计算机网络实验_实验5 OSPF路由协议实验_实验56 OSPF协议路由的计算_

合集下载

实验五 ospf路由设置

实验五 ospf路由设置

实验五动态路由协议ospf设置一、实验目的1.理解动态路由协议OSPF 的原理。

2.掌握动态协议路由协议OSPF的配置方式。

3.理解OSPF区域的意义。

二、实验环境实验拓扑图如下所示:三、实验步骤(1)如图所示完成拓扑图的建立,如图1-1所示。

图1-1 拓扑图(2)如图所示配置路由器各接口及主机的IP地址。

(按照图中所标识的网络号,自行分配地址)PCO:如图1-2所示。

图1-2 PC0IP地址配置ROUTER3:Router(config)#interface Serial0/0/0Router(config-if)#ip addre 192.168.0.6 255.255.255.252Router(config-if)#no shutdownRouter(config-if)#interf s0/0/1Router(config-if)#ip addre 192.168.0.9 255.255.255.252Router(config-if)#no shutdow(3)如图所示区域划分,在路由器上配置ospf协议。

ROUTER1:Router(config)#router ospf 1Router(config-router)#netw 172.16.1.0 0.0.0.255 area 2Router(config-router)#netw 192.168.0.4 0.0.0.3 area 0Router(config-router)#netw 192.168.0.0 0.0.0.3 area 0(4)运行show ip route命令,查看各个路由器的路由表ROUTER0:172.16.0.0/24 is subnetted, 4 subnets第2章局域网硬件·5·C 172.16.1.0 is directly connected, FastEthernet0/1C 172.16.2.0 is directly connected, FastEthernet0/0O IA 172.16.3.0 [110/66] via 172.16.1.2, 00:00:42, FastEthernet0/1O IA 172.16.4.0 [110/67] via 172.16.1.2, 00:00:42, FastEthernet0/1192.168.0.0/30 is subnetted, 3 subnetsO IA 192.168.0.0 [110/65] via 172.16.1.2, 00:00:52, FastEthernet0/1O IA 192.168.0.4 [110/65] via 172.16.1.2, 00:00:52, FastEthernet0/1O IA 192.168.0.8 [110/129] via 172.16.1.2, 00:00:52, FastEthernet0/1ROUTER1172.16.0.0/24 is subnetted, 4 subnetsC 172.16.1.0 is directly connected, FastEthernet0/0O 172.16.2.0 [110/2] via 172.16.1.1, 00:01:24, FastEthernet0/0O IA 172.16.3.0 [110/65] via 192.168.0.2, 00:01:19, Serial0/0/0O IA 172.16.4.0 [110/66] via 192.168.0.2, 00:01:19, Serial0/0/0192.168.0.0/30 is subnetted, 3 subnetsC 192.168.0.0 is directly connected, Serial0/0/0C 192.168.0.4 is directly connected, Serial0/0/1O 192.168.0.8 [110/128] via 192.168.0.6, 00:01:54, Serial0/0/1ROUTER2:172.16.0.0/24 is subnetted, 4 subnetsO IA 172.16.1.0 [110/65] via 192.168.0.1, 00:02:31, Serial0/0/0O IA 172.16.2.0 [110/66] via 192.168.0.1, 00:02:31, Serial0/0/0C 172.16.3.0 is directly connected, FastEthernet0/0O 172.16.4.0 [110/2] via 172.16.3.1, 00:02:36, FastEthernet0/0190.168.0.0/30 is subnetted, 1 subnetsC 190.168.0.8 is directly connected, Serial0/0/1192.168.0.0/30 is subnetted, 3 subnetsC 192.168.0.0 is directly connected, Serial0/0/0O 192.168.0.4 [110/128] via 192.168.0.1, 00:03:06, Serial0/0/0O 192.168.0.8 [110/192] via 192.168.0.1, 00:03:06, Serial0/0/0ROUTER3:172.16.0.0/24 is subnetted, 4 subnetsO IA 172.16.1.0 [110/65] via 192.168.0.5, 00:01:53, Serial0/0/0O IA 172.16.2.0 [110/66] via 192.168.0.5, 00:01:53, Serial0/0/0O IA 172.16.3.0 [110/129] via 192.168.0.5, 00:01:53, Serial0/0/0O IA 172.16.4.0 [110/130] via 192.168.0.5, 00:01:53, Serial0/0/0192.168.0.0/30 is subnetted, 3 subnetsO 192.168.0.0 [110/128] via 192.168.0.5, 00:02:28, Serial0/0/0C 192.168.0.4 is directly connected, Serial0/0/0C 192.168.0.8 is directly connected, Serial0/0/1ROUTER4:172.16.0.0/24 is subnetted, 4 subnetsO IA 172.16.1.0 [110/66] via 172.16.3.2, 00:09:41, FastEthernet0/1 O IA 172.16.2.0 [110/67] via 172.16.3.2, 00:09:41, FastEthernet0/1 C 172.16.3.0 is directly connected, FastEthernet0/1C 172.16.4.0 is directly connected, FastEthernet0/0192.168.0.0/30 is subnetted, 3 subnetsO IA 192.168.0.0 [110/65] via 172.16.3.2, 00:09:41, FastEthernet0/1 O IA 192.168.0.4 [110/129] via 172.16.3.2, 00:09:41, FastEthernet0/1 O IA 192.168.0.8 [110/193] via 172.16.3.2, 00:09:41, FastEthernet0/1 (5)测试整个网络的连通性,如图1-3所示。

计算机网络实验(六大实验)详解

计算机网络实验(六大实验)详解

第四步:验证配置
switch#show vlan
VLAN Name Type Media Ports ---- ------------ ---------- --------- ---------------------------------------1 default Static ENET Ethernet0/0/17 Ethernet0/0/18 Ethernet0/0/19 Ethernet0/0/20 Ethernet0/0/21 Ethernet0/0/22 Ethernet0/0/23 Ethernet0/0/24 100 VLAN0100 Static ENET Ethernet0/0/1 Ethernet0/0/2 Ethernet0/0/3 Ethernet0/0/4 Ethernet0/0/5 Ethernet0/0/6 Ethernet0/0/7 Ethernet0/0/8 200 VLAN0200 Static ENET Ethernet0/0/9 Ethernet0/0/10 Ethernet0/0/11 Ethernet0/0/12 Ethernet0/0/13 Ethernet0/0/14 Ethernet0/0/15 Ethernet0/0/16
启动 telnet服务
关于跨网段的问题
在PC机上可以使用telnet方式远程管理不同 网段的交换机。 一般来说对于同网段的交换机管理时对交换 机配置和PC机设置一个管理性IP地址和一 个同网段的IP就可以了,当要从一个交换机 跨网段管理另一个交换机时需要给交换机网 关设置。
在交换机所在网段内的工作站pc-01可以 使用telnet方式远程管理该交换机。 如果现在用户登录到switch-01中,想利 用网络远程管理另一个网段的交换机 switch-02就需要在双方交换机设置一个 默认网关,表示交换机无法转发的数据帧 就交给该IP地址(网关IP地址)的设备处 理以便能完成数据帧的转发过程;发送的 过程如下图:

ospf多区域实验报告

ospf多区域实验报告

ospf多区域实验报告OSPF多区域实验报告引言:本次实验旨在深入理解和掌握OSPF(Open Shortest Path First)协议的多区域功能。

OSPF是一种内部网关协议(IGP),用于在大型网络中进行路由选择和路径计算。

通过将网络划分为多个区域,可以提高网络的可扩展性和性能。

本文将介绍实验的背景和目的,详细描述实验的步骤和结果,并对实验进行总结和讨论。

1. 实验背景在大型企业网络中,网络拓扑往往非常复杂,包含大量的子网和路由器。

当网络规模扩大时,单一区域的OSPF可能无法满足需求,因为单一区域的路由计算复杂度较高,且可能导致路由器负载过大。

为了解决这个问题,OSPF引入了多区域的概念,将网络划分为多个区域,每个区域有自己的区域边界路由器(ABR),负责与其他区域交换路由信息。

2. 实验目的本次实验的目的是通过搭建一个包含多个区域的网络拓扑,验证OSPF多区域的工作原理和效果。

具体目标包括:- 理解OSPF多区域的概念和原理;- 配置和验证OSPF多区域的路由信息交换;- 观察和分析多区域对网络性能和可扩展性的影响。

3. 实验步骤3.1 搭建实验环境我们使用GNS3模拟器搭建了一个包含多个区域的网络拓扑。

拓扑包括两个区域,每个区域都有多个子网和路由器,区域之间通过区域边界路由器连接。

我们使用虚拟机作为路由器,并在每个路由器上安装了OSPF协议。

3.2 配置OSPF多区域在每个路由器上,我们配置了OSPF协议,并将相应的接口划分到不同的区域。

在区域边界路由器上,我们配置了区域间的路由信息交换。

通过这样的配置,每个区域内的路由器只需关注自己所在区域的路由信息,大大减轻了路由计算的负担。

3.3 验证实验结果我们通过在路由器上查看OSPF邻居关系和路由表,以及通过ping命令测试不同子网之间的连通性,来验证实验结果。

我们还观察了区域边界路由器之间的路由信息交换情况,以及网络的性能和可扩展性。

4. 实验结果实验结果表明,OSPF多区域功能能够有效提高网络的可扩展性和性能。

计算机网络实验

计算机网络实验

计算机网络实验计算机网络实验引言计算机网络是由若干计算机互连而成的系统,通过网络节点之间的通信,实现信息传输和资源共享。

计算机网络实验是网络技术学习中必不可少的一部分,通过实际操作和实验验证,加深对计算机网络原理和技术的理解和掌握。

本文将介绍几个常见的计算机网络实验,包括局域网配置、网络协议仿真和网络性能测试。

实验一:局域网配置实验目的通过配置局域网,掌握局域网的基本概念、配置方法和常见问题解决方法。

实验步骤1. 准备至少两台计算机和网络设备(例如交换机)。

2. 划分局域网的IP地质段。

3. 配置计算机的IP地质、子网掩码和网关。

4. 连接计算机和网络设备。

5. 测试计算机之间的连通性。

实验结论通过本实验,我们学会了如何配置局域网,划分IP地质段,配置计算机的网络参数和测试计算机之间的连通性。

实验二:网络协议仿真实验目的通过使用网络仿真工具,理解和模拟网络协议的工作原理和通信过程。

实验步骤1. 安装网络仿真工具(例如Cisco Packet Tracer)。

2. 创建一个简单的拓扑结构。

3. 配置设备的IP地质和路由。

4. 配置设备之间的网络协议(例如OSPF、RIP)。

5. 运行仿真,并观察设备之间的通信和路由表的变化。

实验结论通过本实验,我们可以通过网络仿真工具模拟网络协议的工作原理,了解网络设备之间的通信过程和路由表的变化。

实验三:网络性能测试实验目的通过网络性能测试,评估网络的带宽、延迟和丢包情况。

实验步骤1. 使用合适的网络性能测试工具(例如iperf、ping)。

2. 配置测试环境,包括测试主机和目标主机。

3. 启动性能测试工具,进行带宽、延迟和丢包率测试。

4. 分析测试结果,评估网络的性能。

实验结论通过本实验,我们可以使用合适的网络性能测试工具评估网络的带宽、延迟和丢包情况,为网络的优化提供参考。

结论计算机网络实验是学习计算机网络技术的重要环节,通过实际操作和实验验证,可以加深对计算机网络原理和技术的理解和掌握。

计算机网络实验报告-OSPF协议实验

计算机网络实验报告-OSPF协议实验

实验2 OSPF协议实验1.查看R2的OSPF的邻接信息,写出其命令和显示的结果:答:2.将R1的router id 更改为3.3.3.3,写出其命令。

显示OSPF的概要信息,查看此更改是否生效。

如果没有生效,如何使其生效?答:没有生效,需要重启OSPF协议:让reset ospf processdis ospf brief3.6.1 OSPF协议报文格式3.分析截获的报文,可以看到OSPF的五种协议报文,请写出这五种协议报文的名称。

并选择一条Hello报文,写出整个报文的结构(OSPF首部及Hello报文体)。

答:OSPF头部:Byte1:版本号 2Byte2:报文类型1(Hello)Byte3-4:报文长度48Byte5-8:发送者RouterID 2.2.2.2Byte9-12:区域信息0.0.0.0Byte13-16:校验和0xf290Byte17-18:Auth Type NullByte19-24:Auth Data noneHello报文体:Byte1-4:子网掩码255.255.255.0Byte5-6:报文周期10Byte7:报文选项 EByte8:优先级 1Byte9-12:Dead Interval 40Byte13-16:DR地址0.0.0.0Byte17-20:BDR地址0.0.0.0Byte21-24:ActiveNeighbor 3.3.3.34.分析OSPF协议的头部,OSPF协议中Router ID的作用是什么?它是如何产生的?用来唯一确定自治区域内的一台路由器。

答:可以手动设定,若没有指定,会自动选择路由器回环接口中最大IP地址为Router ID 5.分析截获的一条LSUpdate报文,写出该报文的首部,并写出该报文中有几条LSA?以及相应LSA的种类。

答:OSPF头部:Byte1:版本号 2Byte2:报文类型4(LS Update)Byte3-4:报文长度64Byte5-8:发送者RouterID 2.2.2.2Byte9-12:区域信息0.0.0.0Byte13-16:校验和0x0868Byte17-18:Auth Type NullByte19-24:Auth Data none该报文中有1条LSA,种类为Router-LSA3.6.2 链路状态信息交互过程6.结合截获的报文和DD报文中的字段(MS,I,M),写出DD主从关系的协商过程和协商结果。

北京邮电大学网络实践实验报告-RIP和OSPF路由协议的配置及协议流程

北京邮电大学网络实践实验报告-RIP和OSPF路由协议的配置及协议流程

计算机网络技术实践实验报告实验名称:和路由协议的配置及协议流程姓名:学号:实验日期:年月日实验报告日期:年月日报告退发:(订正、重做)一、环境(详细说明运行的操作系统,网络平台,网络拓扑图)●操作系统:●网络平台:仿真平台●网络拓扑:二、实验目的三、实验内容及步骤(包括主要配置流程,重要部分需要截图):1.设计网拓扑2.配置地址以配置的的地址为例:配置完后,输入命令打开端口。

类似的配置完一共个端口的地址。

3.配置路由协议:以配置的路由协议为例:4.配置的默认路由,以为例:5.配置完成后,测试从到网络中各个节点的连通情况:a)到:b)到:c)到:d)到:e)到:f)到:6.打开调试模式:以为例:不久之后接收到发来的路由信息:同时,也在向周围路由器发送路由信息:从上图中我们路由器从端口发送路由信息告诉,到网络需要两跳,到网络需要一跳,到网络需要两跳。

通过计算从各个端口接收到的路由信息,需要到各个网络的最优路径之后,也会向外发出路由信息。

如上图所示,把路由信息从端口发出。

他告诉这个端口另一端所连的设备,到网络需要一跳,到网络需要两跳,到网路需要一跳。

收到这个路由信息的设备也会根据这个路由信息来计算自己到各个网络的最优路径。

通过获得的路由信息不难看出协议的工作过程:每个路由器都维护这一张路由表,这张路由表中写明了网络号、到该网络的最短路径(实验中的路径长短由跳数来衡量)以及转发的出口。

路由器会周期性得向周围路由器发送自己的路由表,同时也会接受周围路由器发来的路由表,以此来刷新自己的路由器,适应网络拓扑变化。

路由器在收到路由信息之后会根据某些路由算法、收到的路由信息和原先自己的路由表来计算到达各个网络最优的转发路径(即下一跳的出口),这便是距离矢量路由算法的工作过程。

7.在控制台中关闭路由器后(以此来改变网络拓扑),开始收到不可达的路由刷新报文:一段时间后,的路由表被刷新:重新打开一段时间后,路由表被刷新:解释:在路由器下线之后,邻居路由器将会长时间收不到,方向过来的路由信息,一段时间后,路由表会被重新计算。

《计算机网络实验》实验报告

《计算机网络实验》实验报告

《计算机网络实验》实验报告一、实验目的计算机网络实验是计算机相关专业学习中的重要实践环节,通过实验操作,旨在深入理解计算机网络的基本原理、协议和技术,提高我们的动手能力和解决实际问题的能力。

具体目的包括:1、熟悉计算机网络的体系结构和各层协议的工作原理。

2、掌握网络设备的配置和管理方法,如交换机、路由器等。

3、学会使用网络工具进行网络性能测试和故障诊断。

4、培养团队合作精神和沟通能力,提高解决复杂问题的综合素养。

二、实验环境本次实验在学校的计算机网络实验室进行,实验室配备了以下设备和软件:1、计算机若干台,安装了 Windows 操作系统和相关网络工具软件。

2、交换机、路由器等网络设备。

3、网络线缆、跳线等连接设备。

三、实验内容及步骤实验一:以太网帧的捕获与分析1、打开网络协议分析软件 Wireshark。

2、将计算机连接到以太网中,启动捕获功能。

3、在网络中进行一些数据传输操作,如访问网站、发送文件等。

4、停止捕获,对捕获到的以太网帧进行分析,包括帧的格式、源地址、目的地址、类型字段等。

实验二:交换机的基本配置1、连接交换机和计算机,通过控制台端口进行配置。

2、设置交换机的主机名、管理密码。

3、划分 VLAN,并将端口分配到不同的 VLAN 中。

4、测试不同 VLAN 之间的通信情况。

实验三:路由器的基本配置1、连接路由器和计算机,通过控制台端口或Telnet 方式进行配置。

2、设置路由器的接口 IP 地址、子网掩码。

3、配置静态路由和动态路由协议(如 RIP 或 OSPF)。

4、测试网络的连通性。

实验四:网络性能测试1、使用 Ping 命令测试网络的延迟和丢包率。

2、利用 Tracert 命令跟踪数据包的传输路径。

3、使用网络带宽测试工具测试网络的带宽。

四、实验结果与分析实验一结果与分析通过对捕获到的以太网帧的分析,我们清楚地看到了帧的结构,包括前导码、目的地址、源地址、类型字段、数据字段和帧校验序列等。

ospf协议 实验报告

ospf协议 实验报告

ospf协议实验报告OSPF协议实验报告引言在计算机网络领域,路由协议是实现网络通信的重要组成部分。

其中,OSPF (Open Shortest Path First)协议是一种内部网关协议(IGP),被广泛应用于大型企业网络和互联网中。

本实验旨在深入了解OSPF协议的工作原理、特点和应用场景,并通过实际操作和观察验证其性能和可靠性。

一、OSPF协议概述OSPF协议是一种链路状态路由协议,通过计算最短路径来实现数据包的转发。

它基于Dijkstra算法,具有高度可靠性和快速收敛的特点。

OSPF协议支持IPv4和IPv6,并提供了多种类型的路由器之间交换信息的方式,如Hello报文、LSA (链路状态广告)等。

二、实验环境搭建为了进行OSPF协议的实验,我们搭建了一个小型网络拓扑,包括四台路由器和若干台主机。

路由器之间通过以太网连接,主机通过交换机与路由器相连。

在每台路由器上配置OSPF协议,并设置相应的参数,如区域ID、路由器ID、接口地址等。

三、OSPF协议的工作原理OSPF协议的工作原理可以简要概括为以下几个步骤:1. 邻居发现:路由器通过发送Hello报文来寻找相邻的路由器,并建立邻居关系。

Hello报文包含了路由器的ID、接口IP地址等信息,用于判断是否属于同一区域。

2. LSA交换:邻居路由器之间通过发送LSA报文来交换链路状态信息。

LSA报文包含了路由器所知道的网络拓扑信息,如链路状态、度量值等。

3. SPF计算:每台路由器根据收到的LSA报文,计算出最短路径树。

SPF计算使用Dijkstra算法,通过比较路径的度量值来选择最优路径。

4. 路由表更新:根据最短路径树,每台路由器更新自己的路由表。

路由表包含了目的网络的下一跳路由器和度量值等信息。

四、实验结果与分析通过实验观察和数据分析,我们得出以下结论:1. OSPF协议具有快速收敛的特点,当网络拓扑发生变化时,路由器能够迅速更新路由表,确保数据包能够按最优路径传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北航计算机网络实验
实验5.6
OSPF协议的路由计算
OSPF协议的路由计算
⏹SPF算法和COST值
⏹区域内路由的计算
⏹区域间路由的计算
--骨干区域和虚连接⏹区域外路由的计算
--与自治系统外部通信
SPF算法
LSDB
LSA 的RTA LSA 的RTB
LSA 的RTC
LSA 的RTD
(二)每台路由器的链路状态数据库(一)网络的拓朴结构
C
A
B
D
1
2
3
C
A
B D 1
2
3
C
A
B D 1
2
3
C
A
B
D
1
2
3
(四)每台路由器分别以自己为根节点计算最短路径树
(三)由链路状态数据库得
到的带权有向图
C
A
B
D
1
2
3
5
RTC
RTD
3
2
1
5
RTB
RTA
SPF算法和COST值
⏹SPF算法也被称为Dijkstra算法,是OSPF路由协议的基础。

☐SPF算法将每一个路由器作为根(Root)来计算到每一
个目的地路由器之间的距离,每一个路由器根据一个统
一的数据库会计算出路由域的拓扑结构图,该结构图类
似于一棵树,在SPF算法中,被称为最短路径树。

⏹在OSPF路由协议中,最短路径树的树干长度,即OSPF路由器至每一个目的地路由器的距离,称为OSPF的Cost值。

☐Cost值应用于每一个启动了OSPF的链路,它是一个16
bit的整数,范围是1~65535。

Cost值的计算方法
⏹计算方法108/bandwidth
☐56-kbps serial link = 1785
☐10M Ethernet = 10
☐64-kbps serial link = 1562
☐T1 (1.544-Mbps serial link) = 64
⏹用户可以手动调节链路Cost,缺省情况下,接口按照当前的波特率自动计算开销
区域内路由的计算
S1
Vlan2:10.1.1.2/24
Vlan2:30.1.1.2/24
E1:30.1.1.1/24
Vlan3:40.1.1.1/24
E0:40.1.1.2/24
R1
R2
AREA 0
E0:10.1.1.1/24S0:20.1.1.1/24S0:20.1.1.2/24
E0/1
E0/24
E0/1S2
100200
300
500。

相关文档
最新文档