O中,圆心O到弦AB的距离(OD=C AB,则弦如图所示,3.6 C.120° D.150°A.60° B.90° 则∠PAQ70°,30°,A4.如图所示,量角器的外缘边上有,P,Q三点,分别表示读数180°,). (D的度数为 D.20° A.10°B.30° C.40° ,则下列判,AB为直径的⊙O分别交BCAC于点D,E如图所示,在△ABC5.中,AB=AC,以). 断: ①BD=CD;②BD=DE;③AE=DE;④△ABC为锐角三角形.其中正确的判断有(C A.1个个个 D.4 B.2个 C.3

) 8)5题)(第6题(第7题)(第题第(上,并且也在格点上,6.如图所示,⊙O的圆心O在正方形网格的格点上,B两点在⊙OA,45°.C为⊙O上一点,则∠ACB= 75°为⊙O 的弦,若∠BAD=50°,则∠AED= .,7.如图所示,AD8.如图所示,AC为⊙O的直径,B,D,E都是⊙O上的点,则∠A+∠B+∠C= 90°. 图1图2 (第9题) 9.如图所示,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°. (1)若点C在优弧BD上,求∠ACD的大小. (2)若点C在劣弧BD上,直接写出∠ACD的大小. 页 1 第 【答案】(1)∵AO⊥BD,∴=.∴∠AOB=2∠ACD.∵∠AOB=80°,∴∠ACD=40°. 9题答图)(第 在上时,∠ACD=∠ACD=40°.C(2)①如答图所示,当点11

圆中的三角函数

锐角三角函数和圆 复习目标 ● 巩固三角函数的概念、熟记30°,45°, 60°角的三角函数值; ● 熟练运用三角函数的定义,结合圆的特点,解决问题。 考察重点 ● 求三角函数值; ● 运用三角函数的知识,解决数学中的其他问题。 课前热身 1. 如图,PM 是⊙O 的切线,M 为切点,OM=5,PM=12,则sin ∠OPM 的 值为( ) A . B . C . D . 2. 如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形 顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小正方形内,则tan ∠APB 等于( ) A .1 B . C . D . 3. 如图,⊙O 中,OA ⊥BC ,∠AOB=60°,则sin ∠ADC= . 夯实基础 4. 根据三角函数的定义填空: 如图,△ABC 中,sinA= ,cosA= ,tanA= 。 例1 如图,已知⊙O 的半径为5cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,BP=2cm ,则tan ∠OPA 等于( ) A . B . C .2 D . 6. (2016?衢州)如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作 ⊙ O 的切线交AB 的延长线于点E ,若∠A=30°,则sin ∠E 的值为( ) A . B . C . D . c b a B A C C A P E A D C A B

解答精练 例3 如图所示,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在⊙O 上,过点C 的切线交AD 的延长线于点E ,且AE ⊥CE ,连接CD . (1)求证:DC=BC ; (2)若AB=5,AC=4,求tan ∠DCE 的值. 8. 已知:如图,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,PA=4, OA=3,则cos ∠APO 的值为( ) A . B . C . D . 9. 如图,点D (0,3),O (0,0),C (4,0)在⊙A 上,BD 弦,则sin ∠OBD=( ) A . B . C . D . 10. 如图,∠1的正切值等于 . A 备用图 A

“隐圆”最值问题习题

B M C D A E F D C B A B E D C F A “隐圆”最值问题 重难点:分析题目条件发现题目中的隐藏圆,并利用一般的几何最值求解方法来解决问题 【例1】在平面直角坐标系中,直线y = - x + 6分别与x 轴、y 轴交于点A 、B 两点,点C 在y 轴的左边,且∠ACB = 90°,则点C 的横坐标x C 的取值范围是__________. 分析:在构造圆的前提下 考虑90°如何使用。直角对直径所以以AB 为直径画圆。使用垂径定理即可得到3-20c x ≤<3 【练】(2013-2014·六中周练·16)如图,已知Rt △ABC 中,∠ACB = 90°,AC = 3,BC = 4,点D 是AB 的中点,E 、F 分别是直线AC 、BC 上的动点,∠EDF = 90°,则EF 长度的最小值是__________. 分析:过D 点作DE 垂直AB 交AC 于点M 可证△FBD ∽△ECD 即可 求出最小值 【例2】如图,在Rt △ABC 中,∠ACB = 90°,D 是AC 的中点, M 是BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始 终保持点M 是BD 的中点),若AC = 4,BC = 3,那么在旋转 过程中,线段CM 长度的取值范围是_______________. 分析:将线段AD 绕A 点任意旋转隐藏着以A 为圆心AD 为半径的圆构造 出来。接下来考虑重点M 的用途即可。中点的用法可尝试下倍长和中位线。 此题使用中位线。答案是 3722 c x ≤≤ 【练】已知△ABC 和△ADE 都是等腰直角三角形,∠ACB =∠ADE = 90°,AC = 22,AD = 1,F 是BE 的中点,若将△ADE 绕点A 旋转一周,则线段AF 长度的取值范围是 4242 22 AC -+≤≤. 分析:同例题 【例3】如图,已知边长为2的等边△ABC ,两顶点A 、B 分别在平面直角

圆的证明与计算 专 题

2012中考数学复习《圆的证明与计算》专题 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 一、考点分析: 1.圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,圆与相似圆与面积圆与切线动态圆 三、解题秘笈: 1、判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线. 2、与圆有关的计算: 计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有:(1)构造思想:如:①构建矩形转化线段;②构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);③构造垂径定理模型:弦长一半、弦心距、半径;④构造勾股定理模型;⑤构造三角函数. (2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题。 (3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。

与圆有关的角

22.与圆有关的角 知识考点: 1、掌握与圆有关的角,如圆心角、圆周角、弦切角等概念; 2、掌握圆心角的度数等于它所对弧的度数; 3、掌握圆周角定理及其推论; 4、掌握弦切角定理及其推论; 5、掌握各角之间的转化及其综合运用。 精典例题: 【例1】如图,在等腰△ABC 中,AC =BC ,∠C =1000,点P 在△ABC 的外部,并且PC =BC ,求∠APB 的度数。 分析:注意条件AC =BC =PC ,联想到圆的定义,画出以点C 为圆心,AC 为半径的圆,问题则得以解决。 解:∵AC =BC ,PC =BC ∴A 、B 、P 三点在以C 为圆心,AC 为半径的圆上 若P 、C 在AB 的同侧,则∠APB = 2 1 ∠ACB ∵∠ACB =1000,∴∠APB =500 若P 、C 在AB 的异侧,则∠APB =1800-50=1300 【例2】如图,在△ABC 中,∠B =900,O 是AB 上一点,以O 为圆心,OB 为半径的圆与AB 交于E ,与AC 切于点D ,直线ED 交BC 的延长线于F ,若AD ∶AE =2∶1,求cot ∠F 的值。 分析:由AD ∶AE =2∶1和△ADE ∽△ABD 有DE ∶DB =1∶2,而∠F =∠EBD ,则cot ∠F =cot ∠EBD = DE BD ,故结论得证。 解:连结BD ∵AC 为⊙O 的切线,∴∠1=∠2 ∵∠A =∠A ,∴△ADE ∽△ABD ∴DE BD AE AD =,即12 =AE AD ∴21 2==DE DB ∵BE 为⊙O 的直径,∴∠BDE =900 ∴∠2+∠BEF =900,∵∠F +∠BEF =900,∴∠2=∠F ∴cot ∠F =cot ∠2= DE BD =2 【例3】如图,由矩形ABCD 的顶点D 引一条直线分别交BC 及AB 的延长线于F 、G ,连结AF 并延长交△BGF 的外接圆于H ,连结GH 、BH 。 (1)求证:△DFA ∽△HBG ; (2)过A 点引圆的切线AE ,E 为切点,AE =33,CF ∶FB =1∶2,求AB 的长; (3)在(2)的条件下,又知AD =6,求tan ∠HBG 的值。 分析:(1)证∠DAF =∠AFB =∠BGH ,∠DFA =∠HFG =∠HBG 即可; P ' ? 例1图 P C B A ? 例2图 2 1 O E F D C B A

圆中有关的角

年 级 初三 学 科 数学 编稿老师 田一鹏 课程标题 圆中有关的角 一校 张琦锋 二校 林卉 审核 孙永涛 一、考点突破 1. 掌握和圆有关的角:圆心角、圆周角、圆内角、圆外角、弦切角的定义及其度量。 2. 掌握圆内接四边形的性质定理。 3. 了解弧、弦、圆心角、圆周角之间的关系,并能运用这些关系解决有关问题。 二、重难点提示 重点:弧、弦、圆心角、圆周角之间的关系。 难点:圆周角定理的应用和分类讨论的思想在解题中的应用。 一、圆中有关的角 ?? ?? ?????圆心角圆周角圆中有关的角圆内角圆外角弦切角 1. 圆心角: 顶点在圆心的角叫做圆心角。 O C B 把整个圆周等分成360份,每一等份弧是1°的弧,圆心角的度数和它所对的弧的度数相等。 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们相对应的其余各组量都相等。 2. 圆周角: 顶点在圆上,并且两边都和圆相交的角叫做圆周角。

O B C A 一条弧所对的圆周角等于它所对的圆心角的一半,同弧或等弧所对的圆周角相等;反之也成立。 直径所对的圆周角是直角。 B C A O 3. 圆内角: 顶点在圆内(两边自然和圆相交)的角叫圆内角。 P O B A 圆内角的度数等于它所对的弧的度数与它的对顶角所对的弧的度数的和的一半。 D P B C O A 顶点在圆外,并且两边都和圆相交(或相切)的角叫圆外角。

D P B C A O 圆外角的度数等于它所夹的两弧度数的差(较大弧的度数减去较小弧的度数)的一半。 5. 弦切角: 顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。 弦切角等于它所夹的弧对的圆周角。 推论①弦切角等于它所夹的弧所对的圆心角的一半。 推论②如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。 二、圆的内接四边形 如果一个多边形的所有顶点都在同一个圆上,那么这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。 如果一个四边形的四个顶点都在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做这个四边形的外接圆。 D C B A O 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。 (对圆内接四边形的性质的考查,在竞赛题目中出现较多。等后面我们学习了直线和圆的相关知识后,还要学到圆的外切四边形及其性质:圆的外切四边形的两组对边的和相等)。 三、圆中有关的角的应用 根据圆心角与圆周角的倍半关系,可实现圆心角与圆周角的转化;由同弧或等弧所对的圆周角相等,可将圆周角在大小不变的情况下,改变顶点在圆上的位置进行探索;由圆内接

人教版九年级上册《圆的证明与计算》专题讲解

《圆的证明与计算》专题讲解 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 圆的有关证明 一、圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。 知识点一:判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:

方法一:若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B 为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E,

有关初中圆的定理

1.圆是以圆心为对称中心的中心对称图形;围绕圆心旋转任意一个角度α,都能够与原来的重合. 2.顶点在圆心的角叫做圆心角.圆心到弦的距离叫做弦心距. 圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理) 切线长定理 垂径定理 圆周角定理 弦切角定理 四圆定理

3.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等. 4.在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等. 5.把整个圆周等分成360份,每一份弧是1°的弧.圆心角的度数和它所对的弧的度数相等. 6.圆是中心对称图形,即圆绕其对称中心(圆心)旋转180°后能够与原来图形重合,这一性质不难理解.圆和其他中心对称图形不同,它还具有旋转不变性,即围绕圆心旋转任意一个角度,都能够与原来的图形重合. 7.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 8.(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧 (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 9.圆的两条平行弦所夹的弧相等 10.(1)一条弧所对的圆周角等于它所对的圆心角的一半. (2)同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等. (3)半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. (4)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 11.(1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.

圆中求角问题

圆的复习(与圆有关的角度计算)教学设计 一、内容和内容解析 1.内容 综合应用本章的知识解决“圆中求角问题”。 2.内容解析 本节课是习题课,是在学生已经学习圆的所有基本性质的基础上,对本章内容的综合应用。 从求圆外一角的简单问题入手,结合本章所学的切线的性质,圆周角定理等知识,由易到难,逐一剖析,并在教学过程中逐步进行归纳解题方法与思路。重点引导学生理解几何计算题和证明题中的转化思想和方程思想的运用。 基于以上分析,确定本节课的教学重点是:从“圆中求角问题”的具体问题中,理解并掌握“圆中求角”问题中的分析方法和解题思路。 二、目标和目标解析 1.目标 (1)复习圆的基本性质,掌握“圆中求角问题”的分析方法。 (2)感悟与圆有关计算的转化思想,体会各部分知识间的联系。 2.目标解析 达成目标(1)的标志是:熟记圆中的基本性质和定理,并能恰当的运用这些性质定理解决简单问题。 达成目标(2)的标志是:能够在具体的问题中,运用转化思想分析和解决圆中求角问题。 三、教学问题诊断分析 学生在初中阶段开始接触几何证明与计算,但对于分析问题的方法始终是难点与重点,对部分接受能力弱的学生来说一直难以掌握。对于几何计算与证明,要求学生提前熟悉所涉及到的基本性质和定理,并且学会分析问题和转化问题。 四、教学过程设计

1.自主学习,引入圆中求角问题 问题1:在⊙O 中,AB 为直径,C 为⊙O 上一点,过点C 作⊙O 的切线,与AB 的延长线相交于点P ,若∠CAB =27°,求∠P 的大小. 师生活动:教师出示问题,学生先独立思考,回答。为了帮助学生有逻辑地思考,教师可追问以下问题: 教师追问1:分析已知条件,见到切线联想到切线有什么性质? 教师追问2:分析求证,要求∠P 可以转为求哪一个与其相关的角? 设计意图: 学生要学分析已知和求证,通过这道题,引导学生对所有进行转化,并且进行一题多解进行简单探究,最后归纳多法归一,所有的方法都是在进行转化,只不过转化的方法与途径不同。 本题是这节课的第一道题,开题直接切入本课重点,由易入手,学生更容易接受,从而逐步引导学生学会圆中求角问题的思考方法和转化思想。 2.师生合作探究,启发圆中求角的转化思想: 例.在⊙O 中,AB 为直径,C 为⊙O 上一点,D 为 上一点,且OD 经过AC 的中点E ,连接DC 并延长,与AB 的延长线相交于点P ,若∠CAB =10°,求∠P 的大小. 师生活动: 第一个阶段,根据第一题的解题思考和分析方法,学生先独立思考,独立书写过程,教师 A A

相关文档
最新文档