离散时间系统及响应

合集下载

实验一 离散时间信号与系统响应

实验一 离散时间信号与系统响应

班 级 学号 姓 名 同组人 实验日期 室温 大气压 成 绩实验题目: 实验一 离散时间信号与系统响应 一、实验目的1.观察离散系统的频率响应和单位脉冲响应并学会其应用。

2.掌握用MATLAB 实现线性卷积的方法及差分方程的求解方法。

3.了解数字信号采样率转换过程中的频谱特征。

4.通过观察采样信号的混叠现象,进一步理解奈奎斯特采样频率的意义。

二、实验仪器计算机一台 MATLAB7.0软件三、实验原理在数字信号处理中,离散时间信号通常用序列{x(n)}表示。

离散时间系统在数学上定义为将输入序列x(n)映射成输出序列y(n)的唯一性变换或运算,亦即将一个序列变换成另一个序列的系统。

记为y(n)=T[x(n)],通常将上式表示成图()()[]x n y n T −−−→∙−−−→所示的框图。

算子T[∙]表示变换,对T[∙]加上种种约束条件,就可以定义出各类离散时间系统。

1.频率响应:在工程上进行时域分析和轨迹分析用频率响应法,它是分析和设计系统的一中有效经典的方法。

线性时不变系统输入输出关系y(n)=x(n)*h(n)。

H(ejw)是频率响应,离散时间系统的线性卷积,由理论学习我们可知,对于线性时不变离散系统,任意的输入信号()()()...(1)(1)(0)()(1)(1)...k x n x k n k x n n x n x n δδδδ∞=-∞=-=+-+++-+∑x (n )可以用δ(n )及其位移的线性组合来表示,即,当输入δ(n )时,系统的输出y(n)=h(n)。

2.卷积:y=conv(h,x),计算向量h 和x 的卷积,结果放在y 中。

由系统的线性移不变性质可以得到系统对x(n)的响应y(n)为()()()k y n x k h n k ∞=-∞=-∑,称为离散系统的线性卷积,简记为y(n)=x(n)*h(n),也就是说,通过系统的冲激响应,可以将输入信号与系统的冲激响应进行卷积运算,可求得系统的响应。

离散时间LTI系统的单位脉冲响应

离散时间LTI系统的单位脉冲响应

系统分析和设计
通过单位脉冲响应可以分析系统 的稳定性、频率响应和因果性等 特性,用于系统的设计和优化。
信号处理
单位脉冲响应可以用于信号的滤 波、预测和合成等处理,提高信 号的质量和性能。
控制工程
单位脉冲响应可以用于控制系统 的分析和设计,优化控制性能和 稳定性。
BIG DATA EMPOWERS TO CREATE A NEW ERA
IIR系统
系统的输出不仅与当前的输入有关, 还与过去的输入有关,因此其单位脉 冲响应在时间上是无限的。
系统的表示方法
差分方程
离散时间LTI系统的动态行为通常由差分方 程描述,如 $y(n) = f(n) + g(n)u(n)$。
传递函数
通过将差分方程转换为传递函数的形式,可以更方 便地分析系统的频率响应和稳定性。
仿真分析的步骤与过程
建立数学模型
根据系统定义,建立离散时间LTI系统的数学模型,包括差分方程或传递函数。
生成单位脉冲信号
在仿真中,生成一个单位脉冲信号,用于输入到离散时间LTI系统中。
计算单位脉冲响应
将单位脉冲信号输入到系统中,并记录系统的输出,即单位脉冲响应。
分析单位脉冲响应
对单位脉冲响应进行分析,包括幅度和相位特性,以及稳定性等。
性质
单位脉冲响应是线性时不变系统的内 部动态特性,具有稳定性、因果性和 可预测性。
单位脉冲响应的求解方法
直接法
根据系统函数或差分方程,直接计算单位脉冲响 应的数值解。
迭代法
根据系统函数或差分方程,通过迭代计算单位脉 冲响应的数值解。
逆系统法
通过求解系统的逆系统,得到单位脉冲响应的数 值解。
单位脉冲响应的应用

§ 离散时间系统的频率响应特性

§ 离散时间系统的频率响应特性

通过几何方法可以大致估计
出频率响应的形状,如图(d)
所示。
o
此例给出的二阶离散
π
ωs 2 (d)
系统与RLC二阶模拟电路
有“相仿”的特性。

ωs ω
返回
• H(ej)即h(n)的DTFT • ej为周期函数,所以H(ej)为周期函数, 其周期为2p 。
例8-10-1
通过本征函数透视系统的频响特性
设输入x(n)=ejn 为本征函数
xn hn yn
h(n)为稳定的因果系统
ynh nxn hmejω nm ej n
h m ejωm
m
m
Hz h(m)zm单位圆上 m
hnArnejnθrnejnθun
2jAnsrin n θunb1rn1sin n θun (c)
siθn
如图(c)所示,若r<1极点位于单位圆内, h(n)为衰减型,此系统是稳定的。
系统的频率响应为 Hejω 1a1eb1jω ejω a2e2jω
根据H(z)的零极点分布, H ejω
H ejωH zz ejω
H(ej) 则对输入序列的加权, 体现了系统对信号的处理功能。 H(ej) 是H(z) 在单位圆上的动态 变化,取决于系统的特性。
ynej n Hejω
离散系统(数字滤波器)的分类
H e j ω
低通
O ωc
ωs 2
ωs
ω
H e j ω
带通
O
ωs 2
ωs
ω
H e j ω
例8-10-2
例8-10-3
返回
例8-10-1 已知离散时间系统的框图如图所示,求系
统频率响应特性。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

离散时间系统的零状态响应

离散时间系统的零状态响应
系统串连与子系统次序无关3分配率系统并联等效12卷积和的上下限ab上下限之和r1a1r1如果mna如果特征方程没有重根则
离散时间系统的零状态响应
重点:零输入响应;卷积和; 因果和稳定性
1)经典法:分通解和特解两部分分别求解。 2)时域卷积和法:类似与连续时间系统中的卷积积 分方法。 3)变换域法:Z.T. ,类似于L.T.
充分条件
n
h(k )
例4:h(k ) 14 (k ) (2k 1 12 5k 1 ) (k 1)
此系统为不稳定系统
七 离散系统的全响应 例4:已知一离散因果系统
y(k 2) 0.7 y(k 1) 0.1 y(k ) 7e(k 2) 2e(k 1)
r(0) =0
r(1) =A
r(1)= r(0)+ A(0)
r(k+1) - r(k)= 0 k>=1
r(k+1) = r(k)
k>=1
1 若H ( S ) ( S )2
h(k ) (k 1) k 2 (k 1)
bm S bm1S bm2 S ... b1S b0 H (S ) n n 1 n2 S an1S an2 S ... a1S a0
离散系统的描述与模拟
S y(k ) y(k 1)
e (t)
1/S
x ( n)
D
x(n 1)
∑ -a
e (k)

y(t) y'(t)+ay(t)=e(t)
∑ -a
D
y(k)
y(k+1)+ay(k)=e(k)
一、离散信号的时域分解
(k )

离散时间系统的频率响应特性

离散时间系统的频率响应特性

差分方程的Z 域解序言描述离散时间系统的数学模型为差分方程。

求解差分方程是我们分析离散时间系统的一个重要途径。

求解线性时不变离散系统的差分方程有两种方法:• 时域方法——第七章中介绍,烦琐 • z 变换方法• 差分方程经z 变换→代数方程; • 可以将时域卷积→频域(z 域)乘积; • 部分分式分解后将求解过程变为查表;• 求解过程自动包含了初始状态(相当于0-的条件)。

一.应用z 变换求解差分方程步骤一.步骤(1)对差分方程进行单边z 变换(移位性质 );(2)由z 变换方程求出响应Y (z ) ; (3) 求Y (z ) 的反变换,得到y (n ) 。

例8-7-1(原教材例7-10(2))解:方程两端取z 变换()0.9(1)0.05()(1)1,y n y n u n y --=-=已知系统的差分方程表达式为若边界条件求系统的完全响应。

()()()10.910.051zY z z Y z y z -⎡⎤-+-=⎣⎦-例8-7-2 已知系统框图列出系统的差分方程。

求系统的响应 y (n )。

解:(1) 列差分方程,从加法器入手(2)(3)差分方程两端取z 变换,利用右移位性质()()()()20.910.0510.90.9y z z Y z z z z -=+---()1210.9Y z A z A zz z z =+--()1210.9Y z A z A z zz z =+--120.5 0.45A A ==()0.50.4510.9Y z z z z z z =+--()()()0.50.450.9 0n y n n =+⨯≥()()()()⎩⎨⎧==<≥-=010,0002y y n n n x n ()()()()()13122x n x n y n y n y n +-----=()()()()()12213 -+=-+-+n x n x n y n y n y 所以()()151,224y y -=--=()()()()1,2,1,0z y y y y --用变换求解需要用由方程迭代出()()()()()()12131212Y z z Y z y z Y z z y y ---⎡⎤⎡⎤++-++-+-⎣⎦⎣⎦a.由激励引起的零状态响应即零状态响应为b.由储能引起的零输入响应即零输入响应为c.整理(1)式得全响应注意()()()1 01221=-+++=-x z z z z z ()[]2123121zs ++=++--z z zz z Y ()()2zs 22z Y z z =+()()()()()n u n n y z Y n21zs zs-+=↔2n ≥-(对都成立)()[]()()()221312231121zi ------=++---y y y z z z z Y ()()()()1223121zi +++-=++--=z zz z z z z z z Y ()()()()1223zi zi ≥-+--=↔n n y z Y nn()()()()22112221212+++++=++=z B z B z A z z z z Y ()()()()222122d d !121221-=-=⎥⎦⎤⎢⎣⎡+++⋅-=z z z z z B ()()2222212 +-++-++=z z z z z Y 所以()()2222212+-+-+=z zz z z z z Y ()()()()()0 22212≥-+---=n n n y n n n 122,2A B ==-()()()2212zY z z z =++2(),2()n azna u n a z a ↔=--验证 由方程解y (n )表达式可以得出y (0)=0, y (1)=0,和已知条件一致。

实验一 时域离散信号、系统及系统响应

实验一 时域离散信号、系统及系统响应

四、 思考题
• 1 在分析理想采样序列特性的实验中, 采样频率不同时, 相应 在分析理想采样序列特性的实验中, 采样频率不同时, 理想采样序列的傅里叶变换频谱的数字频率度量是否都相同? 理想采样序列的傅里叶变换频谱的数字频率度量是否都相同 它 们所对应的模拟频率是否相同? 为什么? 们所对应的模拟频率是否相同 为什么 • 2 在卷积定理验证的实验中, 如果选用不同的频域采样点数 值, 在卷积定理验证的实验中, 如果选用不同的频域采样点数M值 例如, 例如, 选M=10和M=20, 分别做序列的傅里叶变换, 求得 和 , 分别做序列的傅里叶变换,
• 3 调通并运行实验程序, 完成下述实验内容: 调通并运行实验程序, 完成下述实验内容: 分析采样序列的特性。 ① 分析采样序列的特性。 a. 取采样频率 s=1 kHz, 即T=1 ms。 取采样频率f 。 b. 改变采样频率 fs=300 Hz, 观察 改变采样频率, 的变化, , 观察|X(ejω)|的变化, 并 的变化 做记录(打印曲线 打印曲线); 进一步降低采样频率, 做记录 打印曲线 ; 进一步降低采样频率, fs=200 Hz, , 观察频谱混叠是否明显存在, 说明原因, 并记录(打印 打印) 观察频谱混叠是否明显存在, 说明原因, 并记录 打印 这时的|X(ejω)|曲线。 曲线。 这时的 曲线 • ② 时域离散信号、 系统和系统响应分析。 时域离散信号、 系统和系统响应分析。 a. 观察信号 b(n)和系统 b(n)的时域和频域特性; 利用 观察信号x 和系统h 的时域和频域特性; 和系统 的时域和频域特性 线性卷积求信号x 通过系统h 的响应y(n), 比较 线性卷积求信号 b(n)通过系统 b(n)的响应 通过系统 的响应 , 所求响应y(n)和hb(n)的时域及频域特性, 注意它们之 的时域及频域特性, 所求响应 和 的时域及频域特性 间有无差别, 绘图说明, 并用所学理论解释所得结果。 间有无差别, 绘图说明, 并用所学理论解释所得结果。 b. 观察系统 a(n)对信号 c(n)的响应特性。 观察系统h 对信号x 的响应特性。 对信号 的响应特性 ③ 卷积定理的验证

离散时间系统的响应求解与系统稳定性分析

离散时间系统的响应求解与系统稳定性分析

离散时间系统的响应求解与系统稳定性分析响应求解是“信号与线性系统”课程的核心知识,据此,描述了离散时间系统的定义,对离散时间系统的响应求解提出了两种分析方法,即时域法和变换域法,对两种方法的具体求解响应过程做出了详细的说明,并给出例题分析。

最后,总结了系统的稳定性的判定方法,针对离散系统和连续系统都给出了几种分析方法。

标签:离散;系统响应;时域法;变换域法;稳定性分析1 离散时间系统当系统的各个物理量随时间变化的规律不能用连续函数表示,而只是在离散的瞬间给出瞬时值,这种系统称为离散时间系统。

离散时间系统不同于连续时间系统,连续时间系统通常用微分方程描述,而离散时间系统用差分方程:2 离散时间系统的响应求解2.1 时域法分析3 穩定性分析如果系统在有限的激励下有有限的响应,则该系统为稳定性系统。

对于连续时间系统和离散时间系统,判定其是否是稳定系统有着不同的方法。

3.1 离散时间系统稳定性分析对于离散时间系统,其稳定性判定比较简单,一般有两个方法,一是看其单位函数响应H(k)是否满足绝对可和,若是,则系统稳定;第二个方法比较常用,令D(s)=0求其特征根,若特征根的绝对值都小于1,则系统稳定。

3.2 连续时间系统稳定性分析通过这些表达式,可以计算出所有的An,从而判断系统的稳定。

4 结论经过上述分析与总结,对于离散时间系统的定义和响应求解都有了清晰的思路,求解响应的时域法和变换域法都比较简单,两者的适用情景没有明确的区别,一般两种方法都适用,无非是哪种方法更加简单而已。

如果只是单单求解零状态响应或零输入响应时,使用时域法会更加简便。

如果要求解全响应,则使用变换域分析更简单。

另外,系统的稳定性分析,离散系统和连续系统有着不同的分析方法,对应的方法也都有两三种。

参考文献[1]张永瑞.信号与系统(精编版)[M].西安:西安电子科技大学出版社,2014.[2]徐亚宁,苏启常.信号与系统(第三版)[M].北京:电子工业出版社,2011.[3]张晔.信号与系统[M].哈尔滨:哈尔滨工业大学出版社,2010.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=filter(b,a,x);
subplot(222 );stem(n,y) ;
[H,w]=freqz(b,a) ;
PhaseH=angle(H);
Subplot(223);plot(w/pi, PhaseH);
MagH=abs(H);
Subplot(224);plot(w/pi,Mag H);
一个特定的线性和时不变系统,描述它的差分方程如下:
Z = filtic( B, Байду номын сангаас, Y, X )
其中,B与A的用法与filter()函数相同,X和Y分别为初始条件的向量。
c.图示系统的频率特性
提示:使用freqz()函数求解系统的频率特性,幅度响应A=abs(H),相位响应P=angle(H)
2、求序列的离散时间傅立叶变换,求出其DTFT 。画出 的幅值和相位曲线。
提示:本来是 连续的,但MATLAB中本质均以离散形式处理,因此可以对角度均匀取样后利用循环语句计算DTFT函数值,实现方法:
n=[n1:n2]; k=0:M-1;
X=x*(exp(-j*2*pi/M).^(n’*k);
实验结果分析
N=16; n=0:N-1; x=sin(2*pi*n/64)+sin(20*pi*n/64);
a.确定系统的稳定性
提示:零极点是分析系统频率响应的有力工具之一,在MALAB中用zplane( )函数画出零点极点图,对于本例,利用零极点图分析系统是否稳定。
b.如果此系统的输入为 。在 间求出 的响应。
提示:对于线性差分方程的求解,在MATLAB中可以调用filtic()和filter( )两个函数完成。其中filter( )函数参照教材P77面,filtic( )函数调用格式为:
MagH=abs(H);
Subplot(224);plot(w/pi,MagH);
N=16; n=0:N-1; x=5+3*cos(0.2*pi*n)+4*sin(0.6*pi*n)];
a=[1 -0.50.25]; b=[1 2 1];
subplot(221); zplane(b,a);
y=filter(b,a,x);
实验内容:1、时域离散系统和系统响应分析。输入下列程序,观察实验结果,仿照此程序,完成下面问题的编程。
N=16; n=0:N-1; x=sin(2*pi*n/64)+sin(20*pi*n/64);
a=[1 -0.25]; b=[0.5 0.45 0.35];
subplot(221); zplane(b,a);
实验报告格式
院系:物理与电子科学学院专业:电子信息科学与技术班级:一班
实验名称:离散时间系统及响应
课程名称:
数字信号处理
实验室:
实验C楼201
成绩
实验人
学号:
指导教师:赵发勇
实验目的:1、熟悉离散时间系统的时域和频域分析方法。
2、掌握利用MATLAB求解差分方程和频率响应的方法。
3、利用卷积方法观察分析系统的时域特性。
subplot(222 );stem(n,y) ;
[H,w]=freqz(b,a) ;
PhaseH=angle(H);
Subplot(223);plot(w/pi, PhaseH);
MagH=abs(H);
Subplot(224);plot(w/pi,MagH);
求序列的离散时间傅立叶变换,求出其DTFT 。画出 的幅值和相位曲线。
a=[1 -0.25]; b=[0.5 0.45 0.35]; ;
subplot(221); zplane(b,a);
y=filter(b,a,x);
subplot(222 );stem(n,y) ;
[H,w]=freqz(b,a) ;
PhaseH=angle(H);
Subplot(223);plot(w/pi, PhaseH);
编写程序为:
n=[0:6];k=0:6;M=7;
x=[4,3,2,1,2,3,4];
X=x*(exp(-j*2*pi/M).^(n'*k));
PhaseX=angle(X);
Subplot(221);plot(PhaseX);
MagX=abs(X);
Subplot(222);plot(MagX);
思考题解答
所以,如果要想利用计算机实现DTFT的运算,必须进一步探索路子,建立时域离散和频域离散的对应关系。数字角频率Ω上却是连续的周期函数。而计算机只能处理变量离散的数字信号。所以,如果要想利用计算机实现DTFT的运算,必须进一步探索路子,建立时域离散和频域离散的对应关系。
所有实验均按些格式书写
1、离散系统的特性与零极点分布密切相关,通过求解系统极点,尤其是否在单元圆内,来判断系统的稳定性。对一个复杂系统来说将系统函数由有理分式分解为零极点形式时,并不容易。而利用MTALAB可以很方便的确定零极点并作出零极点图直接判断系统的稳定性。
2、2、离散时间傅里叶变换(DTFT)是特殊的Z变换,在数学和信号分析中具有重要的理论意义。但在用计算机实现运算方面比较困难。这是因为,在DTFT的变换对中,离散时间序列在时间n上是离散的,但其频谱在字角频率Ω上却是连续的周期函数。而计算机只能处理变量离散的数字信号。
相关文档
最新文档