高聚物概述

合集下载

聚二甲基硅氧烷和乙醇-概述说明以及解释

聚二甲基硅氧烷和乙醇-概述说明以及解释

聚二甲基硅氧烷和乙醇-概述说明以及解释1.引言1.1 概述概述部分应该简要介绍聚二甲基硅氧烷和乙醇的基本信息,以及它们在各个领域中的广泛应用。

聚二甲基硅氧烷,也被称为PDMS,是一种具有特殊结构的有机硅高聚物。

它由二甲基硅氧烷单元通过键合而成,具有特殊的性质,例如低表面能、耐热性、化学稳定性等。

由于这些优良的性质,聚二甲基硅氧烷在医疗、食品加工、化妆品、电子材料等领域得到了广泛应用。

同时,由于它具有良好的生物相容性和生物惰性,聚二甲基硅氧烷还被广泛应用于医疗器械、生物传感器、药物释放系统等生物医学领域。

乙醇,也称为酒精,是一种无色、透明的液体。

它是一种常见的有机化合物,由乙烷分子中的一个氢原子被羟基取代而成。

乙醇具有良好的溶解性,可溶于水和许多有机溶剂。

由于其亲水性和脂溶性的平衡特点,乙醇被广泛应用于药物、化妆品、香料、溶剂、燃料等领域。

此外,乙醇也被广泛应用于消毒、杀菌、工艺酿酒等方面。

本文将重点介绍聚二甲基硅氧烷和乙醇的物理性质和化学性质,并讨论它们在各个领域中的应用。

最后,我们将探讨未来研究方向,展望聚二甲基硅氧烷和乙醇在新兴领域的潜力和发展前景。

1.2文章结构1.2 文章结构本文主要讨论聚二甲基硅氧烷和乙醇这两种物质的性质、应用及未来研究方向。

文章分为三个部分:引言、正文和结论。

引言部分主要包括概述、文章结构和目的三个方面。

首先,我们将概述聚二甲基硅氧烷和乙醇的基本特性以及它们在化学和工业领域中的重要性。

随后,我们将介绍文章的结构,以便读者能够清楚地了解本文的组织和内容安排。

最后,我们将明确本文的目的,即通过深入研究聚二甲基硅氧烷和乙醇的性质和应用,为读者提供更深入的了解和洞察。

正文部分分为两个小节:聚二甲基硅氧烷和乙醇。

在聚二甲基硅氧烷部分,我们将介绍其物理性质和化学性质。

物理性质包括密度、熔点、沸点等,而化学性质则涉及与其他物质的反应以及其在化学反应中的应用。

在乙醇部分,我们也将探讨其物理性质和化学性质,以及其在工业和医疗等领域中的广泛应用。

高分子材料专业工程师在环境保护方面的责任

高分子材料专业工程师在环境保护方面的责任

高分子材料专业工程师在环境保护方面的责任对于高分子材料,其具有性能优良、小型化等特点,自20世纪产诞生以来一直被各个行业所青睐。

在环保中由于其具有价格低、易加工、耐腐蚀、重量轻以及比强度高等特点,在一些加工设备中有着广泛应用。

然而,随着高分子材料的不断应用,造成的环保问题也日益严重。

也就是说,高分子材料在改善人们生活条件的同时,对自然环境造成严重破坏,这种矛盾在我国现阶段发展中十分突出。

需要了解高分子材料与环境保护的关系,根据彼此情况,合理制定发展措施以促进社会与自然和谐发展。

1、高分子材料概述高分子材料主要是由分子质量较高的化合物,经加工制成的材料,在人们日常生活中所接触到的一些天然材料,基本上由高分子材料构成。

比如人体器官、棉花以及天然橡胶等。

高分子材料性能主要由其结构决定,对结构进行改性以及控制,即可获得特性不同的材料[1]。

由于其易加工以及易改性等特点,使其性能更加优异,进而在国民经济、科学技术以及国防建设等方面均获得良好发展,并为人们的衣食住行等方面提供保障。

高分子主要是指分子质量较大能够达到上百万的有机化合物,其在结构方面是由相同、简单的单体结构单元,借助化学键不断重复连接而成,另外,其又被称为聚合物或是高聚物。

一般,有机化物材料相对分子质量在1000以下,而高分子材料相对分子质量能够达到105万左右,因此,其与低分子材料在力学性能、化学性能以及物理性能等方面存在较大差异。

2、环境保护中高分子材料的应用2、1水处理设施应用斜板沉淀池。

一般沉淀池主要有豎流式、辐流式以及平流式三种形式,而新型沉淀池的沉淀性能更加突出,其在沉淀池中进行斜板设置,使沉淀面积增加,进而使水处理性能力得以提升[2]。

在斜板池中,其斜板既是由塑料制作而成,此种斜板具有耐腐蚀以及质轻等特点,在斜板制作中是十分理想的材料,对于不同水质均有着良好的应用性能。

生物膜处理填料。

在应用生物膜进行有机污水处理时,需要应用大量填料在,保证微生物拥有附着场地。

PP材料概述

PP材料概述

PP材料概述:PP塑料,化学名称:聚丙烯英文名称:Polypropylene(简称PP)比重:0.9-0.91克/立方厘米成型收缩率:1.0-2.5% 成型温度:160-220℃PP为结晶型高聚物,常用塑料中PP最轻,密度仅为0.91g/cm3(比水小)。

通用塑料中,PP的耐热性最好,其热变形温度为80-100℃,能在沸水中煮。

PP有良好的耐应力开裂性,有很高的弯曲疲劳寿命,俗称―百折胶‖。

PP的综合性能优于PE料。

PP产品质轻、韧性好、耐化学性好。

PP的缺点:尺寸精度低、刚性不足、耐候性差、易产生―铜害‖,它具有后收缩现象,脱模后,易老化、变脆、易变形。

日常生活中,常用的保鲜盒就是由PP材料制成。

成型特性:1.结晶料,吸湿性小,易发生融体破裂,长期与热金属接触易分解.2.流动性好,但收缩范围及收缩值大,易发生缩孔.凹痕,变形.3.冷却速度快,浇注系统及冷却系统应缓慢散热,并注意控制成型温度.料温低温高压时容易取向,模具温度低于50度时,塑件不光滑,易产生熔接不良,流痕,90度以上易发生翘曲变形4.塑料壁厚须均匀,避免缺胶,尖角,以防应力集中.PP 的工艺特点PP在熔融温度下有较好的流动性,成型性能好,PP在加工上有两个特点:其一:PP 熔体的粘度随剪切速度的提高而有明显的下降(受温度影响较小);其二:分子取向程度高而呈现较大的收缩率。

PP的加工温度在200-300℃左右较好,它有良好的热稳定性(分解温度为310℃),但高温下(270-300℃),长时间停留在炮筒中会有降解的可能。

因PP的粘度随着剪切速度的提高有明显的降低,所以提高注射压力和注射速度会提高其流动性,改善收缩变形和凹陷。

模温宜控制在30-50℃范围内。

PP熔体能穿越很窄的模具缝隙而出现披锋。

PP在熔化过程中,要吸收大量的熔解热(比热较大),产品出模后比较烫。

PP料加工时不需干燥,PP的收缩率和结晶度比PE低。

1、密度:PP是所有合成树脂中密度最小的,仅为0.90~0.91g/cm3,是PVC密度的60%左右。

高聚物分子量及分子量

高聚物分子量及分子量
i i i
i
b.用连续函数表示:
Mz
W(M)MdM
0 0

W(M)M2dM
常用的几种统计平均分子量
(4)粘均分子量(用溶液粘度法测得的平均分 子量为粘均分子量)定义为:
M [ i
i
1 W M ]
i
•当
1 时, M [ W M M i i ] w
稀溶液的依数性:稀溶液的沸点升高、 冰点下降、蒸汽压下降、渗透压的数值 等仅仅与溶液中的溶质数有关,而与溶 质的本性无关的这些性质被称为稀溶液 的依数性。
• 沸点升高(或冰点下降法):
利用稀溶液的依数性测溶质的分子 量是经典的物理化学方法,在溶剂 中加入不挥发性溶质后,溶液的沸 点比纯溶剂高,冰点和蒸汽压比纯 溶剂低。
1-3多分散系数
d M M
w n
称为多分散系数,用来表征分散程度
d越大,说明分子量越分散 d=1,说明分子量呈单分散(一样大) M M (d = 1.03~1.05近似为单分散) • 缩聚产物 d=2左右 • 自由基产物 d=3~5 • 有支化 d=25~30 (PE)
n w
第二节 测定高聚物分子量的方法
• T • k • M • A2 • C
n
——沸点升高值(或冰点降低值) ——沸点升高常数(或冰点下降常数) ——数均分子量 ——第二维列系数 —— 浓度(单位:克/千克溶剂)
⑶应用这种方法应注意:
• ①分子量在3×104以下,不挥发,
不解离的聚合物 • ②溶液浓度的单位( • ③得到的是 M
n
分子量意义 数均 M n 数均 M n
类型 绝对 相对
沸点升高法
热力学法 气相渗透法 膜渗透法 光学法 光散射法

高分子物理4 高聚物的分子量和分子量分布

高分子物理4 高聚物的分子量和分子量分布

稀相 分子量低的部分
浓相 分子量高的部分
(1)高分子溶液的相分离
• 相分离的热力学条件:
溶剂在浓相和稀相中的化学位相等
1稀相 1/ 浓相
溶剂在稀相中的化学位变化 溶剂在浓相中的化学位变化 所以:相分离时应有
1 1 10
1/ 1/ 10
1
RT ln1
2
1
1 x
2
1
2 2
f 21x
(4)特性粘数与高分子链构象的关系
• Einstein粘度理论:
25
M ~
M ~
V Vh N
溶液中高分子线团的平均密度
VV~h一克个 分高 子分 体子积线团的体M积平均分子量
N~ Avogadro常数
《4》特性粘数与高分子链构象的关系
• Einstein粘度理论 25 N~ Vh
M
设高分子线团半径为 Re
《1》 分子量分布的表示
(1)图解表示法
《1》 分子量分布的表示
(2)函数适应法
一般在函数中均包含二 个可调参数 • Schulz-Elory函数:
WM
ln b
a b2 2
Mb1a M
• 董复和函数: • 对数正态分布函数:
参数 式中a . b. y. z. β.Mp为可调
W M
1
1
1 e2
~ V1
化学位减小 1

~ V1
1时溶剂在两侧的化学位相等
——达到热力学的平衡条件
(3)渗透压 与分子量的关系
• 对于小分子溶液 Van`t Hoff方程
• 对于高分子溶液
RT C 或 RT M CM
1
RT
ln 1

材料科学与工程导论 第6章 高分子材料

材料科学与工程导论 第6章 高分子材料

聚酰胺(PA) 聚碳酸酯(PC) 聚甲醛(POM) 聚对苯二甲酸丁二醇酯 (PBT) 丙烯腈-丁二烯-苯乙烯 (ABS) PC
挡 风 板
6.1.3 高分子材料简介
ABS树脂(丙烯腈-苯乙烯-丁二烯共聚物,ABS是 Acrylonitrile Butadiene Styrene的首字母缩写)是一 种强度高、韧性好、易于加工成型的热塑型高分子材料。
有机玻璃顶棚
29
6.1.3 高分子材料简介
▲工程塑料
热稳定性高是其最突出 的特点。使用温度 150~174℃。 用于机械设备等工业。
聚砜(PSU) 聚醚砜(PES) 聚醚醚酮(PEEK) 聚苯硫醚(PPS) 聚四氟乙烯 (PTFE)
30
又称尼龙。强 度较高,耐磨、 自润滑性好, 广泛用作机械、 化工及电气零 件。 优良的机械性能, 透明无毒,应用 广泛。
初~40年代末)。
●现代高分子科学阶段(20世纪50年代初~20世纪末)。 ●21世纪的高分子科学—分子设计。
——高分子的概念始于20世纪20年代,但应用更早。1920年, 德国人Staudinger (施陶丁格)发表了“论聚合”的论文,提 出了高分子的概念。
9
6.1.1 高分子材料科学发展简史
高分子科学既是一门应用学科,也是一门基础学科,它
▲单体 用来制备高分子的小分子物质称单体。 高分子的单体: 通过聚合反应能制备高分
子化合物的物质称做单体。
例如乙烯是单体,能聚合 生成聚乙烯。
[ CH2–CH2 ]n
13
6.1.2 高分子材料基本概念
▲结构单元 构成大分子的最小重复结构单元,简称结构 单元,或称链节。
[ CH2–CH2 ]n
▲聚合度

合成高分子材料

合成高分子材料

合成高分子材料合成高分子材料主要包括合成树脂、合成橡胶和合成纤维三大类。

合成树脂主要用于制备建筑塑料、建筑涂料和胶粘剂等,是用量最大的合成高分子材料。

合成橡胶主要用于防水密封材料、桥梁支座和沥青改性材料等,用量仅次于合成树脂。

合成纤维主要用于土工织物、纤维增强水泥、纤维增强塑料和膜结构用膜材料等,用量也在不断增加。

高分子化合物的概述基本知识一、基本概念高分子化合物又称高聚物或聚合物,其分子量很大,一般为104~106。

其分子往往由许多相同的、简单的结构单元,通过共价键重复连接而成。

其中每个单元称为“链节”,结构单元的重复数量称为“聚合度”。

二、聚合物的分类按聚合物的来源:天然聚合物和合成聚合物;按分子结构:线型聚合物和体型聚合物;按聚合物受热的行为:热塑性聚合物和热固性聚合物;按主链元素:碳链高分子(主链只含碳元素)、杂链高分子(主链含碳、氧、氮、磷等元素)、元素有机高分子(主链不含碳元素)和无机高分子(主链不含有机元素)。

三、聚合物的命名天然聚合物用专有名称,如纤维素、淀粉、蛋白质等;合成聚合物在单体名称前加上“聚”字,例如聚氯乙烯、聚苯乙烯等;也可在原料名称后加“树脂”、“橡胶”、“纤维”等来命名.四、聚合反应由低分子单体合成聚合物的反应叫做聚合反应。

聚合反应按单体和聚合物在组成和结构上发生的变化,分为加聚反应和缩聚反应两大类。

加聚反应:以单体通过加成的方式,聚合形成聚合物的反应。

缩聚反应:含有两个以上官能团的单体,通过官能团间的反应生成聚合物的反应。

缩聚反应聚合物分子链增长过程是逐步反应,同时伴有低分子副产物如水、氨、甲醇等的生成。

聚合物的结构与性质一、聚合物的分子结构分为为线型聚合物和体型聚合物。

(一)线型聚合物定义:线型聚合物的大分子链排列成线状主链(如图8-1a),有时带有支链(如图8-1b),且线状大分子间以分子间力结合在一起。

具有线型结构的聚合物包括全部加聚树脂和部分缩聚树脂。

特性:具有线型结构的树脂,强度较低,弹性模量较小,变形较大,耐热、耐腐蚀性较差,且可溶可熔。

糊精的熔点-概述说明以及解释

糊精的熔点-概述说明以及解释

糊精的熔点-概述说明以及解释1.引言1.1 概述糊精是一种多糖类化合物,常见于植物、动物和微生物体内。

它具有无色、无味、无毒的特性,并且可溶于水、甲醇等溶剂中。

相比其他类似的多糖物质,糊精在许多方面表现出了独特的性质和应用潜力。

糊精的分子结构呈线状,由许多葡萄糖分子通过α-(1,4)-糖苷键连接而成。

其分子量通常较大,可以达到几千至几百万。

在水溶液中,糊精可以形成一种独特的空腔结构,即糊精的包结构。

这些包结构具有很强的选择性,能够将一些分子或离子通过包结构的方式从混合物中分离出来。

这使得糊精在许多领域有着广泛的应用,如分离纯化、药物传递、环境保护等。

糊精的制备方法主要有酶解法、化学法和微生物法等。

其中最常用的方法是通过微生物发酵制备。

此外,糊精的制备过程还需要考虑一些关键参数,如种类、浓度、反应时间等。

通过调控这些参数,可以获得不同糊精样品,并且可以改变其物理化学性质和应用特性。

在实际应用中,糊精的应用领域非常广泛。

它可以被用作食品工业中的增稠剂、稳定剂和改善剂,能够增加食品的质感和口感。

此外,糊精还可以用于医药领域,例如用作药物缓释系统的载体,实现药物的定向释放和增加药效。

糊精还可以应用于环境保护,如废水处理中的吸附剂和有机发酵废弃物的降解剂,起到净化环境的作用。

糊精的熔点是指其从固态到液态的转变温度。

糊精的熔点受到多种因素的影响,如糊精的分子量、结晶度、溶剂存在等。

较低的熔点使得糊精在一定温度范围内保持稳定的物理状态,更易于应用。

因此,对糊精熔点的研究具有重要的意义。

本文旨在探讨糊精的熔点及其影响因素,并探讨糊精熔点的研究意义和未来发展方向。

通过深入了解糊精的熔点特性,可以为其在各个应用领域的优化和改进提供理论基础,并为糊精的合理利用和开发提供指导。

1.2文章结构文章结构部分主要包括以下几个方面的内容:1.2 文章结构本文将按照以下顺序展开对糊精的熔点进行探讨:第一部分将在引言部分对整篇文章的背景和意义进行简要介绍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚合物生产技术绪论
高聚物的概念:高聚物指由许多相同的、简单的结构单元通过共价键重复连接而成的高分子量(通常可达10^4~10^6)化合物。

例如聚氯乙烯分子是由许多氯乙烯分子结构单元—CH2CHCl—重复连接而成,因此—CH2CHCl—又称为结构单元或链节。

由能够形成结构单元的小分子所组成的化合物称为单体,是合成聚合物的原料。

高聚物的基本特点:相对分子质量大,分子链长(一般在~m),同时相对分子质量具有多分散性。

高弹形变和黏弹性是聚合物特有的力学性能。

这些特性均与大分子的多层次结构的大分子链的特殊运动方式以及聚合物的加工有密切的关系。

聚合物的强度、硬度、耐磨性、耐热性、耐腐蚀性、耐溶剂性以及电绝缘性、透光性、气密性等都是使用性能的重要指标。

高聚物的分类:高分子化合物的分类众多,按其元素组成可分无机高分子化合物(如石棉,云母等)和有机高分子化合物(如橡胶,蛋白质);按其来源可分为天然高分子化合物(如淀粉,天然橡胶,蛋白质,石棉,云母)和合成高分子化合物(如合成塑料,橡胶,纤维)合成高分子化合物;又可按生成反应类型分加聚物(聚乙烯,聚氯乙烯)和缩聚物(聚酰胺,聚酯,酚醛树脂):按链的结构可分线型高分子(合成纤维)和体型高分子(酚醛树脂)。

高分子化合物中的各种官能团,都能正常反应,如羰基加成,脱碳,酯和酚胺水解等。

由于分子量大,结构特殊,他们各自有其独特的物理性质,作为高分子材料证实利用了这些性质。

结构:对聚合物链的重复单元的化学组成一般研究得比较清楚,它取决于制备聚合物时使用的单体,这种结构是影响聚合物的稳定性、分子间作用力、链柔顺性的重要因素。

键接方式是指结构单元在高聚物中的联结方式。

在缩聚和开环聚合中,结构单元的键接方式一般是明确的,但在加聚过程中,单体的键接方式可以有所不同,例如单烯类单体(CH2=CHR)在聚合过程中可能有头—头、头—尾、尾—尾三种方式:对于大多数烯烃类聚合物以头-尾相接为主,结构单元的不同键接方式对聚合物材料的性能会产生较大的影响,如聚氯乙烯链结构单元主要是头-尾相接,如含有少量的头-头键接,则会导致热稳定性下降。

共聚物按其结构单元键接的方式不同可分为交替共聚物、无规共聚物、嵌段共聚物与接枝共聚物几种类型。

同一共聚物,由于链结构单元的排列顺序的差异,导致性能上的变化,如丁二烯与苯乙烯共聚反应得丁苯橡胶(无规共聚物)、热塑性弹性体SBS(苯乙烯—丁二烯—苯乙烯三嵌段共聚物)和增韧聚苯乙烯塑料。

结构单元原子在空间的不同排列出现旋光异构和几何异构。

如果高分子结构单元中存在不对称碳原子(又称手性碳),则每个链节就有两种旋光异构。

它们在聚合物中有三种键接方式:若聚合物全部由一种旋光异构单元键接而成,则称为全同立构;由两种旋光异构单元交替键接,称为间同立构;两种旋光异构单元完全无规时,则称为无规立构。

分子的立体构型不同对材料的性能会带来影响,例如全同立构的聚苯乙烯结构比较规整,能结晶,熔点为240℃,而无规立构的聚苯乙烯结构不规整,不能结晶,软化温度为80℃。

对于1,4—加成的双烯类聚合物,由于内双键上的基团在双键两侧排列的方式不同而有顺式构型与反式构型之分,如聚丁二烯有顺、反两种构型:
其中顺式的1,4—聚丁二烯,分子链与分子链之间的距离较大,在常温下是一种弹性很好的橡胶;反式1,4—丁二烯分子链的结构也比较规整,容易结晶,在常温下是弹性很差的塑料。

高分子的大小:对高分子大小的量度,最常用的是分子量。

由于聚合反应的复杂性,因而聚合物的分子量不是均一的,只能用统计平均值来表示,例如数均分子量和重均分子量。

分子量对高聚物材料的力学性能以及加工性能有重要影响,聚合物的分子量或聚合度只有达到一定数值后,才能显示出适用的机械强度,这一数值称为临界聚合度。

高分子的内旋转:高分子的主链很长,通常并不是伸直的,它可以卷曲起来,使分子呈现各种形态,从整个分子来说,它可以卷曲成椭球状,也可伸直成棒状。

从分子局部来说,它可以呈锯齿状或螺旋状,这是由单键的内旋转而引起的分子在空间上表现不同的形态。

这些形态可以随条件和环境的变化而变化。

高分子链的柔顺性:高分子链能够改变其构象的性质称为柔顺性,这是高聚物许多性能不同于低分子物质的主要原因。

主链结构对聚合物的柔顺性有显著的影响。

例如,
由于Si-O-Si键角大,Si-O的键长大,内旋转比较容易,因此聚二甲基硅氧烷的柔性非常好,是一种很好的合成橡胶。

芳杂环因不能内旋转,所以主链中含有芳杂环结构的高分子链的柔顺性较差,具有耐高温的特点。

侧基极性的强弱对高分子链的柔顺性影响很大。

侧基的极性愈弱,其相互间的作用力愈大,单键的内旋转困难,因而链的柔顺性差。

链的长短对柔顺性也有影响,若链很短,内旋转的单链数目很少,分子的构象数很少,必然出现刚性。

常见聚合物的商品名称及缩写:
1.按元素组成和结构变化分类可分为加聚反应和缩聚反应。

加聚反应是通过单体的加成聚合形成高聚物的反应,其产物称为加聚物。

缩聚反应是在聚合过程中,除形成聚合物外,同时还有低分子副产物产生的反应。

2.按反应机理的不同分类可分为连锁聚合反应,逐步聚合反应和高聚物的化学反应。

连锁聚合反应是单体经引发形成活性种,瞬间与单体连锁聚合形成高聚物的化学反应。

逐步聚合反应是单体之间很快反应形成二聚体,三聚体,,,,再逐步形成高聚物的化学反应。

利用已有高聚物的高分子链所带基因与某些试剂间的化学反应也可以制备新的高聚物。

相关文档
最新文档