线段与角专项练习

合集下载

人教版四年级上册《角的度量》专项练习1-7

人教版四年级上册《角的度量》专项练习1-7

一、判断题1.角的两边越长,角的度数越大。

()2.用一个放大3倍的放大镜看一个30度的角,这个角就成了90度。

()3.透过放大镜看15度的角,这个角变大了。

()4.角的两边越长,这个角就越大。

()5.射线AB与射线BA表示同一条射线。

()6.直角都相等。

()7.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3。

()8.射线长8厘米。

()9.平角没有顶点。

()10.一副三角尺可以拼出180度的角。

()二、填空题。

1.角的两边是()线,角的大小和角的两边()无关,和角的两边()有关。

2. 1周角= 平角= 直角= 。

3.如右图,图中共有条线段,条射线,条直线。

4. 在两点之间可以画出很多条线,其中()最短。

过一点可以画()条直线。

三、选择题。

1.用一个放大100倍的放大镜看一个45°的角,看到的角的度数是()。

A、4500°B、45°C、45000°2.9时整,分针和时针组成的角是(),6时整,分针和时针组成的角是()。

A、30°B、60°C、90°D、180°3.角的大小与()无关。

一、量出下面各角的度数。

二、看图填一填。

1、已知∠1=35°,那么∠2=。

2、已知∠1=90°,∠2=45°,那么∠3=。

3、已知∠1=130°,那么∠2=,∠3=,∠4=。

三、数一数。

上图中有()条直线,()条射线,()条线段。

图中共有()角一、量出下面各角的度数。

()角()角()角()角()角()角()角()角二、填一填。

1、两点之间可以画出很多条线,其中()最短。

2、1周角=()平角=()直角3、我们学过的角有()、()、()、()和()。

4、时钟在5时的时候,它的时针和分针成()角,是()度。

5、∠1与∠2的和是184°,∠2=54°,那么∠1=()。

综合算式专项练习题线段与角的计算

综合算式专项练习题线段与角的计算

综合算式专项练习题线段与角的计算综合算式专项练习题——线段与角的计算一、线段计算题1. 已知线段AB的长度为5cm,线段BC的长度为7cm,求线段AC 的长度。

解析:根据线段加法原理,线段AC的长度等于线段AB的长度加上线段BC的长度。

即AC = AB + BC = 5cm + 7cm = 12cm。

2. 在平面直角坐标系中,已知点A(-3, 4)和点B(5, -2),求线段AB的长度。

解析:根据两点间距离公式,线段AB的长度可以计算为√[(x2 -x1)² + (y2 - y1)²]。

带入坐标得到AB = √[(5 - (-3))² + (-2 - 4)²] = √[64 + 36] = √100 = 10。

二、角计算题1. 已知一条线段DE,角BED为90°,角AEB为120°,求角DEB的度数。

解析:根据角的和为180°,∠DEB = 180° - ∠BED - ∠AEB = 180° - 90° - 120° = -30°。

2. 已知∠ABC = 30°,∠BCD = 120°,求∠ABD的度数。

解析:根据角的外角性质,∠ABD = ∠BCD - ∠ABC = 120° - 30° = 90°。

三、混合算式题1. 一条线段的长度为9cm,截取其中的1/4作为新线段的长度,再将新线段平均分成3段,求每段的长度。

解析:新线段的长度为9cm * (1/4) = 9cm * 0.25 = 2.25cm。

将新线段平均分成3段,则每段的长度为2.25cm / 3 = 0.75cm。

2. 若一物体从点A开始沿直线运动,经过8秒后到达点B,然后还需经过5秒才能到达点C,求从A到C的总时间。

解析:从A到B的时间已知为8秒,从B到C的时间已知为5秒。

人教版二年级上册数学期末复习《数线段、数角》专项练习(含答案)

人教版二年级上册数学期末复习《数线段、数角》专项练习(含答案)

人教版二年级上册数学期末复习《数线段、数角》专项练习(含答案)一、仔细推敲,选一选。

(将正确答案的序号填在括号里)(每小题7分,共28分)1.左图一共有( )条线段。

①5 ②8 ③102.时针与分针成钝角的是( )。

①7时②9时③12时3.如图,连接两个点画线段,一共能画( )条线段。

①4②5③64.下图所标的4个角中,有( )个角是钝角。

①3②2③1二、算一算,各有多少个角?(每空1分,共13分)1. ( )+( )=( )(个)2. ( )+( )+( )=( )(个)3. ( )+( )+( )+( )=( )(个)我发现:数角时,先从单个的角数起,再数由2个、3个……单个的角组成的角,最后把这些角的个数( )起来。

三、数一数,填一填。

(每空2分,共24分)( )个锐角( )个锐角( )个锐角( )个钝角( )个钝角( )个钝角( )个直角( )个直角( )个直角( )条线段 ( )条线段 ( )条线段四、动手操作,我能行。

(共35分)1.先量出下面这条线段的长度,再在下面画一条比它短2厘米的线段。

(11分)( )厘米2.一块三角形纸板,切去1个角,还剩几个角?画线表示。

(12分)还剩( )个角还剩( )个角2/ 43.按要求画一条线段。

(每小题4分,共12分)(1)增加2个直角。

(2)增加3个直角。

(3)增加4个直角。

参考答案一、1.③【点拨】一共有1+2+3+4=10(条)线段。

2.①3.③4.②二、1.2+1=3(个)2.3+2+1=6(个)3.4+3+2+1=10(个)加三、1 1 2 6 2 00 5 0 5 6 6四、1.52.还剩(4)个角还剩(3)个角(画法不唯一)3.(1)(画法不唯一)(2)(3)(画法不唯一)4/ 4。

难点解析沪教版(上海)六年级数学第二学期第七章线段与角的画法专项训练练习题

难点解析沪教版(上海)六年级数学第二学期第七章线段与角的画法专项训练练习题

沪教版(上海)六年级数学第二学期第七章线段与角的画法专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中正确的是( )A .射线OA 与射线AO 是同一条射线B .若ac bc =,则a b =C .连接点A 与点B 的线段,叫做A ,B 两点的距离D .若甲看乙的方向为北偏东30,则乙看甲的方向是南偏西302、下列说法不正确的是( )A .两点确定一条直线B .经过一点只能画一条直线C .射线AB 和射线BA 不是同一条射线D .若∠1+∠2=90°,则∠1与∠2互余3、已知1∠和2∠互余,且14017'∠=︒,则2∠的补角是( )A .4943'︒B .8017'︒C .13017'︒D .14043'︒4、已知100AOB ∠=︒,过点O 作射线OC 、OM ,使20AOC ∠=︒、OM 是BOC ∠的平分线,则BOM∠的度数为()A.60︒B.60︒或40︒C.120︒或80︒D.40︒5、如图,一副三角板(直角顶点重合)摆放在桌面上,若150∠=,则AODBOC︒∠等于()A.30︒B.45︒C.50︒D.60︒6、若一个角比它的余角大30°,则这个角等于()A.30°B.60°C.105°D.120°7、如图,点B在点O的北偏东60°方向上,∠BOC=110°,则点C在点O的()A.西偏北60°方向上B.北偏西40°方向上C.北偏西50°方向上D.西偏北50°方向上8、下列结论中,正确的是()A.过任意三点一定能画一条直线B.两点之间线段最短C.射线AB和射线BA是同一条射线D.经过一点的直线只有一条9、如图,∠AOC 和∠BOD 都是直角,如果∠DOC =38°,那么∠AOB 的度数是( )A .128°B .142°C .38°D .152°10、将一副三角板按如图所示位置摆放,已知∠α=30°14′,则∠β的度数为( )A .75°14′B .59°86′C .59°46′D .14°46′第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、 比较大小:3815︒'___38.15︒(填写“>”、“ =”、“ <”).2、中午12点45分,钟表的时针和分针所夹的小于平角的角为______度.3、在时刻9:30时,时钟上的时针与分针之间的所成的夹角是___度.4、已知α=25°43′12″,则α=_____度.5、已知∠1与∠2互余,若∠1=33°27′,则∠2的补角的度数是___________.三、解答题(5小题,每小题10分,共计50分)1、如图,点O 在直线AC 上,OD 平分AOB ∠,2,70∠=∠=︒∠COE EOB DOE ,求EOC ∠.2、如图,直线DE 上有一点O ,过点O 在直线DE 上方作射线OC ,∠COE 比它的补角大100°,将一直角三角板AOB 的直角点放在点O 处,一条直角边OA 在射线OD 上,另一边OB 在直线DE 上方,将直角三角板绕点O 按每秒10°的速度逆时针旋转一周.设旋转时间为t 秒.(1)求∠COE 的度数;(2)若射线OC 的位置保持不变,在旋转过程中,是否存在某个时刻,使得∠BOC =∠BOE ?若存在,请求出t 的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC 也绕O 点以每秒10°的速度顺时针旋转一周.从旋转开始多长时间.射线OC 平分∠BOE .直接写出t 的值.(本题中的角均为大0°且小180°的角)3、如图,小海龟(头朝上)位于图中点A 处,按下述口令移动:前进3格;向右转90︒,前进5格;向左转90︒,前进3格;向左转90︒,前进6格;向右转90︒,后退6格;最后向右转90︒,前进1格;用粗线将小海龟经过的路线描出来,看一看是什么图形.4、如图,已知直线上依次三个点A 、B 、C ,已知14AB cm =,6BC cm =,D 是AC 的中点,M 是AB 的中点,求线段MD 的长度.5、如图,5036AOC '∠=︒,OB 是AOC ∠的角平分线.(1)当4852COD '∠=︒时,求BOD ∠的度数.(2)AOB ∠的余角是多少度?-参考答案-一、单选题1、D【分析】根据射线的定义、等式的性质、两点之间的距离及方位角进行判断即可.【详解】解:A 、射线OA 与射线AO 是不同的两条射线,说项说法错误,不符合题意;B 、若ac bc =且0c ≠时,则a b =,说项说法错误,不符合题意;C 、连接点A 与点B 的线段的长度,叫做A ,B 两点的距离,说项说法错误,不符合题意;D 、若甲看乙的方向为北偏东30,则乙看甲的方向是南偏西30,选项说法正确,符合题意; 故选D .【点睛】本题考查了直线、射线、角的相关知识,解题的关键是掌握相关性质.2、B【分析】根据两点确定一条直线,即可判断A ;根据过一点可以画无数条直线可以判断B ;根据射线的表示方法即可判断C ;根据余角的定义,可以判断D .【详解】解:A 、两点确定一条直线,说法正确,不符合题意;B 、过一点可以画无数条直线,说法错误,符合题意;C 、射线AB 和射线BA 不是同一条射线,说法正确,不符合题意;D 、若∠1+∠2=90°,则∠1与∠2互余,说法正确,不符合题意;故选B .【点睛】本题主要考查了两点确定一条直线,;过一点可以画无数条直线,射线的表示方法余角的定义,熟知相关知识是解题的关键.3、C【分析】由余角的定义得∠2=90°-∠1,由补角的定义得2∠的补角=90°+∠1,再代入∠1的值计算.【详解】解:∵1∠和2∠互余,∴∠2=90°-∠1,∴2∠的补角=180°-∠2=180°-(90°-∠1)=180°-90°+∠1=90°+∠1,∵14017'∠=︒,∴2∠的补角=90°+4017'︒=13017'︒,故选C.【点睛】本题考查了余角和补角的意义,如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角.4、B【分析】考虑线段OC在角的内部和外部两种情况,每一种情况都用角的定义和角平分的定义求解,经计算结果为20°或40°.【详解】解:当OC在∠AOB的内部时,如图所示:∵∠AOC=20°,∠AOB=100°,∴∠BOC=100°﹣20°=80°,又∵OM是∠BOC的平分线,∴∠BOM=12BOC=40°;当OC在∠AOB的外部时,如图所示:∵∠AOC=20°,∠AOB=100°,∴∠BOC=100°+20°=120°,又∵OM是∠BOC的平分线,∴∠BOM=12BOC∠=60°;综合所述∠BOM的度数有两个,为60°或40°;故选:B.【点睛】本题综合了角平分线定义和角的和差知识,重点掌握角的计算,难点是分类计算角的大小.5、A【分析】由三角板中直角三角尺的特征计算即可.【详解】∵COD△和AOB为直角三角尺∴90COD︒∠=,90AOB︒∠=∴BOC COD BOC AOB∠-∠=∠-∠∴1509060AOC BOD∠=∠=︒-︒=︒∴906030AOD BOA BOD∠=∠-∠=︒-︒=︒故选:A .【点睛】本题考查了三角板中的角度运算,直角三角板的角度分别为90°,45°,45°和90°,60°,30°.6、B【分析】设这个角为α,则它的余角为:90°-α,由“一个角比它的余角大30°”列方程解方程即可的解.【详解】解:设这个角为α,则它的余角为:90°-α,由题意得,α-(90°-α)=30°,解得:α=60°,故选:B【点睛】本题考查了余角的定义和一元一次方程的应用,根据题意列出等量关系是解题的关键.7、C【分析】根据题意即可知AOB ∠的大小,再由AOC BOC AOB ∠=∠-∠,可求出AOC ∠的大小,最后即可用方位角表示出点C 和点O 的位置关系.【详解】如图,由题意可知60AOB ∠=︒,∵=110BOC ∠︒,∴1106050AOC BOC AOB ∠=∠-∠=︒-︒=︒.∴点C在点O的北偏西50 方向上.故选:C.【点睛】本题考查与方位角有关的计算.掌握方位角的表示方法是解答本题的关键.8、B【分析】根据两点确定一条直线,两点之间线段最短,射线的表示方法,端点字母必须在前面,经过一点的直线有无数条进行分析即可.【详解】解:A、过任意两点一定能画一条直线,故原说法错误;B、两点之间线段最短,说法正确;C、射线AB和射线BA不是同一条射线,故原说法错误;D、经过一点的直线有无数条,故原说法错误;故选:B.【点睛】此题主要考查了线段、射线、直线,关键是掌握直线和线段的性质,掌握射线的表示方法.9、B【分析】首先根据题意求出52AOD ∠=︒,然后根据AOB AOD BOD ∠=∠+∠求解即可.【详解】解:∵∠AOC 和∠BOD 都是直角,∠DOC =38°,∴903852AOD AOC DOC ∠=∠-∠=︒-︒=︒,∴5290142AOB AOD BOD ∠=∠+∠=︒+︒=︒.故选:B .【点睛】此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出AOD ∠的度数.10、C【分析】观察图形可知,∠β=180°-90°-∠α,代入数据计算即可求解.【详解】解:∠β=180°﹣90°﹣∠α=90°﹣30°14′=59°46′.故选:C .【点睛】本题考查了余角和补角,准确识图,得到∠β=180°-90°-∠α是解题的关键.二、填空题1、>【分析】根据角度制的换算关系即可得.【详解】解:381538(1560)︒'=︒+÷︒380.25=︒+︒38.2538.15=︒>︒,故答案为:>.【点睛】本题考查了角的度数大小比较,熟练掌握角度制是解题关键.2、112.5【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:时钟12点45分时,时针与分针相距的份数是:2−453=3.7560+,时钟12点45分时,时针与分针夹的小于平角的角是30°×3.75=112.5°,故答案为:112.5.【点睛】本题考查了钟面角,确定时针与分针相距的份数是解题的关键.3、105【分析】根据时针旋转的速度乘以时针旋转的时间,可得时针的旋转角,根据分针旋转的速度成分针旋转的时间,等于分针旋转的角度;再根据时针的角减去分针旋转的角等于时针与分针的夹角,可得答案.【详解】解:30分=12小时,则9:30时,时钟上的时针与分针间的夹角9×30°+30°×12-6×30°=105°,故答案为:105.【点睛】本题考查了钟面角,利用了时针的旋转角减去分针的旋转的角等于时针与分针的夹角.4、25.72【分析】根据度分秒之间的进率进行计算即可.【详解】解:∵12″÷60=0.2′,43.2′÷60=0.72°,25°+0.72°=25.72°.故答案为:25.72【点睛】本题主要考查了度分秒之间的进率,熟练掌握'''160,160'︒== 是解题的关键.5、123°27′【分析】本题考查互补和互余的概念,和为180度的两个角互为补角;和为90度的两个角互为余角.【详解】解:∠1与∠2互余,且∠1=∠1=33°27′,则∠2=90°-33°27′=56°33′,∠2的补角的度数为180°-56°33′=123°27′.故答案为:123°27′.【点睛】本题考查的是余角和补角的概念,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.三、解答题1、80°【分析】设∠AOB=x,根据角平分线的定义、补角的概念,结合题意列出方程,解方程即可.【详解】解:设∠AOB=x,则∠BOC=180°-x,∵OD平分∠AOB,∴∠BOD=12∠AOB=12x,∵∠BOE=12∠EOC,∴∠BOE=13∠BOC=60°-13x,由题意得,12x+60°-13x=70°,解得,x=60°,∴∠EOC=23(180°-x)=80°.【点睛】本题考查的是角的计算、角平分线的定义,正确进行角的计算、掌握角平分线的定义是解题的关键.2、(1)140゜(2)存在,t=2秒或20秒;(3)533秒【分析】(1)设∠COE=x度,则其补角为(180−x)度,根据∠COE比它的补角大100°列方程即可求得结果;(2)存在两种情况:当OC在直线DE上方时;当OC在直线DE下方时;就这两种情况考虑即可;(3)画出图形,结合图形表示出∠COE与∠COB,根据角平分线的性质建立方程即可求得t值.【详解】(1)设∠COE=x度,则其补角为(180−x)度,由题意得:x−(180−x)=100解得:x=140即∠COE=140゜(2)存在当OC在直线DE上方时,此时OB平分∠BOC∵∠COE=140゜∴1702BOC COE∠=∠=︒当OB没有旋转时,∠BOC=50゜所以OB旋转了70゜−50゜=20゜则旋转的时间为:t=20÷10=2(秒)当OC在直线DE下方时,如图由图知:∠BOE+∠BOC+∠COE=360゜即:2∠BOE+∠COE=360゜∵OB旋转了10t度∴∠BOE=(10t−90)度∴2(10t−90)+140=360解得:t=20综上所述,当t=2秒或20秒时,∠BOC=∠BOE(3)OB、OC同时旋转10t度如图所示,∠COE=(180゜+40゜)−(10t)゜=(220−10t)゜∵2×(10t)゜−∠COB+50゜=360゜∴∠COB=2× (10t)゜−310゜∵∠COB=∠COE∴2× 10t−310=220-10t解得:533 t即当t的值为533秒时,满足条件.【点睛】本题考查了角平分线的性质,角的和差运算,补角的概念,解一元一次方程等知识,注意数形结合及分类讨论.3、见解析,小海龟经过的路线类似一面旗帜【分析】根据指令一个一个移动或转弯即可.【详解】解:如图所示:小海龟经过的路线类似一面旗帜.(画出图画即可,答不出图的形状亦可)【点睛】本题考查转弯,直行等概念的理解,理解这些概念是本题解题关键.4、3cm【分析】由AB =14cm ,BC =6cm ,于是得到AC =20cm ,根据线段中点的定义得到AD 、AM 的长,根据线段的和差得到MD =AD -AM ,于是得到结论.【详解】解:已知14AB cm =,6BC cm =,由图可知14620AC AB BC cm cm cm =+=+=因为点D 是AC 的中点,点M 是AB 的中点, 所以11201022AD AC cm ==⨯= 1114722AM AB cm ==⨯= 所以1073MD AD AM cm cm cm =-=-=【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.5、(1)BOD ∠的度数7410'︒.(2)AOB ∠的余角是6442'︒.【分析】(1)利用角平分线的性质,求得COB ∠的度数,然后利用∠=∠+∠BOD COB COD ,即可求解BOD ∠的度数.(2)利用题(1)中AOB ∠的度数以及余角的概念,直接求解即可.【详解】(1)解: OB 是AOC ∠的角平分线. ∴12AOB COB AOC ∠=∠=∠, ∴5036AOC ∠=︒', ∴125182AOB COB AOC ∠=∠=∠=︒', 4852COD ∠=︒',∴251848527410BOD COB COD ∠=∠+∠=︒'+︒'=︒'.(2)解:由(1)得2518AOB ∠=︒',故AOB ∠的余角9025186442=︒-︒'=︒'.【点睛】本题主要是考查了角平分线以及余角的相关概念及性质和角的计算,熟练利用角平分线的性质求解角度,找到所要求的角与已知角的关系,是解决该题的关键.。

三角形全等几何模型5一线三等角专项练习20202021学年七年级数学下册基础知识专项讲练北师大版

三角形全等几何模型5一线三等角专项练习20202021学年七年级数学下册基础知识专项讲练北师大版

CD E BA专题4.23 三角形全等-几何模型5(一线三等角)(专项练习)模型 三垂直全等模型图一如图一,∠D=∠BCA=∠E=90°,BC=AC 。

结论:Rt △BDC ≌Rt △CEA图二如图二,∠D=∠BCA=∠E ,BC=AC 。

结论:△BEC ≌△CDA一、解答题1.如图,∠A =∠B =90°,E 是线段AB 上一点,且AE =BC ,∠1=∠2 .(1)求证:ADE V ≌BEC △;(2)若CD =10,求DEC V 的面积.2.已知,如图,AB ⊥BD 于点B ,CD ⊥BD 于点D,P 是BD 上一点,且AP=PC ,AP ⊥PC .(1)求证:△ABP ≌△PDC(2)若AB=3,CD=4,连接AC ,求AC 的长.3.如图,在ABC V 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC ÐÐÐ==,求证:DE BD CE =+.4.已知:如图,MS ⊥PS ,MN ⊥SN ,PQ ⊥SN ,垂足分别为S ,N ,Q ,MS =PS ,SN =4,MN =3.求NQ 的长.5.如图1,∠ACB =90°,AC =BC ,AD ⊥MN ,BE ⊥MN ,垂足分别为D 、E .(1)求证:△ADC ≌△CEB ;(2)猜想线段AD 、BE 、DE 之间具有怎样的数量关系,并说明理由;(3)题设条件不变,根据图2可得线段AD 、BE 、DE 之间的数量关系是 .6.如图,已知:ABC V 中,AB AC =,BAC 90Ð=°,分别过B ,C 向经过点A 的直线EF 作垂线,垂足为E ,F .(1)当EF 与斜边BC 不相交时,请证明EF BE CF(=+如图1);(2)如图2,当EF 与斜边BC 这样相交时,其他条件不变,证明:EF BE CF =-;7.如图,一条河流MN 旁边有两个村庄A ,B ,AD ⊥MN 于D .由于有山峰阻挡,村庄B 到河边MN 的距离不能直接测量,河边恰好有一个地点C 能到达A ,B 两个村庄,与A ,B 的连接夹角为90°,且与A ,B 的距离也相等,测量C ,D 的距离为150m ,请求出村庄B 到河边的距离.8.已知:AB BD ^,ED BD ^,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ^还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ^还成立吗?请说明理由.9.如图,90ACB Ð=°,AC BC =,AD CE ^,BE CE ^,垂足分别为D ,E ,若9AD =,6DE =,求BE 的长.10.如图所示,A ,C ,E 三点在同一直线上,且ABC DAE △△≌.(1)求证:BC DE CE =+;(2)当ABC V 满足什么条件时,//BC DE ?11.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC V ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC Ð=°,BD m ^,CE m ^,求证ABD ACE @V V ;(2)如图②,若BDA AEC BAC Ð=Ð=Ð,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.12.如图,点C 在BE 上,AB ⊥BE ,DE ⊥BE ,且AB =CE ,AC =CD .判断AC 和CD 的关系并说明理由.13.直线CD 经过BCA Ð的顶点C ,CA=CB .E ,F 分别是直线CD 上两点,且BEC CFA a Ð=Ð=Ð.(1)(数学思考)若直线CD 经过BCA Ð的内部,且E ,F 在射线CD 上,请解决下面两个问题:①如图1,若90BCA Ð=°,90a Ð=°,求证:EF BE AF =-;②如图2,若090BCA °<Ð<°,当a Ð与BCA Ð之间满足________关系时,①中结论仍然成立,并给予证明.(2)(问题拓展)如图3,若直线CD 经过BCA Ð的外部,BCA a Ð=Ð,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.14.如图,已知在ABC V 中,AB AC =,90BAC Ð=°,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.15.在Rt ABC △中,90C Ð=°,8cm AC =,6cm BC =,点D 在AC 上,且6cm AD =,过点A 作射线AE AC ^(AE 与BC 在AC 同侧),若点P 从点A 出发,沿射线AE 匀速运动,运动速度为1cm/s ,设点P 运动时间为t 秒.连结PD 、BD .(1)如图①,当PD BD ^时,求证:PDA DBC △≌△;(2)如图②,当PD AB ^于点F 时,求此时t 的值.16.如图所示,△ABC 中,∠ACB=90°,AC=BC ,直线EF 经过点C ,BF ⊥EF 于点F ,AE ⊥EF于点E .(1)求证:△ACE ≌△CBF ;(2)如果AE 长12cm ,BF 长5cm ,求EF 的长.17.如图,90ACB Ð=°,AC BC =,AD CE ^,BE CE ^,垂足分别为D ,E ,2.5cm AD =,求1cm BE =,求DE 的长.18.已知AD ⊥AB 于A ,BE ⊥AB 于B ,点C 在线段AB 上,DC ⊥EC ,且DC=CE .(1)求证:AD+BE=AB ;(2)将△BEC 绕点C 逆时针旋转,使点B 落在AC 上,如图(2),试问:AD ,BE ,AB 又怎样的数量关系?说明理由.19.如图(1),已知ABC V 中,90BAC Ð=°,AB AC =;AE 是过A 的一条直线,且B ,C 在AE 的异侧,BD AE ^于D ,CE AE ^于E .(1)求证:BD DE CE =+;(2)若直线AE 绕A 点旋转到图(2)位置时(BD CE <),其余条件不变,问BD 与DE ,CE 的数量关系如何?请给予证明.(3)若直线AE 绕A 点旋转到图(3)位置时(BD CE >),其余条件不变,问BD 与DE ,CE 的数量关系如何?请直接写出结果,不需证明;(4)根据以上的讨论,请用简洁的语言表达直线AE 在不同位置时BD 与DE ,CE 的位置关系.20.如图,在ABC V 中,AB AC =,AB BC >,点D 在边BC 上,点E ,F 在线段AD 上,且2DF AF =,12BAC Ð=Ð=Ð.若BE 的长为5,求AD 的长.21.已知:如图,△ABC 中,∠BAC =90°,AB =AC ,l 是过点A 的一条直线,BD ⊥l ,CE ⊥l ,垂足分别为D 、E .(1) 如图(1),求证:DE =BD +CE ;(2) 若直线l 绕A 点旋转到图(2)位置时,其余条件不变,请把图形补充完整,写出BD 、CE 与DE 之间的数量关系,并证明你的结论.22.(1)如图1,已知OAB V 中,OA OB =,90AOB Ð=°,直线l 经过点O ,BC ⊥直线l ,AD ^ 直线l ,垂足分别为点C ,D .依题意补全图l ,并写出线段BC ,AD ,CD 之间的数量关系为______;(2)如图2,将(1)中的条件改为:在OAB V 中,OA OB =,C ,O ,D 三点都在直线l 上,并且有BCO ODA BOA Ð=Ð=Ð,请问(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,在ABC V 中,AB AC =,90CAB Ð=°,点A 的坐标为(0,1),点C 的坐标为()3,2,请直接写出点B 的坐标.23.在△ABC 中,AC=BC ,直线MN 经过点C ,AD ⊥MN 于点D ,BE ⊥MN 于点E ,且AD=CE ;(1)当直线MN 绕点C 旋转到如图1的位置时,求证:AC ⊥BC .(2)判断AD 、BE 、DE 这三条线段之间的数量关系,并说明理由.(3)当直线MN 绕点C 旋转到如图2的位置时,线段DE 、AD 、BE 之间又有什么样的数量关系?请你直接写出这个数量关系,不必证明.24.如图1所示,在△ABC 中,∠ACB=90°,AC= BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图2(a)的位置,求证:①△ADC ≌△CEB;②DE=AD- BE .(2)当直线MN 绕点C 旋转到图2(b)的位置时,求证:DE= BE-AD .25.如图,90B C Ð=Ð=°,BAE CED Ð=Ð,且AB CE =.(1)试说明:ADE V 是等腰直角三角形;(2)若2CDE BAE Ð=Ð,求CDE Ð的度数.26.如图,已知在ABC V 中,AC BC AD ==,CDE B Ð=Ð,求证:ADE BCD △≌△.27.如图1,已知AB =AC ,AB ⊥AC .直线m 经过点A ,过点B 作BD ⊥m 于D , CE ⊥m 于E .我们把这种常见图形称为“K”字图.(1)悟空同学对图1进行一番探究后,得出结论:DE =BD +CE ,现请你替悟空同学完成证明过程.(2)悟空同学进一步对类似图形进行探究,在图2中,若AB =AC ,∠BAC =∠BDA =∠AEC ,则结论DE =BD +CE ,还成立吗?如果成立,请证明之.28.(1)如图①,已知:ABC V 中,90BAC Ð=°,AB AC =,直线m 经过点A ,BD m ^于D ,CE m ^于E ,请探索DE 、BD 、CE 三条线段之间的数量关系,直接写出结论;(2)拓展:如图2,将(1)中的条件改为:ABC V 中,AB AC =,D 、A 、E 三点都在直线m 上,并且BDA AEC BAC a Ð=Ð=Ð=,a 为任意锐角或钝角,请问(1)中结论是否还成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在ABC V 中,BAC Ð是钝角,AB AC =,BAD CAE ÐÐ>,BDA AEC BAC Ð=Ð=Ð,直线m 与BC 的延长线交于点F ,若2BC CF =,ABC V 的面积是16,求ABD △与CEF △的面积之和.29.如图(1)在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于点D ,BE ⊥MN 于点E .(1)求证:①△ADC ≌△CEB ;②DE =AD +BE .(2)当直线MN 绕点C 旋转到图(2)的位置时,DE 、AD 、BE 又怎样的关系?并加以证明.30.如图,在ABC V 中,90ACB Ð=°,AC BC =,直线MN 经过点C ,且AD MN ^于点D ,BE MN ^于点E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ADC CEB △≌△;②DE AD BE =+;(2)当直线MN 绕点C 旋转到如图2所示的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到如图3所示的位置时,试问DE ,AD ,BE 具有怎样的数量关系?请直接写出这个等量关系,不需要证明.31.已知:如图,在ABC D 中,90C Ð=°,点E 在AC 上,且AE BC =,ED AB ^于点D ,过A 点作AC 的垂线,交ED 的延长线于点F .求证:AB EF =.32.如图,两个形状、大小完全相同的含有30°、60°的直角三角板如图①放置,PA 、PB 与直线MN 重合,且三角板PAC 、三角板PBD 均可绕点P 逆时针旋转(1)试说明∠DPC=90°;(2)如图②,若三角板PBD 保持不动,三角板PAC 绕点P 逆时针旋转旋转一定角度,PF 平分∠APD ,PE 平分∠CPD ,求∠EPF ;(3)如图③.在图①基础上,若三角板PAC 开始绕点P 逆时针旋转,转速为5°/秒,同时三角板PBD 绕点P 逆时针旋转,转速为1°/秒,(当PA 转到与PM 重合时,两三角板都停止转动),在旋转过程中,PC 、PB 、PD 三条射线中,当其中一条射线平分另两条射线的夹角时,请求出旋转的时间.33.(1)如图1,∠MAN =90°,射线AE 在这个角的内部,点B 、C 在∠MAN 的边AM ,AN 上,且AB =AC ,CF ⊥AE 于点F ,BD ⊥AE 于点D .求证:ABD CAF @V V .(2)如图2,点B 、C 在∠MAN 的边AM 、AN 上,点E 、F 在∠MAN 内部射线AD 上,∠1,∠2分别是ABE △,CAF V 的外角,已知AB =AC ,∠1=∠2=∠BAC ,求证:ABE CAF @V V ;(3)如图3,在ABC V 中,AB =AC ,AB >BC ,点D 在边BC 上,CD =2BD ,点E 、F 在线段AD 上,12BAC Ð=Ð=Ð,若ABC V 的面积是15,则ACF V 与BDE V 的面积之和是_________.34.如图(1)AB=9cm ,AC ⊥AB ,AC=BD=7cm ,点P 在线段AB 上以2cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动,它们运动的时间为t (s ).(1)若点Q 的速度与点P 的速度相等,当t=1时.①求证:△ACP ≌△BPQ ;②判断此时PC 和PQ 的位置关系,并证明;(2)将图(1)中的“AC ⊥AB ,BD ⊥AB”,改为“∠CAB=∠DBA=70°”,得到图(2),其他条件不变.设点Q 的运动速度为x cm/s ,请问是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 和t 的值;若不存在,请说明理由.35.如图1,2OA =,4OB =,以A 点为顶点、AB 为腰在第三象限作等腰直角ABC D .(1)求点C 的坐标;(2)如图2,P 是y 轴负半轴上一个动点,当P 点向y 轴负半轴向下运动时,若以P 为直角顶点,PA 为腰作等腰直角APD D ,过点D 作DE x ^轴于点E ,求OP DE -的值;(3)如图3,已知点F 坐标为()3,3--,当G 在y 轴运动时,作等腰直角FGH D ,并始终保持90GFH Ð=°,FG 与y 轴交于点()0,G m ,FH 与x 轴交于点(),0H n ,求m 、n 满足的数量关系.36.已知:在ABC V 中,90BAC Ð=°,AB AC =,AE 是过点A 的一条直线,且BD AE ^于D ,CE AE ^于E .(1)当直线AE 处于如图①的位置时,有BD DE CE =+,请说明理由;(2)当直线AE 处于如图②的位置时,则BD 、DE 、CE 的关系如何?请说明理由.参考答案1.(1)证明见解析;(2)25【分析】(1)根据12Ð=Ð,∠A =∠B =90°,可得DE CE =,ADE V 和BEC △为直角三角形,利用“HL ”即可证明Rt ADE △≌Rt BEC △;(2)根据(1)中Rt ADE △≌Rt BEC △,则ADE BEC Ð=Ð,根据直角三角形的性质推出90AED BEC Ð+Ð=°,则可得DEC Ð为直角,又因为∠1=∠2,则可知DEC Ð为等腰直角三角形,进而通过等腰直角三角形的性质求出其面积.【详解】(1)∵12Ð=Ð,∴DE CE =,∵∠A =∠B =90°,在Rt ADE △和Rt BEC △中,DE EC AE BC =ìí=î,∴Rt ADE △≌Rt BEC △;(2)∵Rt ADE △≌Rt BEC △,∴ADE BEC Ð=Ð,∵90ADE AED Ð+Ð=°,∴90AED BEC Ð+Ð=°,∴90DEC Ð=°,∵12Ð=Ð,∴DE CE =,∴DEC V 为等腰直角三角形,∴其斜边CD 上的高为5,∴1105252DEC S =´´=△.【点拨】本题考查了直角三角形的判定和性质,全等三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.2.(1)见解析;(2)【分析】(1)根据等角的余角相等证明BAP CPD Ð=Ð,继而证明()ABP PDC AAS @V V ;(2)根据全等三角形对应边相等性质及勾股定理解题.【详解】(1)证明:,AB BD CD BD^^Q 90B D \Ð=Ð=°90BAP APB \Ð+Ð=°AP PC^Q 90APB CPD \Ð+Ð=°BAP CPD\Ð=ÐAP PC=Q ()ABP PDC AAS \@V V ;(2)连接AC ,()ABP PDC AAS @QV V 3,4AB BP CD ===Q5AP \===在,5Rt APC AP PC ==VAC \==.【点拨】本题考查全等三角形的判定与性质、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.3.见解析【分析】首先根据等量代换得出CAE ABD Ð=Ð,从而可证ADB CEA △≌△,最后利用全等三角形的性质即可得出结论.【详解】证明:设BDA BAC a Ð=Ð=,∴180-DBA BAD BAD CAE a Ð+Ð=Ð+Ð=°,∴CAE ABD Ð=Ð,∵在ADB △和CEA V 中ABD CAE BDA CEA AB AC Ð=ÐìïÐ=Ðíï=î,∴()ADB CEA AAS ≌△△,∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+.【点拨】本题主要考查全等三角形的判定及性质,掌握全等三角形判定方法和性质是解题的关键.4.NQ =1.【分析】首先求出∠M=∠PSQ ,进而利用AAS 证明△MNS ≌△SQP ,所以MN=SQ 问题可解.解:,MS ,PS MN SN PQ SN ^^^Q ,90MSP N SQP \Ð=Ð=Ð=°,M MSN MSN PSQ \Ð+Ð=Ð+Ð,M PSQ \Ð=Ð,在MNS △和SQP V 中,M PSQ MNS SQP MS PS Ð=ÐìïÐ=Ðíï=î,()MNS SQP AAS \△≌△,SQ MN \=,∵SN =4,MN =3,431NQ SN SQ SN MN \=-=-=-= .【点拨】本题考查了全等三角形的判定和性质,垂直定义,根据条件证MNS SQP △≌△是解此题的关键.5.(1)见解析;(2)AD =BE +DE ,见解析;(3)DE =AD +BE【分析】(1)由已知推出∠CDA=∠BEC=90°,因为∠ACD+∠BCE=90°,∠ACD +∠DAC =90°,推出∠DAC=∠ECB ,根据AAS 即可得到△ADC ≌△CEB ;(2)由(1)得到AD=CE ,CD=BE ,即可求出答案;(3)与(1)证法类似可证出∠ACD=∠CBE ,能推出△ADC ≌△CEB ,得到AD=CE ,CD=BE ,即可得到DE 、AD 、BE 之间的等量关系.(1)证明:∵AD ⊥MN ,BE ⊥MN ,∴∠CDA =∠BEC =90°.∴∠ACD +∠DAC =90°.∵∠ACB =90°,∴∠ACD +∠BCE =90°.∴∠DAC =∠ECB .在△ADC 和△CEB 中,CDA BEC DAC ECB AC CB ÐÐìïÐÐíïî===,∴△ADC ≌△CEB .(2)AD =BE +DE .理由如下:由(1)知△ADC ≌△CEB .∴AD =CE ,CD =BE .∴AD =CE =CD +DE =BE +DE .(3)DE =AD +BE .理由:∵AD ⊥MN ,BE ⊥MN ,∴∠ADC=90°,∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACD=90°,∴∠ACD=∠CBE ,又∵∠ADC=∠CEB ,AC=CB ,∴△ADC ≌△CEB ,∴AD=CE ,CD=BE ,∵CD+CE=DE ,∴DE=AD+BE .【点拨】本题主要考查了余角的性质,直角三角形的两锐角互余,全等三角形的判定和性质等知识点,能根据已知证明△ADC ≌△CEBE 是解此题的关键,题型较好,综合性比较强.6.(1)见解析;(2)见解析.【分析】(1)根据已知条件容易证明△BEA ≌△AFC ,然后利用对应边相等就可以证明题目的结论;(2)根据(1)知道△BEA ≌△AFC 仍然成立,则BE=AF ,AE=CF ,就可以求出EF=BE-CF .解:(1)BE EA ^Q ,CF AF ^,BAC BEA CFE 90ÐÐÐ\===°,EAB CAF 90ÐÐ\+=°,EBA EAB 90ÐÐ+=°,CAF EBA ÐÐ\=,在ABE V 和CAF V 中,BEA AFC EBA FACAB AC Ð=ÐìïÐ=Ðíï=îBEA \V ≌()AFC AAS V ,EA FC \=,BE AF =,EF EA AF BE CF \=+=+.(2)BE EA ^Q ,CF AF ^,BAC BEA CFE 90ÐÐÐ\===°,EAB CAF 90ÐÐ\+=°,ABE EAB 90ÐÐ+=°,CAF ABE ÐÐ\=,在ABE V 和ACF V 中,EBA FAC BEA CFAAB AC Ð=ÐìïÐ=Ðíï=îBEA \V ≌()AFC AAS V ,EA FC \=,BE AF =,∵EF AF AE =-,∴EF BE CF=-【点拨】本题主要考查了全等三角形的性质与判定,利用它们解决问题,经常用全等来证线段和的问题.7.150米【分析】根据题意,判断出△ADC ≌△CEB 即可求解.解:如图,过点B 作BE ⊥MN 于点E ,∵∠ADC =∠ACB =90°,∴∠A =∠BCE (同角的余角相等).在△ADC 与△CEB 中,90ADC CEB A BCEAC CB Ð=Ð=°ìïÐ=Ðíï=î∴△ADC ≌△CEB (AAS ).∴BE =CD =150m .即村庄B 到河边的距离是150米.【点拨】本题主要考查的是全等三角形的实际应用,熟练掌握全等三角形的判定及性质是解答本题的关键.8.(1)AC CE ^,见解析;(2)成立,理由见解析;(3)成立,理由见解析【分析】(1)先用HL 判断出Rt Rt ABC CDE ≌△△,得出A DCE Ð=Ð,进而判断出90DCE ACB Ð+Ð=°,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论.【详解】解:(1)AC CE ^理由如下:∵AB BD ^,ED BD ^,∴90B D Ð=Ð=°在Rt ABC △和Rt CDE △中AC CE BC DE=ìí=î∴()Rt Rt HL ABC CDE △△≌,∴A DCEÐ=Ð∵90B Ð=°,∴90A ACB Ð+Ð=°,∴()18090ACE DCE ACB Ð=°-Ð+Ð=°,∴AC CE ^;(2)成立,理由如下:∵AB BD ^,ED BD ^,∴90B D Ð=Ð=°,在1Rt ABC V 和2Rt C DE △中121AC C E BC DE=ìí=î,∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D Ð=Ð,∵90B Ð=°,∴190B A AC Ð+Ð=°,∴2190DC E AC B Ð+Ð=°,在12C FC V 中,()122118090C FC DC E AC B Ð=°-Ð+Ð=°,∴12AC C E ^;(3)成立,理由如下:∵AB BD ^,ED BD ^,∴190ABC D Ð=Ð=°在1Rt ABC V 和2Rt C DE △中121AC C E BC DE =ìí=î,∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D Ð=Ð,∵190ABC Ð=°,∴190B A AC Ð+Ð=°,在12C FC V 中,()2112180=90C FC DC E AC B Ð=°-Ð+а,∴12AC C E ^.【点拨】此题是几何变换综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,判断出12Rt Rt ABC C DE ≌△△是解本题的关键.9.3【分析】根据同角的余角相等可得EBC DCA Ð=Ð,根据“AAS”可证CEB △≌ADC V ,可得9AD CE ==,即可求BE 的长.解:∵BE CE ^,AD CE ^,∴90E ADC Ð=Ð=°,∴90EBC BCE Ð+Ð=°.∵90BCE ACD Ð+Ð=°,∴EBC DCA Ð=Ð.在CEB △和ADC V 中,E ADC EBC ACD BC AC Ð=ÐìïÐ=Ðíï=î,∴CEB △≌ADC V (AAS ),∴BE CD =,9AD CE ==,∴963BE CD CE DE ==-=-=.【点拨】本题考查了全等三角形的判定和性质,直角三角形的性质,熟练运用全等三角形的判定是本题的关键.10.(1)证明见解析;(2)ACB Ð为直角时,//BC DE【分析】(1)根据全等三角形的性质求出BD=AE ,AD=CE ,代入求出即可;2)根据全等三角形的性质求出∠E=∠BDA= 90°,推出∠BDE=90° ,根据平行线的判定求出即可.【详解】(1)证明:∵ABC DAE △△≌,∴AE=BC ,AC=DE ,又∵AE AC CE =+,∴BC DE CE =+.(2)若//BC DE ,则BCE E Ð=Ð,又∵ABC DAE △△≌,∴ACB E Ð=Ð,∴ACB BCE Ð=Ð,又∵180ACB BCE Ð+Ð=°,∴90ACB Ð=°,即当ABC V 满足ACB Ð为直角时,//BC DE .【点拨】本题考查全等三角形的性质和平行线的判定的应用,关键是通过三角形全等得出正确的结论.11.(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ÐÐìïÐÐíïî===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ÐÐìïíïÐÐî===,∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点拨】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.12.AC ⊥CD ,理由见解析【分析】根据条件证明△ABC ≌△CED 就得出∠ACD=90°,则可以得出AC ⊥CD .【详解】解:AC ⊥CD .理由:∵AB ⊥BE ,DE ⊥BE ,∴∠B =∠E =90°.在Rt △ABC 和Rt △CED 中,AB CE AC CD =ìí=î,∴Rt △ABC ≌Rt △CED (HL ),∴∠A =∠DCE ,∠ACB =∠D .∵∠A+∠ACB =90°,∴∠DCE+∠ACB =90°.∵∠DCE+∠ACB+∠ACD =180°,∴∠ACD =90°,∴AC ⊥CD .【点拨】本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,解答时证明三角形全等是关键.13.(1)证明见解析;(2)180ACB a Ð+Ð=°,证明见解析;(3)EF BE AF =+,证明见解析.【分析】(1)①求出∠BEC =∠AFC =90°,∠CBE =∠ACF ,根据AAS 证△BCE ≌△CAF ,推出BE =CF ,CE =AF 即可;②当∠α+∠ACB =180°,证明∠BEC =∠AFC ,∠CBE =∠ACF ,根据AAS 证△BCE ≌△CAF ,推出BE =CF ,CE =AF 即可;(2)求出∠BEC =∠AFC ,∠CBE =∠ACF ,根据AAS 证△BCE ≌△CAF ,推出BE =CF ,CE=AF 即可.【详解】(1)①在图1中,90BEC AFC Ð=Ð=°Q ,90ACB Ð=°,90BCE ACF Ð+Ð=°,90EBC BCE Ð+Ð=°,EBC ACF \Ð=Ð,在BCE V 和CAF V 中,EBC ACF BEC AFC BC AC Ð=ÐìïÐ=Ðíï=î,()BCE CAF AAS \@V V ,BE CF \=,CE AF =,EF CF CE BE AF \=-=-;②当180ACB a Ð+Ð=°时,①中结论仍然成立;证明:在图2中,BEC CFA a Ð=Ð=ÐQ ,180ACB a Ð+Ð=°,BCE ACF EBC BCE \Ð+Ð=Ð+Ð,EBC ACF \Ð=Ð,在BCE V 和CAF V 中,EBC ACF BEC AFC BC AC Ð=ÐìïÐ=Ðíï=î,()BCE CAF AAS \@V V ,BE CF \=,CE AF =,EF CF CE BE AF \=-=-.故答案为180ACB a Ð+Ð=°;(2)不成立,结论:EF BE AF =+.理由:在图3中,BEC CFA a Ð=Ð=ÐQ ,a BCA Ð=Ð,又180EBC BCE BEC +Ð+Ð=°Q ,180BCE ACF ACB Ð+Ð+Ð=°,EBC BCE BCE ACF \Ð+Ð=Ð+Ð,EBC ACF \Ð=Ð,在BEC △和CFA △中,EBC FCA BEC CFA BC CA Ð=ÐìïÐ=Ðíï=î,()BEC CFA AAS \@V V ,AF CE \=,BE CF =,EF CE CF =+Q ,EF BE AF \=+.【点拨】本题综合考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,注意这类题目图形发生变化,结论基本不变,证明方法完全类似,属于中考常考题型.14.见解析【分析】证明△BEA ≌△AFC ,得到AE=CF ,BE=AF ,即可得到结论.证明:BE EA ^Q ,CF AF ^,90BAC BEA AFC \Ð=Ð=Ð=°,90EAB CAF \Ð+Ð=°,90EBA EAB Ð+Ð=°,CAF EBA \Ð=Ð,在ABE △和AFC △中,BEA AFC EBA CAF AB AC Ð=ÐìïÐ=Ðíï=î,(AAS)BEA AFC \△≌△.AE CF ∴=,BE AF =.EF AF AE BE CF \=+=+..【点拨】此题考查全等三角形的判定及性质,熟记三角形的判定定理是解题的关键.15.(1)见解析;(2)8秒【分析】(1)根据垂直及角之间的关系证明出PDA CBD Ð=Ð,又有90PAD C Ð=Ð=°,=6AD BC =,根据三角形全等的判定定理则可证明PDA DBC △≌△.(2)根据垂直及角之间的关系证明APF DAF Ð=Ð,又因为90PAD C Ð=Ð=°,AD BC =,则可证明PAD ACB △≌△,所以8cm AP AC ==,即t=8秒.(1)证明:PD BD ^Q,90PDB \Ð=°,即90BDC PDA Ð+Ð=°又90C Ð=°Q ,90BDC CBD Ð+Ð=°PDA CBD\Ð=Ð又AE AC ^Q ,90PAD \Ð=°90PAD C \Ð=Ð=°又6cm BC =Q ,6cmAD =AD BC\=在PAD △和DCB V 中PAD C AD CBPDA DBC Ð=Ðìï=íïÐ=Ðî()PDA DBC ASA \△≌△(2)PD AB ^Q ,90AFD AFP \Ð=Ð=°,即90PAF APF Ð+Ð=°又AE AC ^Q ,90PAF DAF \Ð+Ð=°APF DAF\Ð=Ð又90PAD C Ð=Ð=°Q ,AD BC=在APD △和CAB △中APD CAB PAD CAD BC Ð=ÐìïÐ=Ðíï=î()PAD ACB AAS \△≌△8cmAP AC \==即8t =秒.【点拨】本题主要考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用角之间的关系是解题关键.16.(1)证明见解析;(2)EF=17cm .【分析】(1)根据垂直的定义可得∠AEC=∠CFB=90°,然后求出∠EAC=∠FCB ,再利用“角角边”证明即可;(2)由全等三角形的性质可得:AE=CF ,CE=BF ,再根据线段的和差求解即可.【详解】(1)证明:在Rt △ACB 中,∵∠ACB=90°,∴∠ACE+∠BCF=90°∵AE ⊥EF ,BF ⊥EF∴∠ACE+∠EAC=90°∴∠CAE=∠BCF又∵ AC=CB∴△ACE ≌△CBF(ASA)(2)由△ACE ≌△CBF 可得:AE=CF=12cm , EC=BF=5cm ,∴EF=EC+CF=12+5=17cm .【点拨】本题考查了全等三角形的判定与性质,同角的余角相等的性质,熟练掌握三角形全等的判断方法并找出全等的条件是解题的关键.17. 1.5cm DE =.【分析】根据垂直定义求出∠BEC =∠ACB =∠ADC ,根据等式性质求出∠ACD =∠CBE ,根据AAS 证明△BCE ≌△CAD ;根据全等三角形的对应边相等得到AD =CE ,BE =CD ,利用DE =CE−CD ,即可解答.【详解】AD CE ^Q ,BE CE^90ADC CEB \Ð=Ð=°90BCE CBE \Ð+Ð=°又90ACB Ð=°Q 90BCE ACD \Ð+Ð=°CBE ACD\=Ð在ACD △和CBE △中ADC CEB ACD CBEAC BC Ð=ÐìïÐ=Ðíï=î()AAS ACD CBE \△≌△CD BE \=,AD CE=又 2.5cm AD =Q ,1cmBE =2.5cm CE \=,1cm=CD 2.51 1.5cm DE CE CD \=-=-=.【点拨】本题考查了全等三角形的性质和判定,垂线的定义等知识点的应用,解此题的关键是推出证明ACD CBE \V V ≌的三个条件.18.(1)见解析;(2)BE= AB+AD ,理由见解析.【分析】(1)利用余角的性质得到∠ACD=∠BEC ,从而证明△ACD ≌△BEC ,得到AD=BC ,AC=BE ,从而得到结论;(2)根据△ACD ≌△BEC ,得到AD=BC ,AC=BE ,从而得到BE=AC=AB+BC=AB+AD .【详解】解:(1)∵BE ⊥AB ,∴∠BCE+∠BEC=90°,∵DC ⊥EC ,∴∠ACD+∠BCE=90°,∴∠ACD=∠BEC ,在△ACD 和△BEC 中,A B ACD BECCD CE Ð=ÐìïÐ=Ðíï=î∴△ACD ≌△BEC (AAS ),∴AD=BC ,AC=BE ,∴AD+BE=AC+BC=AB ;(2)由(1)可得:△ACD ≌△BEC ,∴AD=BC ,AC=BE ,∴BE=AC=AB+BC=AB+AD .【点拨】本题考查了全等三角形的判定与性质,找出条件,证明全等,利用全等的性质得到线段的数量关系是本题考查的内容.19.(1)见解析;(2)BD DE CE =-,见解析;(3)BD DE CE =-;(4)当B ,C 在AE 的同测时,BD DE CE =-;当B ,C 在AE 的异侧时,若BD CE >,则BD DE CE =+,若BD CE <,则BD CE DE=-【分析】(1)在直角三角形中,由题中条件可得∠ABD=EAC ,又有AB=AC ,则有一个角及斜边相等,则可判定△BAD ≌△AEC ,由三角形全等可得三角形对应边相等,进而通过线段之间的转化,可得出结论;(2)由题中条件同样可得出△BAD ≌△AEC ,得出对应线段相等,进而可得线段之间的关系;(3)同(2)的方法即可得出结论.(4)利用(1)(2)(3)即可得出结论.【详解】解:(1)∵BD ⊥AE ,CE ⊥AE∴∠ADB=∠CEA=90°∴∠ABD+∠BAD=90°又∵∠BAC=90°∴∠EAC+∠BAD=90°∴∠ABD=∠CAE在△ABD 与△ACE 中ADB CEA ABD CAEAB AC Ð=ÐìïÐ=Ðíï=î∴△ABD ≌△ACE∴BD=AE ,AD=EC ,∴BD=DE+CE(2)∵BD ⊥AE ,CE ⊥AE∴∠ADB=∠CEA=90°∴∠ABD+∠BAD=90°又∵∠BAC=90°∴∠EAC+∠BAD=90°∴∠ABD=∠CAE在△ABD 与△ACE 中ADB CEA ABD CAEAB AC Ð=ÐìïÐ=Ðíï=î∴△ABD ≌△ACE∴BD=AE ,AD=EC∴BD=DE-CE ,(3)∵∠BAC=90°,∴∠BAD+∠EAC=90°,又∵BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∠BAD+∠ABD=90°,∴∠ABD=∠EAC ,在△ABD 与△CAE 中,BDA AEC ABD EACAB AC Ð=ÐìïÐ=Ðíï=î∴△ABD ≌△CAE ,∴BD=AE ,AD=CE ,∵DE=AD+AE=BD+CE ,∴BD=DE-CE .(4)归纳:由(1)(2)(3)可知:当B ,C 在AE 的同侧时,若BD> CE,则BD= DE +CE,若BD> CE,则BD= DE +CE,若BD< CE,则BD= CE- DE.【点拨】此题是几何变换综合题,主要考查了三角形全等的判定方法,余角的性质,线段的和差,熟练掌握全等三角形的判定和性质是解题的关键.20.15.【分析】解:由∠1=∠2=∠BAC ,得到∠BAE=∠ACF ,∠ABE=∠CAF 从而证明△ABE ≌△CAF(ASA).得到AF=BE ,再根据DF=2AF ,BE 的长为5,求得AD 的长.【详解】解:∵12BAC Ð=Ð=Ð,且1BAE ABE Ð=Ð+Ð,2CAF ACF Ð=Ð+Ð,∠BAC=∠BAE+∠CAF ,∴∠BAE=∠ACF ,∠ABE=∠CAF .在ABE △和CAF V 中,BAE ACF AB CAABE CAF Ð=Ðìï=íïÐ=Ðî∴()ABE CAF ASA ≌△△.∴AF BE=∵2DF AF =,BE 的长为5,∴10DF =,5AF BE ==,∴51015AD AF DF =+=+=.【点拨】本题考查了全等三角形的性质和判定,解题的关键是熟悉掌握全等三角形的性质和证明.21.(1)详见解析;(2)结论:DE =CE ﹣BD ,详见解析【分析】(1)利用已知得出∠CAE=∠ABD ,进而利用AAS 得出则△ABD ≌△CAE ,即可得出DE=BD+CE ;(2)利用已知得出∠CAE=∠ABD ,进而利用AAS 得出则△ABD ≌△CAE ,即可得出BD 、CE 与DE 之间的数量关系.【详解】解:(1)证明:∵BD ⊥l ,CE ⊥l ,∴∠BD A =∠AEC =90°又 ∵Rt ABC D ,∴∠BAD +∠CAE =90°,∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中=ABD CAE ADB CEAAB AC =ìïíï=î∠∠∠∠∴△ABD ≌ △CAE∴BD =AE ,AD =CE∵DE =AD +AE ,∴DE =CE +BD .(2) 如图②所示:结论:DE =CE ﹣BD证明:∵BD ⊥l ,CE ⊥l ,∴∠BD A =∠AEC = 90°∵∠BAD +∠CAE =90°,∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中==ABD CAE ADB CEAAB AC ìïíï=î∠∠∠∠∴△ABD ≌△CAE (AAS )∴BD =AE ,AD =CE∵DE =AD ﹣AE∴DE =CE ﹣BD【点拨】此题主要考查了全等三角形的判定与性质等知识,根据已知得出△ABD ≌△CAE 是解题关键.22.(1)补全如图所示见解析;CD BC AD =+;(2)成立,证明见解析;(3)点B 的坐标为()1,2-.【分析】(1)依题意补全图,易证△AOD ≌△OBC ,则有AD =CO ,OD =BC ,从而可得CD BC AD =+;(2)利用三角形内角和易证23ÐÐ=,再证明BCO ODA V V ≌,同(1)即可证明结论;(3)过B 、C 两点作y 轴垂线,构造如(1)图形,即可得三角形全等,再将线段关系即可求出点B 坐标.【详解】(1)补全图1如图所示,CD BC AD =+;证明:∵90AOB Ð=°,BC ⊥直线l ,AD ^ 直线l ,∴∠BCO =∠ODA =90°,∴∠BOC +∠OBC =90°,又∵90AOB Ð=°,∴∠BOC +∠AOD =90°,∴∠OBC =∠AOD ,在△AOD 和△OBC 中BCO ODA OBC AOD BO AO Ð=ÐìïÐ=Ðíï=î,∴△AOD ≌△OBC (AAS )∴AD =CO ,OD =BC ,∵CD OD CO =+,∴CD BC AD =+.(2)成立.证明:如图,∵12180BOA Ð+Ð=°-Ð,13180BOA Ð+Ð=°-Ð,BOA BCOÐ=Ð∴23ÐÐ=在BCO V 和ODA V中32BCO ODABO OA Ð=ÐìïÐ=Ðíï=î∴BCO ODA V V ≌(AAS )∴BC OD =,CO AD=∴CD CO OD AD BC=+=+(3)点B 的坐标为()1,2-.过程如下:过B 、C 两点作y 轴垂线,垂足分别为M 、N ,同理(1)可得,CN =AM ,AN =MB ,∵点A 的坐标为(0,1),点C 的坐标为()3,2,∴CN =AM =3,ON =2,OA =1,∴MB =AN =ON -OA =1,OM =AM -OA =2,∵点B 在第四象限,∴点B 坐标为:()1,2-.【点拨】主要考查了等腰直角三角形的性质,全等三角形的判定和性质、图形与坐标变换,构造出全等三角形是解本题的关键.23.(1)见解析;(2)DE =AD +BE ;见解析;(3)AD =DE +BE【分析】(1)利用垂直的定义得∠ADC =∠CEB =90°,再利用HL 证明Rt △ADC ≌Rt △CEB ,得到∠DAC =∠BCE ,再根据余角的定义得到∠ACD +∠BCE =∠ACB =90°,可得结论;(2)根据Rt △ADC ≌Rt △CEB 得到DC =BE ,从而利用等量代换得到DE =AD +BE ;(3)同理可证:Rt △ADC ≌Rt △CEB ,利用等量代换可得AD =DE +BE .【详解】解:(1)证明:∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠CEB =90°,在Rt △ADC 和Rt △CEB 中,AC BC AD CE =ìí=î,∴Rt △ADC ≌Rt △CEB (HL ),∴∠DAC =∠BCE ,∵∠ADC =90°,即∠DAC +∠ACD =90°,∴∠ACD +∠BCE =90°,即∠ACB =90°,∴AC ⊥BC ;(2)DE =AD +BE ,理由如下:∵Rt △ADC ≌Rt △CEB ,∴DC =BE ,∵AD =CE ,∴DE =DC +CE =AD +BE ;(3)AD =DE +BE ,同理可证:Rt △ADC ≌Rt △CEB (HL ),∴CD =BE ,∴AD =CE =DE +CD =DE +BE ,∴即AD =DE +BE .【点拨】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”、“HL ”;全等三角形的对应边、对应角相等.24.(1)①见解析;②见解析;(2)见解析.【分析】(1)①根据已知可利用AAS 证明△ADC ≌△CEB ;②由①证得△ADC ≌△CEB ,得出对应边相等,CE =AD ,CD =BE 由此可证DE =AD−BE ;(2)根据已知可利用AAS 证明△ADC ≌△CEB ,得出对应边相等,AD =CE ,CD =BE ,由此可证DE =BE−AD .【详解】证明:(1)①∵∠ADC =∠ACB =∠BEC =90°,∴∠CAD +∠ACD =90°,∠BCE +∠CBE =90°,∠ACD +∠BCE =90°.∴∠CAD =∠BCE .∵AC =BC ,∴△ADC ≌△CEB .②由①证得△ACD ≌△CBE .∴CE =AD ,CD =BE .∴DE =CE−CD =AD−BE .(2)∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE ,又∵AC =BC ,∴△ACD ≌△CBE ,∴AD =CE ,CD =BE ,∴DE =CD−CE =BE−AD .【点拨】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,再根据全等三角形对应边相等得出结论.25.(1)见解析;(2)60°.【分析】(1)利用ASA 证明△BAE ≌△CED ,可证AE=DE ,后利用∠BAE+∠BEA=90°,证明∠BEA+∠CED=90°,问题得证;(2)利用直角三角形的两个锐角互余,求解即可.【详解】(1)∵90B C Ð=Ð=°,BAE CED Ð=Ð,且AB CE =,∴△BAE ≌△CED ,∴AE=DE ,∵∠BAE+∠BEA=90°,∴∠BEA+∠CED=90°,∴∠AED=90°,∴△AED 是等腰直角三角形;(2)∵2CDE BAE Ð=Ð,BAE CED Ð=Ð,∴2CDE CED Ð=Ð,∵∠CDE+∠CED=90°,∴∠CDE=60°.【点拨】本题考查了三角形的全等,等腰直角三角形的定义,直角三角形的锐角互余的性质,根据图形,结合条件选择对应判定方法,根据性质构造基本的计算等式是解题的关键.26.见解析.【分析】证明ADE BCD Ð=Ð,为三角形的全等提供条件即可.证明:ADE CDE B BCD Ð+Ð=Ð+ÐQ ,CDE B Ð=Ð,ADE BCD \Ð=Ð,AC BC =Q ,A B \Ð=Ð,在ADE V 和BCD △中A B AD BCADE BCD Ð=Ðìï=íïÐ=Ðî,ADE \V ≌BCD △(ASA) .【点拨】本题考查了ASA 证明三角形的全等,抓住题目的特点,补充全等需要的条件是解题的关键.27.(1)见解析;(2)成立,见解析【分析】(1)先证∠ABD=∠EAC ,再证△ABD ≌ △CAE (AAS )即可;(2)先证出∠ABD = ∠EAC ,再证△ABD ≌ △CAE (AAS )即可.证明:(1)∵AB ⊥AC,BD ⊥DE,CE ⊥DE,∴∠BDA=∠AEC=∠BAC=90°,∴∠DAB+∠ABD=∠EAC+∠DAB=90°,∴∠ABD=∠EAC,在△ABD 和 △CAE 中,ABD EAC BDA AEC AB AC Ð=ÐìïÐ=Ðíï=î,∴ △ABD ≌ △CAE (AAS ),∴ BD = AE ,AD = CE ,∴ DE = AE + DA ;(2)成立,理由如下:∵ ∠BAC + ∠BAD + ∠EAC = 180° ,∠ADB + ∠BAD + ∠ABD = 180°,∠BAC = ∠BDA ,∴∠ABD = ∠EAC ,在△ABD 和 △CAE 中,ABD EAC BDA AEC AB AC Ð=ÐìïÐ=Ðíï=î,∴ △ABD ≌ △CAE (AAS ),∴ BD = AE ,AD = CE ,∴ DE = AE + DA = BD + CE.【点拨】本题考查三角形全等的判定与性质,掌握三角形全等的判定与性质是解题关键.28.(1)DE BD CE =+;(2)成立,证明见详解;(3)8.【分析】(1)通过题中的直角和垂直条件,可得到CAE ABD Ð=Ð,然后证明△CAE ≌△ABD ,即得到BD AE =,AD CE =,然后通过等量代换即可得到结论;(2)同(1)中类似,先证明△CAE ≌△ABD 后得到对应边成比例即可;(3)证明△CAE ≌△ABD ,发现ABD △与CEF △的面积之和即为△ACF 的面积,然后根据2BC CF =即可得到答案.解:(1)DE BD CE =+,∵90BAC Ð=°,∴90BAD CAE Ð+Ð=°,∵BD m ^,CE m ^,∴90CEA BDA Ð=Ð=°,∴90BAD ABD Ð+Ð=°,∴CAE ABDÐ=Ð在△CAE 和△ABD 中,90CAE ABD AB ACCEA BDA Ð=Ð=Ð=Ð=°ìïíïî∴△CAE ≌△ABD ,∴BD AE =,AD CE =,∵DE AD AE =+,∴DE BD CE =+;(2)成立,∵BDA AEC BAC a Ð=Ð=Ð=,且180BAD BAC CAE Ð+Ð+Ð=°,∴180BAD CAE a Ð+Ð+=°,在△ABD 中,180BAD ABD BDA Ð+Ð+Ð=°,∴180BAD ABD a Ð+Ð+=°,∴CAE ABD Ð=Ð,在△CAE 和△ABD 中,。

2019年中考数学真题分类汇编:三角形的边与角(含解析)

2019年中考数学真题分类汇编:三角形的边与角(含解析)

中考数学复习三角形的边与角中考真题专项练习一.选择题(共16小题)1.(2019•徐州)下列长度的三条线段,能组成三角形的是( )A.2,2,4B.5,6,12C.5,7,2D.6,8,10【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.2.(2019•淮安)下列长度的3根小木棒不能搭成三角形的是( )A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.故选:B.3.(2019•毕节市)在下列长度的三条线段中,不能组成三角形的是( )A.2cm,3cm,4cm B.3cm,6cm,6cmC.2cm,2cm,6cm D.5cm,6cm,7cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+3>4,能组成三角形;B、3+6>6,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.4.(2019•扬州)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有( )A.4个B.5个C.6个D.7个【分析】分两种情况讨论::①若n+2<n+8≤3n,②若n+2<3n≤n+8,分别依据三角形三边关系进行求解即可.【解答】解:①若n+2<n+8≤3n,则,解得,即4≤n<10,∴正整数n有6个:4,5,6,7,8,9;②若n+2<3n≤n+8,则,解得,即2<n≤4,∴正整数n有2个:3和4;综上所述,满足条件的n的值有7个,故选:D.5.(2019•台州)下列长度的三条线段,能组成三角形的是( )A.3,4,8B.5,6,10C.5,5,11D.5,6,11【分析】根据三角形的三边关系即可求【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.6.(2019•自贡)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为( )A.7B.8C.9D.10【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【解答】解:设第三边为x,根据三角形的三边关系,得:4﹣1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选:C.7.(2019•金华)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是( )A.1B.2C.3D.8【分析】根据三角形三边关系定理得出5﹣3<a<5+3,求出即可.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.8.(2019•大庆)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是( )A.15°B.30°C.45°D.60°【分析】根据角平分线的定义得到∠EBM=∠ABC、∠ECM=∠ACM,根据三角形的外角性质计算即可.【解答】解:∵BE是∠ABC的平分线,∴∠EBM=∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=∠ACM,则∠BEC=∠ECM﹣∠EBM=×(∠ACM﹣∠ABC)=∠A=30°,故选:B.9.(2019•百色)三角形的内角和等于( )A.90°B.180°C.270°D.360°【分析】根据三角形的内角和定理进行解答便可.【解答】解:因为三角形的内角和等于180度,故选:B.10.(2019•赤峰)如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A =35°,∠D=15°,则∠ACB的度数为( )A.65°B.70°C.75°D.85°【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【解答】解:∵DE⊥AB,∠A=35°∴∠AFE=∠CFD=55°,∴∠ACB=∠D+∠CFD=15°+55°=70°.故选:B.11.(2019•广西)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )A.60°B.65°C.75°D.85°【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.12.(2019•眉山)如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠C的度数是( )A.50°B.60°C.70°D.80°【分析】由∠B=30°,∠ADC=70°,利用外角的性质求出∠BAD,再利用AD平分∠BAC,求出∠BAC,再利用三角形的内角和,即可求出∠C的度数.【解答】解:∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°∴∠C=180°﹣∠B﹣∠BAC=180°﹣30°﹣80°=70°故选:C.13.(2019•绍兴)如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是( )A.5°B.10°C.30°D.70°【分析】根据对顶角相等求出∠3,根据三角形内角和定理计算,得到答案.【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.14.(2019•杭州)在△ABC中,若一个内角等于另外两个内角的差,则( )A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.15.(2019•青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为( )A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.16.(2019•枣庄)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.45°B.60°C.75°D.85°【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB 可得答案.【解答】解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.二.填空题(共2小题)17.(2019•南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是 4<BC≤ .【分析】作△ABC的外接圆,求出当∠BAC=90°时,BC是直径最长=;当∠BAC =∠ABC时,△ABC是等边三角形,BC=AC=AB=4,而∠BAC>∠ABC,即可得出答案.【解答】解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=4,∴AC=,∴BC=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC≤;故答案为:4<BC≤.18.(2019•哈尔滨)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为 60°或10 度.【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60°或10;。

四年级线与角练习题

四年级线与角练习题

四年级线与角练习题1. 三条线段AB、BC和CD相互连接,形成一个封闭的图形ABCDEF。

请回答以下问题:(a)边AB的长度是5厘米,边BC的长度是3厘米,边CD的长度是7厘米,边DE的长度是4厘米。

计算周长是多少厘米?(b)边AB和边BC之间的夹角是直角吗?(c)边BC和边CD之间的夹角是锐角、钝角还是直角?(d)边CD和边DE之间的夹角是几度?2. 在一张纸上画一条直线EF,并在该直线上选择一点G。

用尺子测量出直线EG的长度为6厘米,以此为半径,以点G为圆心画一个圆。

请回答以下问题:(a)直线EF与圆的交点有几个?(b)如果将半径增加到8厘米,直线EF与圆的交点又会有何变化?(c)在直线上选择不同的点G,圆与直线的交点会有何变化?(d)如果将直线EF的位置改变,圆与直线的交点会有何变化?3. 下图中每个小正方形的边长都是2厘米。

请回答以下问题:(a)通过点B和点F可以画出一条直线吗?(b)边AB的长度是多少厘米?(c)边BC和边CD之间的夹角是直角吗?(d)边AB和边BC之间的夹角是多少度?(e)边CD和边DE之间的夹角是锐角、钝角还是直角?4. 将一张纸沿着直线KL折叠,使点M和点N完全重合,形成如下图所示的图形。

请回答以下问题:(a)直线MN和直线KL之间的夹角是几度?(b)如果将纸完全展开,点M和点N会重合吗?(c)直线KL和直线MN是否平行?(d)如果纸上画有一条与直线KL平行的直线PQ,将纸沿着直线PQ折叠,点M和点N会重合吗?5. 在一张纸上画一条直线RS,并在该直线上选择一点T。

连接直线RT和直线TS,形成一个夹角。

请回答以下问题:(a)如果直线RT和直线TS之间的夹角是45度,直线RT和直线RS之间的夹角又是多少度?(b)如果直线RS的位置改变,直线RT和直线TS之间的夹角会有何变化?(c)如果在直线RS上选择不同的点T,直线RT和直线TS之间的夹角会有何变化?(d)直线RT和直线TS之间的夹角是否可以是直角?注意:请在纸上画图,然后根据图形回答问题。

2022-2023学年四年级数学上册典型例题之第二单元画线与角专项练习(原卷版)北师大版

2022-2023学年四年级数学上册典型例题之第二单元画线与角专项练习(原卷版)北师大版

20222023学年四年级数学上册典型例题系列之第二单元:画线和角专项练习(原卷版)1.在如图的量角器中分别画出55°和160°的角。

2.以点A为顶点,画一个130°的角;以点B为顶点,画一个55°的角。

3.画一个120。

的角。

4.画出90°、130°的角各一个。

5.过直线外一点,画出已知直线的平行线。

(1)画出直线OA。

(2)量出线段OA的长度约是()cm。

(结果保留整厘米)(3)以点O为角的顶点,OA为一边,画一个锐角。

7.过A点画BC的垂线。

8.过点A分别画出已知直线的平行线和垂线。

9.分别画出文文家到乐乐家、文文家到沙河最近的路线。

10.过A点画一条与已知直线平行的直线。

(1)分别画出一个39°的角和一个平角,并标出角度。

(2)从王庄修一条管道到河边,怎样修最近,在图中画出来。

12.在点子图上用画平行线和垂线的方法画出一个长方形。

13.用量角器画出下面各角。

35°80°145°180°14.用量角器画出50°和125°的角。

15.过A点画已知直线的平行线,过B点画已知直线的垂线。

16.过A点画射线BA的垂线,画射线BC的平行线。

17.过O点画已知直线的垂线和平行线。

18.用你喜欢的方法画一个40°的角(开口向下)和一个120°的角(开口向右)。

19.过点A画直线CD的平行线和直线EF的垂线。

20.画一个比直角大25°的角,标出度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段与角专项训练
一、选择题
1.C 为线段AB 延长线上的一点,且AC=AB 2
3
,则BC 为AB 的( )
(A )
3
2 (B )
3
1
(C )21 (D )2
3
2.在一条直线上截取线段AB =6cm ,再从A起向AB 方向截取线段AC=10cm ,则AB 中点与AC 中点的距离是( )
(A )8cm
(B) 4cm
(C) 3cm
(D) 2cm
3.已知线段AB=1.8cm , 点C 在AB 的延长线上,且AC=BC 3
5
,则线段BC 等于( ) (A )2.5cm
(B) 2.7cm
(C) 3cm
(D) 3.5cm
4.已知∠AOB=30°,又自∠AOB 的顶点O 引射线OC ,若∠AOC : ∠AOB=4 : 3 ,那么∠BOC 等于( )
(A )10° (B )40° (C )70° (D )10°或70° 5.一个角等于它的补角的5倍,那么这个角的补角的余角是( )
(A )30° (B )60° (C )45° (D )以上答案都不对
6.已知∠∠︒=∠-∠∠∠与则且互为补角与1,3021,212的大小依次是( )
(A )110°,70° (B )105°,75°
(C )100°,70°
(D )110°,80°
7.用一副三角板不能画出( )
A.75°角
B.135°角
C.160°角
D.105°角7、
8、如图,点A 位于点O 的 方向上.( ).
A 、南偏东35° B、北偏西65° C、南偏东65° D、南偏西65°
二 填空
1、75°40′30″的余角是 ,补角是 。

角X 的余角是 ,补角是 。

2、一个角的补角加上10°后,等于这个角的余角的3倍,则这个角是___________.
3、已知α∠与β∠互余,且40α=o ∠15’,则α∠的余角为_______,β∠的补角为______.
4、一个角的余角等于它的补角的3
1
,则这个角是______;一个角等于它的补角的5倍,则这个角的补角的余角是
5、钟表上8∶30时,时钟上的时针与分针间的夹角是 ; 钟表上2时25分时,时针与分针所成的角是
6、线段AB=5,延长AB 到C,使BC=2AB,若D 为AB 的中点,则DC 的长是 _________.

O F
E
C
A
B
D 图3
D
C
B
A
O
7、如图, D 为AB 的中点, E 为BC 的中点, AD =1cm, EC =1.5cm, 则DC =____cm.
8如图,若C 为线段AB 的中点,D 在线段CB 上,6=DA ,4=DB , 则CD=_____
9、C 为线段AB 上的一点,点D 为CB 的中点,若AD=4,则AC+AB 的长是 。

10、把一条长24cm 的线段分成三段,使中间一段的长为6cm ,则第一段与第三段中点的距离是 。

11、如图,点C 在线段AB 上,E 是AC 的中点,D 是BC 的中点,若ED=6,则AB 的长为 .
12、如图所示,直线AB 、CD 相交于点O ,作∠DOE=∠BOD , OF 平分∠AOE ,若∠AOC=20°,则∠EOF= 。

13、如图,已知直线AB ,CD 相交于点O ,OA 平分∠EOC , ∠EOC=700
,则∠BOD 的度数等于______.
14、如图,∠AOD=80°,∠AOB=30°,OB 是∠AOC 的平分线, 则∠AOC 的度数为_________,∠COD 的度数为___________.
三 计算与应用 1、计算 (1)
; (2); (3)49°38′+66°22′;
(4)180°-79°19′ (5)
×7; (6)÷9.
A
B
C A B
E D
2、 如下图,已知线段AD=8cm ,线段BC=4cm ,E 、F 分别是AB 、CD 的中点,且AB=CD ,求EF 的长度.
3、将线段AB 分为2∶3∶4三部分, 若第一和第三部分的线段的中点间距离为5.4米, 求AB 的长.
4、如图,已知∠AOC=,OB 是∠AOC 的平分线,OE ,OF 分别是∠AOB ,∠BOC 的平分线.求:
∠BOF 与∠EOB 的和.
5、 如图,从平角POQ ∠的顶点出发画一条射线OB ,OC OA 、分别是BOP QOB ∠∠、的角平
分线,求AOC ∠的度数。

7、如图1-13所示,已知∠AOC=∠BOD=90°,∠AOD=130°,求∠BOC 的大小.。

相关文档
最新文档