基坑支护监测方案设计
一级基坑监测方案

3.支护结构水平位移及垂直位移监测点:沿支护结构布置,点间距不超过15m。
4.支护结构应力监测点:根据支护结构形式及受力特点进行布置。
5.水位监测点:在基坑四周及中间区域布置,点间距不超过20m。
六、监测频率
1.地表沉降监测:施工期间,每周至少进行一次监测。
2.监测数据用于指导施工,调整施工方案,确保施工安全。
3.监测成果作为工程验收的依据之一。
十、总结
本基坑监测方案旨在确保一级基坑施工安全,减少施工过程中的风险。各相关单位应严格按照本方案执行,确保工程顺利进行。在监测过程中,如遇特殊情况,可根据实际情况调整监测方案。
3.支护结构水平位移:累计位移量达到20mm或日位移量达到5mm时,启动预警。
4.支护结构垂直位移:累计位移量达到20mm或日位移量达到5mm时,启动预警。
5.支护结构应力:应力值超过设计值的80%时,启动预警。
6.水位:水位超过设计水位±0.5m时,启动预警。
八、监测组织与管理
1.监测单位应具备相应的资质,严格按照相关规范和设计方案进行监测。
一级基坑监测方案
一、前言
基坑工程作为地下工程的重要组成部分,其施工安全对整个工程的安全具有重大影响。为确保一级基坑施工过程中的稳定性与安全性,减少对周边环境的影响,依据《建筑工程基坑支护技术规范》(JGJ 120-2012)等相关规范,结合本项目特点,制定本基坑监测方案。
二、监测目标
1.实时掌握基坑施工过程中的变形、应力及水位变化情况。
5.支护结构应力监测:采用应力计,按每三天一次的频率进行监测。
6.水位监测:采用水位计,按每天一次的频率进行监测。
建筑工程基坑支护检测方案

建筑工程基坑支护检测方案一、前言建筑工程中的基坑支护检测是为了确保基坑支护结构的安全性和稳定性,以及保障施工人员和周边环境的安全。
基坑支护检测方案需要根据具体工程的特点和要求进行合理设计,并且需要在施工前、施工中和施工后进行全面的检测和监测。
本文将对基坑支护检测的方案进行详细介绍,包括检测的内容、方法和定期检测的频率等。
二、基坑支护检测的内容1. 基坑支护结构的材料检测:包括支撑材料的品种、规格和质量等。
需要检测支撑材料是否符合设计要求,并且是否具有相应的强度和稳定性。
2. 土体力学性质的检测:包括土壤的含水量、密度、压缩性和黏性等。
需要检测土体的力学性质是否符合预期,并且是否具有足够的承载能力。
3. 基坑支护结构的施工质量检测:包括支护结构的几何形状、尺寸和平整度等。
需要检测支护结构是否按照设计要求进行施工,并且是否达到了相应的质量标准。
4. 基坑周边环境的监测:包括基坑周边地下水位、地表下沉和结构变形等。
需要监测基坑周边环境的变化情况,以及对基坑支护结构的影响。
三、基坑支护检测的方法1. 材料检测:可以采用化学分析、质量检测和力学测试等方法进行材料的检测。
化学分析可以对支撑材料的成分和含量进行检测,质量检测可以对支撑材料的外观和表面质量进行检测,力学测试可以对支撑材料的强度和稳定性进行检测。
2. 土体力学性质的检测:可以采用原位测试和室内测试等方法进行土体力学性质的检测。
原位测试可以通过现场取样和测试来获取土体的力学性质,室内测试可以通过实验室测试来获取土体的力学性质。
3. 施工质量检测:可以采用现场测量和实验室测试等方法进行施工质量的检测。
现场测量可以对支护结构的几何形状、尺寸和平整度进行检测,实验室测试可以对支护结构的材料和结构进行检测。
4. 周边环境监测:可以采用地下水位监测、地表下沉监测和结构变形监测等方法进行周边环境的监测。
地下水位监测可以通过现场测量和实验室测试来获取基坑周边地下水位的变化情况,地表下沉监测可以通过现场测量和实验室测试来获取基坑周边地表下沉的情况,结构变形监测可以通过现场测量和实验室测试来获取基坑支护结构的变形情况。
基坑监测监控方案

基坑监测监控方案土方开挖施工期间,应对基坑支护结构受力和变形、周边建筑物、重要道路及地下管线等保护对象进行系统的监测。
通过监测,可以及时掌握基坑开挖过程中支护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周边环境的安全与稳定提供监控数据,防患于未然;通过监测数据与设计参数的对比,可以分析设计的正确性与合理性,科学合理地安排下一步工序,必要时及时修改设计,使设计更加合理,施工更加安全。
一.监测频率1坡顶水平位移监测:基坑开挖前3步深度在5m以内,可每2d观测一次,基坑开挖至5m以下及基坑开挖完成后一周内,每天观测一次。
基坑开挖至基底后一周后无明显位移时,可适当延长观测周期,每5~IOd 观测一次。
2、坡顶垂直位移及建筑物沉降观测:在基坑降水时和在基坑土开挖过程中应每天观测一次。
混凝土底板浇完IOd以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。
此后可每周观测一次至回填土完工。
3、当出现下列情况之一时,应进一步加强监测,缩短监测时间间隔加密观测次数,并及时向施工、监理和设计人员报告监测结果:(1)监测项目的监测值达到报警标准;(2)基坑及周围环境中大量积水、长时间连续降雨、市政管线出现泄漏;(3)基坑附近地面荷载突然加大;(4)临近的建筑物或地面突然出现大量沉降、不均匀沉降或严重开裂。
4、当有危险事故征兆时,应连续监测。
二、监控报警1基坑及支护结构监控报警值以累计变化量和变化速率两个值控制,累计变化量的报警指标不应超过设计限制。
2、本基坑坡顶水平位移报警值设为25mm,水平位移速率报警值设为连续三日大于2mm∕d o3、周围建筑物报警值以累计变形量、变形速率、差异变形量并结合裂缝观测确定。
4、本基坑周围建筑物沉降报警值设为15mm,倾斜报警值设为IOmm,倾斜速率报警值设为连续三日大于Imm/55、当出现下列情况时,应立即报警:6、周围建筑物砌体部分出现宽度大于15mm的变形裂缝;7、附近地面出现宽度大于IOmm的裂缝;三、紧急预案1基坑开挖和喷锚支护施工过程中,由于破坏了土层中的原有的应力平衡,坡面肯定会发生变形,直到达到新的平衡。
基坑支护监测检测方案

基坑支护监测检测方案基坑支护监测检测方案是指针对基坑支护工程的稳定性和安全性进行检测与监测的方案。
基坑支护工程是建筑工程中的重要组成部分,它的稳定性对于项目的安全运行至关重要。
因此,及时准确地进行基坑支护监测检测,对于预防事故的发生具有重要意义。
下面将介绍一个综合的基坑支护监测检测方案。
首先,基坑支护监测检测方案首先需要确定监测目标。
基坑支护监测的目标包括基坑支护结构变形监测和基坑周边地下水位监测。
基坑支护结构变形监测主要包括垂直变形、水平变形和倾斜变形的监测,可以通过安装位移传感器、固定支护结构的变形测量尺、倾斜计等工具来进行监测。
而基坑周边地下水位监测则是为了掌握基坑工程的水工环境变化,可以通过设置水位计、流速计等设备来进行监测。
其次,基坑支护监测检测方案需要确定监测时间。
基坑支护监测的时间应从开挖基坑之前开始,直到支护完工和周边地下水位稳定为止。
监测的时间应根据具体工程的进展情况以及规划设计要求进行确定,通常在基坑开挖前、支护过程中和支护完工后进行定期监测。
再次,基坑支护监测检测方案需要确定监测位置。
监测位置的选择应根据基坑支护结构的特点、周边环境的变化以及监测目的的要求来确定。
一般来说,监测点应位于基坑支护结构的关键部位,如支撑桩的顶部、支护墙的顶部和底部等位置。
此外,还应选择一些代表性的监测点位于基坑的周边环境,用于监测地下水位的变化。
最后,基坑支护监测检测方案需要确定监测方法。
基坑支护监测的方法包括实测和网络监测两种。
实测是指通过安装传感器、测量仪器等工具对基坑支护结构的变化进行现场测量。
网络监测是指通过远程监控系统对基坑支护的稳定性和安全性进行实时监测。
实测方法可以通过现场测量仪器进行,如位移传感器、倾斜计等,也可以通过无人机、激光扫描仪等高新技术手段进行。
总之,基坑支护监测检测方案是预防基坑工程事故发生的重要手段。
在实际工程中,根据基坑支护结构的特点和周边环境的变化,有针对性地制定监测方案,采用适当的监测方法和工具,并根据监测数据及时评估工程的安全性和稳定性,以保证基坑支护工程的安全运行。
基坑监测方案(水平竖向位移、周边地表、周边地表及建筑裂缝、临近建筑沉降、深层水平位移、围墙变形。)

**工程基坑监测方案编制人:审核人:审批人:编制单位:*******公司编制日期:**年**月**日目录(一)、工程概况 (1)(二)、监测依据 (1)(三)、监测目的 (2)(四)、监测范围、项目 (2)(五)、监测点的布置 (2)(六)、监测警戒值及精度 (4)(七)、监测方法及要求 (6)(八)、监测仪器设备及人员 (7)(九)、监测频率 (8)(十)、异常情况下的监测措施 (8)(十一)、数据记录、处理及监测成果 (9)(十二)、基坑监测及沉降观测成果质量保证措施 (9)(十三)、安全文明施测 (11)(十四)、所需要的配合工作 (13)附录A、监测单位资质概况 (14)(一)、工程概况本工程为**工程,位于**,基坑及地下结构施工时需要进行基坑支护,本项目采用自然放坡及土钉墙支护形式。
根据规范和支护设计图纸的要求,基坑需进行支护结构水平位移、支护结构竖向位移、周边地表竖向位移、周边地表及建筑裂缝、临近建筑沉降、深层水平位移、围墙变形。
该基坑基坑监测期间应定期进行巡视检查,巡视检查内容包括:1、支护结构:(1)支护结构成型质量;(2)墙后土体有无裂缝、沉陷及滑移;2、施工工况:(1)开挖后暴露的土质情况与岩土勘察报告有无差异;(2)基坑开挖分段长度、分层厚度及支锚设置是否与设计要求一致;(3)场地地表水状况是否正常;(4)基坑周边地面有无超载;3、周边环境(1)地下管道有无破损、泄露情况;(2)周边建筑有无新增裂缝出现;(3)周边道路(地面)有无裂缝、沉陷;(4)邻近基坑及建筑的施工变化情况;4、监测设施(1)基准点、监测点完好状况;(2)有无影响观测工作的障碍物;(3)监测元件的完好及保护情况。
5、根据设计要求或当地经验确定的其他巡视检查内容。
巡视检查如发现异常和危险情况,应及时通知建设方及其他相关单位。
(二)、监测依据1、《国家一、二等水准测量规范》(GB/T12897-2006)2、《建筑地基基础设计规范》(GB50007-2011)3、《工程测量标准》(GB50026-2020)4、《建筑基坑工程监测技术标准》(GB50497-2019)5、《建筑变形测量规范》(JGJ8-2016)6、《建筑基坑支护技术规程》(JGJ120-2012)7、设计图纸及相关技术资料(三)、监测目的在基坑施工期间,须周期性的对基坑变形情况、周边建筑物和周边地表情况进行监测,及时发现隐患,并根据监测成果相应地及时调整施工速率及采取相应措施,确保施工安全快捷、经济合理。
深基坑工程施工监测方案

施施工工监监测测方方案案1 施工监测目的及意义基坑开挖、支护施工将不可避免地对地层、地下管线、建(构)筑物等造成一定的影响。
为确保基坑周边建筑物及管线安全,做到信息化安全施工,必须对地表、地下管线和周边建筑物进行全面系统的监控量测。
通过监控量测可以达到如下目的:1、了解基坑周围土体在施工过程中的动态变化,明确施工对原始地层的影响程度以及可能产生失稳的薄弱环节。
2、了解支护结构的受力和变位状态,并对其安全稳定性进行评价。
3、了解工程施工对地下管线、建筑物等周边环境条件的影响程度,确保它们仍处于安全的工作状态。
4、了解施工降水效果对周围地下水位的影响程度。
5、将量测结果反馈到施工中,及时修改施工参数和步骤进行信息化施工。
2仪器选择和精度要求1、基坑位移监测采用拓普康TKS-202全站仪,精度2秒。
仪器在检验有效期内作业,并在作业期间进行检查校核。
2、沉降观测使用徕卡N2精密水准仪(带测微器)及2米铟钢水准标尺。
仪器最小分辨率为0.01mm 。
仪器及标尺在检验有效期内作业,并在作业期间进行检查校核。
沉降观测按二等水准精度要求进行观测,执行的各项规定和限差如下:等级 仪器类型视线长度前后视距差任一测站上前后距差视线高度 二等DS0.5≤30m≤1.0m≤0.5m>0.3m项目 等级基、辅分划读数差基、辅分划所测高差之差检测间歇点高差之差上下丝读数平均值与中丝读数之差基辅尺分划读数差≤0.3mm,闭合差≤±0.3√N mm(N代表测站数)。
3监测项目及控制标准3.1监测项目1、本次基坑安全等级为一级,基坑监测按《建筑基坑工程监测技术规》(GB50497-2009)执行。
2、本次监测可分为基坑工程主体监测和周围环境及地下管线监测,施工监测项目和内容有:3、水位观测、钢筋应力等监测见第三方监测方案。
3.2监测控制标准1、基坑监测控制标准及报警指标如下表所示:2、水位变化控制标准为:要求水位变化值累计值不大于1m或每天变化值不大于0.50m。
基坑监测方案

基坑监测方案一、基准网的建立为了科学地预测基坑支护的稳定和周边环境的变化,及时预报和提供准确可靠的变形数据,因此建立基坑支护施工变形与沉降观测网,定期进行变形沉降观测。
二、基坑支护变形观测(1)基坑支护水平位移观测在基坑边坡顶上布置基线(每基坑边一条),每条基线上设4个变形观测点,同时又作为沉降观测点。
(2)基坑支护沉降观测利用远离场区的城市高程系水准控制点或独立水准点作为沉降观测的起算点,与以上点联测,构成基坑支护沉降观测网。
四面围墙周边附近各布置四个沉降观测点,与基坑周边浅埋基础建(构)筑物、重要管线监测点一起构成监测周边环境的沉降观测网。
三、观测方法(1)水平位移观测分别在基线点四个角上设站,用J2型经纬仪观测四边网的水平角度(四边形内角),并与城市的大地控制网三角点联测水平夹角,检查基线点是否发生位移,在基线点正确无误的情况下,同时在四角测端上分别以对应的相邻角点定向,并观测定向基线上各预埋点的水平位移量初始读数。
(2)沉降观测对基坑边上的各点及周边点建立的沉降观测网的测量方法为:首先自远离基坑的城市水准控制点开始观测,引测至基坑周围后,按编定的各点观测次序依次观测,最后测至另一水准控制点符合,观测仪器采用S3型精密水准仪。
四、基坑周围建(构)筑物等的监测措施工程对基坑周边50米范围内的所有建(构)筑物进行监测,并特别对临近坑边1.5H~2.0H范围内建(构)筑物,包括道路、市政管道、电力电缆、电信管网等加强监测力度。
具体监测措施是:(1)对建(构)筑物,定期进行沉降变形观测。
(2)施工前,了解地下管线的分布情况,对整个场地的地下管线进行摸底,并在地面投影其轴线走向,布置变形观测点进行监测;对某些变形要求较高及紧邻基坑开挖边缘的重要管线,预先做好加固处理措施。
五、质量保证技术措施在施工中不仅要严格执行质量管理程序,保持质量体系的有效运行,同时必须采取切实可行的质量保证技术措施,从原材料的采购到施工全过程进行全方位控制,强化施工质量一次合格率,杜绝不合格和返工。
基坑监测专项方案

基坑监测专项方案
一、前言
基坑的开挖、支撑和加固是建筑工程中十分重要的一环,而基
坑的稳定与否会直接影响工程质量和施工安全。
基坑监测是在基坑
开挖、支护和加固期间,对基坑周边环境及基坑本体进行监测,以
发现和预防基坑变形、破坏或诱发地面沉降等不良现象的一项综合
性工作。
为了做好基坑监测工作,制定基坑监测专项方案是至关重
要的。
二、基本内容
1.监测目标:明确监测对象和监测目的,包括基坑周边地面沉降、基坑开挖及支护作业过程中的变形、周边管线变形及沉降等。
2.监测方案:制定专门的监测方案,包括监测方法、监测设备
及工具的选用、监测周期及精度等内容。
监测方案应符合国家标准、行业标准及相关规定,并且应充分考虑周边环境变化因素,确保监
测数据准确可靠。
3.监测设备:根据监测方案,选择适当的监测设备,包括测斜仪、水准仪、位移计、压力计、温度计、土压力计、超声波测量仪等。
所选设备应符合国家标准或相关规定,并通过校准检测。
4.监测基准:明确监测基准,包括水准基准和坐标基准,并按
国家标准及相关规定建立和确定监测基准点。
监测期间应保持监测
基准点的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中航紫金·云熙基坑支护监测方案技术负责人:项目负责人:审核:审定:岩土工程勘察研究院2014年4月30日目录一、工程概况二、监测目的和依据三、监测容及项目四、基准点、监测点布设及保护五、监测方法及精度六、监测期间工作安排与监测频率要求七、预警指标及应急方案八、监测组织措施九、报表、报告提交一、工程概况拟建场地位于市新罗区,大道东侧,双龙路南侧,与万达广场隔路相望。
周边条件:场地北侧为双龙路,与万达广场隔路相望;场地东侧现为隔壁在建工地活动房;场地西侧为高速路接驳口,场地南侧现为空地,局部堆土较高。
根据业主提供的资料,建筑设计±0.00=342.30,现地面平整后标高340.00m~342.00m(黄海),设二层地下室,计算底标高详平面图,基坑计算深度为9.00~10.30m,基坑开挖面积约50000m 2 ,基坑周长约900m。
基坑侧壁安全等级为二级,重要性系数 r=1.0。
支护形式:基坑北侧、西侧、东北侧采用灌注桩+2道锚索支护,其余侧采用锚管土钉墙的支护方式。
地质条件:自上而下揭露土层特征如下:杂填土、填土、耕土、粉质粘土、细砂、含卵石粗砂、含泥质粉质粘土、含卵石粉质粘土、粉质粘土、含角砾粉质粘土、含碎石粉质粘土、粉砂岩残积粘性土。
水文条件:地下水位埋深1.0-5.1m,标高334.32-338.75m ,地下水主要接受大气降水的下渗及外围含水层地下水的侧向渗透补给。
二、监测作业实施规1、《建筑地基基础设计规》(GB50007-2011)2、《建筑工程基坑支护技术规程》(JGJ120-2012)3、《建筑变形测量规》(JGJ/T8-2007)4、《混凝土结构设计规》(GB50010-2010)5、《建筑基坑工程监测技术规》(GB50497-2009)6、有关设计施工图纸7、其他技术要求:三、监测目的基坑工程的围护设计虽能够大致描述正常施工条件下,围护结构与相邻环境的变形规律和受力围,但因其涉及众多岩土工程问题且围护周期较长,因此必须在基坑开挖和支护施工期间开展严密的现场监测,以保证工程的顺利进行。
开展基坑工程现场监测的目的主要为:1、为施工开展提供及时的反馈信息。
通过监测随时掌握土层和支护结构力的变化情况,以及邻近建筑物的变形情况,将监测数据与设计预估值进行对比、分析,以判断前一步施工工艺和施工参数是否符合预期要求,以确定和优化下一步施工参数,以此达到信息化施工的目的。
2、为基坑周围环境进行及时、有效地保护提供依据。
通过对相邻土层的现场监测,验证基坑开挖方案和环境保护方案的正确性,及时分析出现的问题,及时采取措施。
3、将监测结果用于反馈,优化设计,为改进设计提供依据。
4、通过对监测结果与理论预测值的比较、分析,并判定被支护体系的安全状态,可以检验设计的正确性。
四、监测容(1)地下水位观测。
在基坑四周布设8个水位观测孔,每孔深12米。
(具体见监测点位图,下同)(2)基坑坡顶顶水平位移及沉降。
在基坑四周布设35个水平位移及沉降监测点。
(3)深层土体侧向位移监测。
在基坑四周布设7个深层土体侧向位移监测点,每监测点布设约18米测斜管。
(4)锚索应力。
选择有代表性锚索(特别是中部、阳角处)进行锚索应力监测。
每边监测点不少于2个断面监测(每个断面相应位置每层锚索1个)。
共9个断面监测,预计共布设12个监测点。
(5)灌注桩力钢筋应力。
在支护桩受力、变形较大且有代表性位置布置9根支护桩力监测点。
每根支护桩力监测点在竖直方向力监测传感器应布置在弯矩极值处(布设于标高-9.00m,),每根支护桩监测点相应位置(靠近坑侧最外边埋设1个力传感器)。
(6)基坑周边道路的水平位移、沉降监测。
布置10个监测点。
五、监测方法1、地下水位监测采用钢尺水位仪,利用水的导电性,测得当前水位与观测井口的距离,再通过井口标高,计算当前水位的高程。
通过观测数据,绘制水位变化的历时曲线,当水位达到控制值时,及时预警。
2、基坑坡顶水平位移监测深基坑开挖时,基坑坡顶将产生向基坑的位移,当位移快速增大时将使围护系统失稳。
因此,观测基坑坡顶水平位移变化是判断围护结构安全状态的重要环节。
监测方法,采用视准线法或坐标法。
采用视准线法测量时,基坑边选取两个远处固定目标,构成视准线,用精密经纬仪直接观测各点水平位移量;采用坐标法测量时,将工作基准点和监测点构成变形监测网,用全站仪观测,平差得出监测点坐标,计算坐标差求得变形量。
工作基准点与基准点间应按5″导线精度要求定期进行复测。
两种方法的测量精度均要求≤±1mm。
视准线法和坐标法均测两测回。
在形成监测报表时,分别注明当前位移变化量及累计量,并计算每个监测点的水平位移日均变化量。
3、深层土体侧向位移监测在围护桩后土体埋设测斜管,测斜管埋设深度为基坑开挖深度的2倍,用 CX—03型测斜仪,测得一定距离测斜管与垂直方向的倾角。
由于测斜管的下端已埋入位移变化为零的稳定土层中,位移便可根据倾斜角和测点间距的换算求得。
观测时,沿管壁每1.0m采集数据,通过至少两次数据的采集,即可绘制土体深层位移变化曲线,其测量精度要求≤±1mm。
在侧向土体位移变化曲线图中,分别绘制前次和当前的变化曲线,注明最大位移变化量,并标明其变化深度。
4、基坑坡顶沉降监测采用精密水准仪按国家三等水准测量精度要求进行观测,观测时将工作基准点和监测点构成水准路线网,平差得出各监测点的高程,其水准网闭合差不超过±0.6N mm(N为测站数)。
工作基准点与基准点应按二等水准测量的精度要求定期进行复测。
5、灌注桩力钢筋应力监测随着基坑土方向下开挖,围护桩身的力发生变化明显,为了监测围护桩身力变化,必须在围护桩钢筋笼主筋上焊接一组钢筋应力计,采用频率测试仪测得钢弦的频率变化,从而测出钢筋所受作用力的大小。
通过测得数据,绘制桩身力沿深度变化曲线,据此判定支护桩的稳定性。
6、锚索应力监测对锚索应力进行监测时,应在测力计安装前由振弦式频率测试仪测得初值。
通过前后测得数据计算锚索拉力的变化情况,并绘制拉力的历时变化曲线,判定锚索的受力情况。
7、基坑道路监测在基坑施工期间,邻近建筑(构)物的变形情况是保证基坑能否顺利施工的重要指标之一。
故在基坑及地下室结构施工过程中,需要对周边道路进行水平位移及沉降监测。
沉降监测采用水准仪,按二等水准测量精度进行观测。
观测时构成闭合水准路线,要求闭合差≤±0.3N mm (N为测站数)。
上述各监测项目,在基坑开挖前前一周,先进行基数测量,且不少于两次。
六、监测点布置及埋设(一)、基准点布设基点应埋设在变形影响围以外的稳定区域,并且应埋设在视野开阔、通视条件较好的地方;基点数量根据需要埋设,预计布设3个,基准点要牢固(二)、各监测容监测点埋设要求1、地下水位监测水位观测孔的施工主要包括测量放线、成孔、井管加工、井管下放及井管外围填砾料等工序。
(1)成孔:水位观测孔采用清水钻进,钻买沿铅方向钻进。
在钻进过程中,应及时、准确地记录地层岩性及变层深度、钻进时间及初见水位等相关数据;钻孔达到设计深度后停钻,及时将钻孔清洗干净,检查钻孔的通畅情况,并做好清洗记录。
(2)井管加工:井管的原材料为外径φ50、管壁厚度为5的PVC管。
为保证PVC管的透水性,在PVC管下端0~5m围加工蜂窝状φ8的通孔,孔的环向间距为12mm,轴向间距为12mm,并包土工布滤肉,井管的长度比初见水位长6.5m。
(3)井管放置:成孔后,经校验孔深无误后吊放经加工且检验合格的径φ43的PVC井管,确保有滤孔端向下;水位观测孔应高出地面0.5m,在孔口设置固定测点标志,并用保护套保护;(4)回填砾料:在地下水位观测孔井管吊入孔后,应立即在井管的外围填砾料;(5)洗井:在下管、回填砾料结束后,应及时采用清水进行洗井,并做好洗井记录。
2、基坑坡顶水平位移监测水平位移监测点采用顶部有测量标志的钢筋钉入地面约1米深度,并用砼固定。
钢筋头露出土体,其周围砌砖块保护。
3、深层土体侧向位移监测在围护桩间的高压旋喷桩水泥土体中,采用钻机施工ф130mm钻孔,孔深18米。
在孔设置PVC测斜管,管壁与孔壁之间用水泥浆体填实,埋设时,保证测斜管有一对凹槽与基坑边缘垂直,并在管注满清水。
管口应砌砖保护,并设测点显目标志。
4、基坑坡顶沉降监测沉降监测点采用顶部有测量标志的钢筋钉入地面约1米深度,并用砼固定。
钢筋头露出土体,其周围砌砖块保护。
5、灌注桩力钢筋应力监测按设计图纸的布设位置,做好需布设钢筋应力计的围护桩编号,与钢筋班组紧密联系。
在围护桩施工期间,将钢筋应力计牢固焊接在钢筋笼外侧,并将导线引出地面用钢管保护。
在-9.00标高基坑侧最外侧主筋布设1个钢筋应力计,并做好每个应力计的详细编号(包括埋深)。
6、锚索应力监测对需测试的锚索做好标记,并编号。
具体测试部位根据现场情况布设,与施工单位紧密联系。
在锚索施工期间,将钢筋应力计牢固焊接在钢筋主轴上,并将导线引出地面用钢管保护。
7、基坑道路监测道路沉降监测点主要布设在沿线地面,每隔约35m布设一个监测点。
(三)、监测点埋设注意事项对于支撑轴力应力埋设,施工单位在协助埋设钢筋应力计。
在后期施工过程中施工单位应小心操作,避免破坏测斜管、水位观测井、应力计等各个监测点。
七、监测频率要求在土方开挖期间,坡顶位移及沉降1-2天观测一次,其余情况下可延至5-7天一次。
当遇到下列情况之一,应适当加密监测次数,具体由设计人员确定:a、监测数据达到报警值;b、监测数据变化较大或变化速率较快;c、存在勘察中为发现的不良地质条件;d、超深、超长开挖或未及时加撑等违反设计工况施工;e、基坑及周边大量积水及长时间降雨;f、基坑附近地面荷载突然增大,超设计限值;g、支护结构出现开裂,周边地表出现较大的沉降或地表出现严重开裂;h、基坑底部、侧壁出现管涌、渗漏及流砂等现象。
2、监测时间从土方开始施工至地下室土方回填,预计历时6个月;3、监测次数预计约90次以上。
八、预警指标及应急方案(一)、预警指标1、基坑坡顶水平位移预警值为40mm或变化速率连续三天大于3mm/d。
2、基坑坡顶向位移预警值为30mm或变化速率连续三天大于3mm/d。
3、周边地表竖向位移预警值为30mm或变化速率连续三天大于3mm/d。
4、深层水平位移的预警值为30mm或变化速率连续三天大于3mm/d。
5、应力的预警值为70%构件承载能力设计值。
6、周边建筑的裂缝宽度预警值为3mm或裂缝持续发展。
7、周边建筑倾斜的预警值为建筑整体倾斜度累计值达到2‰或倾斜速度连续3天大于0.0001H/d(H为建筑承重结构高度)。
8、地表裂缝宽度的预警值为15mm或裂缝持续发展。
9、地下水位变化的报警值为1000mm或变化速率大于500mm/d。