地球物理反演

合集下载

地球物理反演方法的综述

地球物理反演方法的综述

地球物理反演方法的综述地球物理反演是一种利用地球物理方法来推断地下构造和物质分布的技术。

通过观测和测量地球物理场,如重力、地磁、电磁、地震等,结合数理统计和计算机模拟方法,可以对地下的地质构造、岩石性质和地下水资源等进行精确的推断。

本文将综述地球物理反演方法的原理、分类及应用。

一、地球物理反演方法的原理地球物理反演方法的原理在于根据地球物理场的观测数据,通过数学模型和计算方法,将地球物理场与地下介质属性之间的关系联系起来。

根据电磁波传播、物质密度、电阻率、磁化率等反演参数的变化规律,推断地下介质的结构和成分。

其中常用的地球物理反演方法包括重力法、磁法、电磁法、地电法和地震法等。

不同的反演方法适用于不同的地质介质和研究目标,各有其优势和限制。

二、地球物理反演方法的分类1. 重力反演法:利用重力场观测数据,通过计算物质的密度分布,来推断地下构造的方法。

重力反演法在石油勘探、地质灾害分析、水资源评价等领域具有广泛应用。

2. 磁法反演法:通过磁场观测数据,推断地下磁化率和磁性物质的空间分布。

磁法反演在矿产勘探、地震预测等方面发挥重要作用。

3. 电磁法反演法:通过电磁场观测数据,推断地下电阻率分布,来研究地下水资源、矿产和工程勘探。

电磁法反演在地下水资源评价、油气勘探、环境地球物理和岩土工程等方面有广泛应用。

4. 地电法反演法:通过电场和电位观测数据,推断地下电阻率分布,用于研究地下水位、地下水性质、污染监测和地下工程等。

地电法反演在工程地球物理勘探和水文地球物理领域具有广泛应用。

5. 地震法反演法:通过地震波在地下的传播与变化,推断地下介质的速度和密度分布,用于研究地质构造、地震预测和石油勘探等。

地震法反演是地球物理反演方法中应用最广泛的方法之一。

三、地球物理反演方法的应用地球物理反演方法广泛应用于地质探测、资源勘探、环境监测和工程勘察等领域。

以下是几个常见的应用领域:1. 石油勘探:地震反演方法可用于确定油气藏的位置、大小和分布,辅助油田开发和管理。

地球物理反演技术的原理与应用

地球物理反演技术的原理与应用

地球物理反演技术的原理与应用地球物理反演技术是一种利用地球物理学原理和数据来研究地球结构和物理性质的方法。

它通过观测不同物理现象的数据,并将这些观测数据与理论模型进行比对,从而推断地下地质结构和属性的技术。

本文将介绍地球物理反演技术的原理和常见的应用领域。

一、地球物理反演技术的原理地球物理反演技术的原理主要基于物理学原理,包括电磁学、重力学、磁学、地震学和地热学等。

具体原理如下:1. 电磁学原理:电磁法反演技术利用地下不同电性介质对电磁场的响应特性来识别地下结构。

该方法可以通过测量地下电磁场的参数(如电阻率、电导率和介电常数)来推断地下岩石类型、孔隙度和流体性质。

2. 重力学原理:重力法反演技术基于地球重力场的变化来推测地下物质的密度分布。

地球上不同密度的岩石体会造成地球重力场的微小变化,通过测量这种变化,可以揭示地下岩石体的类型和分布。

3. 磁学原理:磁法反演技术是利用地下岩石的磁性来推测地下结构。

地球上的磁场会受到地下岩石的磁性影响,通过测量地球磁场的变化,可以了解地下岩石类型和分布。

4. 地震学原理:地震法反演技术是利用地震波在地下传播的特性来推测地下结构。

地震波在地下不同介质中传播时,会发生折射、折射、散射等现象,通过记录地震波的传播速度和幅度变化,可以计算出地下岩石的速度和密度分布。

5. 地热学原理:地热法反演技术是利用地球内部热流传递的特性来推测地下热流分布和地下岩石的导热性质。

地下不同介质的导热性质不同,通过测量地球表面的地温和热流分布,可以推断地下岩石的导热性质、岩石类型和介质性质。

二、地球物理反演技术的应用地球物理反演技术广泛应用于地质勘探、环境监测、灾害预警和能源开发等领域。

以下是一些常见的应用领域:1. 矿产勘探:地球物理反演技术在矿产勘探中具有重要作用。

根据地球物理反演技术可以获得的电阻率、重力梯度、磁场强度等信息,可以推测地下的矿体分布和性质,指导矿产资源的开发和勘探。

地球物理反演理论课件

地球物理反演理论课件

地震预测
分析地震波在地壳的传播演 化规律,预测地震发生时间 和强度。
环境监测
探测地下水、矿产和污染物 分布及变化情况。
常见的地球物理反演方法
磁法
利用自然磁场或外加磁场探测地 下物质性质。
地震法
利用地震波在地球内部传播规律 探测地下结构。
电法
利用电场或磁场探测地下物质性 质。
地球物理反演的挑战与解决方案
多物理场耦合
发展多种物理场耦合反演技术, 如电磁-声波反演等。
反演模型可解释性
研究拓扑学、机器学习等方法, 提高反演模型可解释性。
总结与展望
地球物理反演理论是地球科学的重要分支,未来将会面临更多的机遇和挑战。 我们期待在该领域的深入研究和应用。
பைடு நூலகம்
地球物理反演理论
探索地球内部构造的基础理论。
地球物理反演的基本原理
1
传播
利用地震波在地球内部的传播规律获取地下介质信息。
2
建模
基于物理学原理建立反演模型刻画地下介质物理结构。
3
求解
应用数学算法求解反演模型以获取地下介质物理参数。
地球物理反演的应用领域
石油勘探
获取地下油藏分布位置、体 积和物性信息。
1 非线性问题
地下介质非线性性质导致反演过程数学模型复杂,求解困难。
2 数据融合
地球物理勘探往往需要多种方法数据的综合利用,如何有效地融合数据是一个难点。
3 高性能计算
反演过程需要进行大量的数值计算,如何利用高性能计算提高计算效率是关键。
地球物理反演的未来发展方向
更多数据源
发掘各种数据源,如遥感、人 工智能数据等,提高数据支撑 和反演精度。

地球物理反演方法及优劣分析

地球物理反演方法及优劣分析

地球物理反演方法及优劣分析地球物理反演是一种通过观测地球物理场的响应来推断地下介质结构和性质的方法。

地球物理反演在地质勘探、环境研究、灾害预测等领域具有重要应用价值。

本文将介绍几种常见的地球物理反演方法,并分析它们的优劣势。

1. 重力法重力法是一种通过测量地球物体潜在能的分布来推断地下密度结构的方法。

重力法具有简单、直观、非侵入性的优点,在海洋和陆地上都可应用。

然而,重力法对密度分布变化较小的地下构造敏感性不高,精度受地形影响。

此外,重力法对地下界面的分辨率较低,难以分辨细小结构。

2. 震电阻抗法震电阻抗法是一种通过测量地震波在地下传播的速度和衰减来推断地下介质的电阻率结构的方法。

震电阻抗法在勘探深层、辨析地下岩石类型等方面具有优势。

然而,震电阻抗法对电阻率界面明显的区域辨识度较高,但对电阻率变化较小的结构分辨率较低。

此外,震电阻抗法对最低频率的信号需高信噪比,仪器设备较为复杂。

3. 电法电法是一种通过测量地下电场、电位差和电流等信息来推断地下的电阻率结构的方法。

电法具有分辨率较高、不受地形影响的优势,适用于地下水、矿产资源、环境污染等的勘探。

然而,电法在复杂多层介质的情况下存在解耦问题,且对电阻率的分辨率随探测深度增加而下降。

4. 磁法磁法是一种通过测量地磁场的强度和方向变化来推测地下岩石磁性结构的方法。

磁法适用于勘探地下矿产、火山活动等。

磁法对磁性较强的物质敏感,但对非磁性物质的响应较弱。

此外,磁法的解释也受到磁化方向不明确和磁异常的干扰。

5. 地震反射法地震反射法是一种通过测量地震波在不同介质之间反射和折射的现象来推断地下介质结构的方法。

地震反射法是勘探石油和地表下岩石结构的常用方法。

地震反射法具有高分辨率、多参数的优势,可以提供地层的结构、速度、岩性等信息。

然而,地震反射法对地下介质的反射界面明显的要求较高,且受到地震波传播路径的限制。

总的来说,每种地球物理反演方法都有其适用的场景和局限性。

地球物理反演总结

地球物理反演总结

地球物理反演总结一、名词解释(30)二、简答(30)三、综述(40)第一章正问题:给定一个问题,寻找答案反问题:给定一个答案,寻找问题适定性问题:解一定存在;解的唯一性;问题发生一些小的变动仅导致问题的解发生小的变动非适定性问题:解不一定存在;解可能不唯一;问题中小的变动导致问题解较大变动正演问题(正问题):已知模型m,求解数据d的过程反演问题(反问题):已知数据d,求解模型参数m的过程地震反演(SeismicInversion):把常规的界面型反射剖面转换成岩层型的测井剖面,将地震资料变成可与测井资料直接对比的形式,实现这种转换的处理过程叫地震反演。

地震反演在石油勘探开发中的应用:1、微构造识别;2、岩性预测;3、储层参数评价4、流体识别(烃类检测)地球物理反演:根据各种位场、地震波、地球自由振荡、交变电磁场、以及热学的地球物理观测数据去推测地球内部的结构形态及物质成分,定量计算各种有关的物理参数地震勘探中应用最广的反演问题是地震波阻抗反演,地震波阻抗反演是储层地球物理研究的最基本的处理技术之一,通过地震波阻抗反演把常规的界面型地震反射剖面转换成岩层型的伪测井剖面,因而使地震资料转变成可以与钻井资料直接对比的剖面形式,可以说波阻抗反演是地震资料处理的最终处理结果。

地震反演的目的:根据地震资料,反推出地下介质的波阻抗、速度和密度等岩石地球物理参数的分布,估算储层参数,并进行储层预测,以便为油气田的勘探和开发提供可靠的基础资料。

第二章地震正演定义:地震正演是根据设计的地质模型,选择速度、密度、波松比等地层参数,用某种方法求得地震响应,通过与实际剖面对比,合理解释复杂的地质现象。

地质模型:物理模型、数值模型算法原理:褶积模型、绕射迭加模型、射线追踪模型、波动方程模型地震物理模拟:在实验室内将野外的地质构造和地质体按照一定的模拟相似比制作成物理模型,并用超声波或激光超声波等方法对野外地震勘探方法进行模拟的一种地震模拟方法。

地球物理反演方法的分析与评价

地球物理反演方法的分析与评价

地球物理反演方法的分析与评价地球物理反演是通过测量地球物理场并运用数学模型来推断地下结构的一种技术。

为了获得准确的地下信息,科学家们不断改进和发展不同的反演方法。

本文将对几种常见的地球物理反演方法进行分析与评价。

1. 介电常数反演方法介电常数反演方法是一种通过测量电磁场数据来推断地下介电常数分布的方法。

该方法适用于地质勘探、环境监测等领域。

通过分析电磁场数据的变化,可以推断地下的介电常数分布情况,进而了解地下的岩石性质和地形特征。

这种方法具有较高的分辨率和准确性。

2. 地震波反演方法地震波反演方法是一种通过测量地震波数据来推断地下介质的方法。

地震波波形在不同介质中传播的速度和路径都有所不同,通过分析地震波数据的变化,可以推断地下的物理性质和结构。

地震波反演方法适用于地震勘探、地震灾害预测等领域。

这种方法可以提供较准确的地下结构和地质信息。

3. 重力反演方法重力反演方法是一种通过测量地球重力场数据来推断地下密度分布的方法。

地下的密度分布会对地球重力场产生影响,通过分析重力场数据的变化,可以推断地下的密度分布情况。

重力反演方法适用于矿产勘探、地下水资源调查等领域。

这种方法具有较高的分辨率和准确性。

4. 电磁法反演方法电磁法反演方法是一种通过测量地下电磁场数据来推断地下电导率分布的方法。

地下的电导率分布与地下的水分、岩石性质等因素有关,通过分析电磁场数据的变化,可以推断地下的电导率分布情况。

电磁法反演方法适用于水资源调查、矿产勘探等领域。

这种方法可以提供较准确的地下电导率信息。

5. 时间域反演方法时间域反演方法是一种通过测量地球物理场数据的时间变化来推断地下结构的方法。

该方法适用于地壳运动监测、地震预测等领域。

通过分析地球物理场数据的时间变化,可以推断地下的结构和变化情况。

时间域反演方法具有较高的分辨率和准确性。

综上所述,地球物理反演方法是研究地下结构和物性的重要手段,不同的反演方法适用于不同的领域和问题。

地球物理正演与反演

地球物理正演与反演
地震模型技术就是对实际的复杂地球介质作 适当的简化(如简化为均匀介质,水平层状介质 等),对地震波的传播规律也作适当的简化。然 后用数学或物理的方法研究地震波在某种具体的 简化模型中传播的特点,用来模拟真实地质结构 条件下的地震波场,指导地震勘探的野外采集, 处理和解释等方面的生产和理论研究工作。
正演理论方法
PY地震剖面与地质模型
速度分析
CDP叠加
PY地质模型与其地震响应
为什要进行地震反演?
• 在时间域中的褶积就 是频率域中的乘ห้องสมุดไป่ตู้.
• 从右图中可以看出,子 波的作用是将地震频 谱中高频和低频都消 除了.
• 理论上讲,反演就是试 图将这些失去的频率 区域进行恢复.
为什要进行地震反演?
低频 测井资料中所包含的频带范围 高频 地震资料中所包含的频带范围
反演理论方法
• 地震反演的目的
根据地震资料,反推出地下介质的波阻抗、 速度和密度等岩石地球物理参数的分布,估算储 层参数,并进行储层预测,以便为油气田的勘探 和开发提供可靠的基础资料。
反演理论方法
反演提供各种岩 性剖面,目的就是 将已知井点信息与 地震资料相结合, 为油田工作者提供 更多的地下地质信 息,建立储层、油 藏的概念模型、静 态模型、预测模型, 提高油田采收率。
正演理论方法
• 地震模型技术
模型技术的基本思想就是研究某一类复杂事 物时,抓住它们的某些主要方面,而摈弃、忽略 一些非本质的次要方面,概括出一个能反映这类 事物的主要特点的模型。再用数学或物理的方法 研究发生在这个模型里的物理现象的基本规律,
用以代表客观实际的复杂事物规律。
正演理论方法
• 地震模型技术
反演的理论基础:褶积模型(时间域)

地球物理反演方法及应用领域分析

地球物理反演方法及应用领域分析

地球物理反演方法及应用领域分析一、引言地球物理反演是一种通过观测地球上的物理场,并利用物理定律和数学模型,对地下结构和地球内部特征进行分析的方法。

地球物理反演方法在地质勘探、地震研究、资源勘探等领域具有重要应用价值。

本文将围绕地球物理反演方法展开讨论,并分析其在不同应用领域的具体应用。

二、地球物理反演方法1. 重力反演法:重力反演法是通过测量不同地点的重力场强度,利用物理模型和解析方法,进行地下密度结构的反演。

它在石油勘探、地质构造研究和火山活动监测等领域都有广泛应用。

2. 电磁反演法:电磁反演法通过测量电磁场数据,包括电磁地震、磁力计和电磁感应仪等,来推断地下岩石的电性性质。

电磁反演法在矿产资源勘探、地下水资源评价和环境地球物理研究等领域具有重要作用。

3. 地震反演法:地震反演法是通过地震波在地下传播的速度以及反射和折射现象,推断地下介质的物理特性。

它在地震勘探、地震监测和地震预测等领域发挥着重要作用。

4. 磁法反演法:磁法反演法是通过测量地磁场的强度和方向,推断地下岩石的磁性特征。

它在矿产勘探、石油勘探和矿床研究等领域中得到广泛应用。

三、地球物理反演方法的应用领域1. 地质勘探:地球物理反演方法在地质勘探领域中极为重要。

通过研究地球物理场的各种参数,例如重力场、磁场和电磁场,可以获得地下岩石的构造、性质和分布情况。

这对于石油勘探、矿产资源探测和地质灾害预警具有重要意义。

2. 地震研究:地球物理反演方法在地震研究中起到关键作用。

地震波的传播速度和反射、折射现象可以帮助科学家了解地震震源的位置、深度和强度,进而预测地震活动趋势和地震风险区域。

3. 矿产资源勘探:地球物理反演方法在矿产资源勘探中有广泛应用。

通过测量地下电磁场、地震波速度和重力场等物理参数,可以判断地下矿床的位置、形态和含量。

这对于矿产勘探和矿石储量评估具有重要意义。

4. 环境地球物理研究:地球物理反演方法在环境地球物理研究中也扮演着重要角色。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E eTWee, diag(We ) (1,1, 2,1,1)T
三、等式限制条件
问题:
d Gm Fm h
目标函数:
E (d Gm)T (d Gm) T [Fm h]
例一
m1
1 N
(1, 1,
, 1)mm2N
(h1 )
h
物理意义:要求解的平均值等于某一个常数
例二.
m1
d1 d2
d
N
di zi di
zi2di
于是,最小二乘解为
N
m
GTG
1 GT d
zi
z
2 i
zi
z
2 i
zi3
zi2
z
3 i
1
di
xi di
zi4
yi d
4. 例子
例三 最小平方反褶积
最小平方反褶积
输入信号: xt
滤 波 器: f t
§6 反演结果的评价
1. 评价问题的提出 2. 评价准则 3. 平均函数A决定分辨率 4. 平均函数与哪些因素有关?
§7 解的稳定性
1. 稳定性的概念 2. 举例 3. 稳定性与核函数的性质有关
§8 线性反演问题综述
1. 构造一组新的正交基 2. 的含义 3. 模型构制(解的存在性) 4. 解的非唯一性 5. 长度最小模型是核函数的线性组合
地球物理反演理论
刘学伟
第一章 绪论
§1 反演的目的和任务 §2 几个反演例子 §3 非线性问题线性化与连续模型离散化 §4 模型构制 §5 解的非唯一性 §6 反演结果的评价 §7 解的稳定性 §8 线性反演问题综述
§1 反演的目的和任务
1.什么是反演,什么是正演? 2.地球物理反演: 3.反演理论中的四大问题: 4.数学物理模型和响应函数的正演问题:
§2 几个反演例子
1. AVO反演 2. 基于褶积模型的波阻抗反演
1. AVO反演
在界面上存在:应力连续条件和位移连续条件
1i 2i , i 1, 2,3
u1i u2i , i 1, 2,3
§3 非线性问题线性化与连续模型 离散化
1. 线性化方法 2. 初始模型与解的关系 3. 连续模型离散化
2. 超定问题的物理意义
1. 方程个数M大于未知数个数N的意思 2. M>N=r (r是矩阵的秩)的物理意义 3. M>N>r 的物理意义
4. 例子
例一抛物线拟合问题
模型是 di
m1
m2 zi
m3
z
2 i
因而方程Gm=d的形式为:
1 1
z1 z2
1 zN
z12
z
2 2
z
2 N
m1 m2 m3
输出信号: 理想输出:
yt f xt
dt t
输出误差: 误差能量:
t dt yt
Q 2
t Q t2 (dt f xt )2
t
t
t
(dt f xt )2
t
Q 0, i 0, 1, 2, • ••, n 1 fi
f Ri gi , i 0, 1, 2, • ••, n 1
(0, 0,
0, 1, 0,
0)mm2N
(h1
)
h
物理意义:要求解的某一分量等于特定值
§5 模型参数估计方差
一、随机变量的(均值和方差)统计特性 二、随机向量的统计特性 三、误差向量 四、用 Cov(d) 表示 Cov(m) 五、图示说明 Cov(m) 与 G 的关系
模型协方差与算子 G 的关系
1. 线性化方法
• 参数置换法 • 台劳级数展开法
2. 初始模型与解的关系
3. 连续模型离散化
§4 模型构制
1. 解的适定性问题 2. 模型的维数问题 3. 观测数据与模型参数的处理
§5 解的非唯一性
1. 零向量,零空间,零化子,零化空间 2. 零空间与系数矩阵的关系(数据核)
2. 基于褶积模型的波阻抗反演
第二章 参数化模型的最小长度解
§1 线性反演问题的最小方差解 §2 欠定问题解法 §3 混定问题的解法 §4 先验信息在模型构制中的应用 §5 模型参数估计方差 §6 L1 范数解-线性规划 §7 L 范数解-线性规划
§1 线性反演问题的最小方差解
1. 什么是参数化模型? 2. 超定问题的物理意义 3. 最小方差解(M > N = r) 4. 例子 5. 讨论
5. 讨论
GTG 的秩r小于N的意义
GTG 的病态问题
§2 欠定问题解法
1. 什么是欠定问题,物理意义? 2. 例子 3. 长度最小解 4. 先验信息 5. 讨论
1. 什么是欠定问题,物理意义?
从三方面理解欠定问题物理意义:
1.数学多解 2.观测数据不含充分的模型信息 3.模型算子只把部分模型映射到数据空间
d1
ห้องสมุดไป่ตู้
d
2
d
N
矩阵乘积 GTG 为
1
z1
z12
1
z2 z22
1
1
zN
z
2 N
1 1
z1 z2 zN
z12
z
2 2
z
2 N
N
zi
z
2 i
zi
z
2 i
zi3
z
2 i
zi3
z
4 i

1
GTd
z1
z12
1
z2
z
2 2
1
z N
z
2 N
§3 广义反演法
d=Gm
m=GLd
其中:
GL
Vr
1U
T r
§4 数据分辨矩阵
1. 数据分辨矩阵 2. F的物理意义
§5 参数分辨矩阵
1. 参数分辨矩阵 2. 参数分辨矩阵物理意义
§6 特征值对反演结果的影响
1. 特征值的作用
d ur r vrT m
表明,大特征值对重建观测数据贡献大
m
vr
2. 例子
1. 投影约束问题 2. 测定砖块速度问题 3. 反射波速度反演问题
4. 先验信息
1. 什么是先验信息 2. 四类先验信息
5. 讨论
对称矩阵GGT 奇异的物理意义:M个观测
数据中有些彼此线性相关,即M个观测数据 中有重复信息。
§3 混定问题的解法
d Gm min( M , N) r(秩)
§7 L 范数解
1. L 范数解的物理意义 2.目标函数
第三章 广义反演法
§1 广义逆 §2 矩阵奇异值分解(SVD)和自然逆 §3 广义反演法 §4 数据分辨矩阵 §5 参数分辨矩阵 §6 特征值对反演结果的影响 §7 分辨率高的和方差大小的测度 §8 最佳折衷解
§1 广义逆
§2 矩阵奇异值分解(SVD)和自然逆
Ri xt xti ,
t
gi dt xti
t
取: dt t 的最小平方滤波
也叫脉冲反褶积
R0 , R1, R2 , • ••, Rn1 f0 1
R1
,
R0
,
R1
,

••,
Rn2
f1
0

• •




• •
Rn1, Rn2 , Rn3, • ••, R0 fn1 0
§8 最佳折衷解
第四章 B-G反演理论
§1 在精确数据情况下连续介质反演 §2 在观测数据具有误差的情况下连续介质
的反演理论 §3 BG线性评价(-) §4 BG线性评价(二) §5 BG反演理论在反褶积中的应用
§1 在精确数据情况下连续介质反演
1. 最小模型解 2.最平缓模型解 3.最光滑模型解
小特征值: 对观测数据的误差影响不大, 对模型参数的方差影响很大.
大特征值: 对观测数据的误差影响大, 对模型参数的方差影响小.
§6 L1 范数解-线性规划
一、范数定义 二、线性规划问题的图解 三、d Gm 的极大似然解 1.高斯分布与指数分布 2.似然函数及极大似然估计 3.线性问题 d Gm 的极大似然解 4.范数与概率分布的关系 四、d Gm 的L1范数解
r1u
T r
d
表明,小特征值对构建模型参数影响大
2. 解的方差
Cov(m) GLCov(d )GLT
如果 Cov(d ) 2 I d

Cov(m) 2GLGLT 2vr r2vrT
小特征值对方差贡献大,导致结果不稳定 上述结果与最小二乘解和最小长度解是一致的
§7 分辨率高的和方差大小的测度
§2 在观测数据具有误差的情况下 连续介质的反演理论
1. 矩阵条件数 2. 矩阵条件数的物理意义 3. 最小模型的特征值表示 4. 观测数据拟合误差 k 2 的计算(r的选择)
定义目标函数: E (d Gm)T (d Gm) 2mT m
求m使得E最小,从而有
(GT G 2 I )m GT d

m (GT G 2 I )1GT d
混定问题的例子
波速测定问题:
V V1 V2 2
V V2 V1 2
超定的 欠定的
混定问题的物理意义: 数据中含一部分模型的完全信息, 缺少另一部分模型的信息
阻尼系数的物理意义 条件数及其数学意义
cond[GT G
2I]
max 2 min 2
max min
cond[GT G]
§4 先验信息在模型构制中的应用
一、对模型参数的限制 二、对观测数据的限制 三、等式限制条件
一、对模型参数的限制
E (m m )T (m m ) 的物理意义:要求解接近平均值
相关文档
最新文档