事件的独立性教案

合集下载

04事件的相互独立性(教案)

04事件的相互独立性(教案)

2. 2.2事件的相互独立性教学目标:知识与技能:理解两个事件相互独立的概念。

过程与方法:能进行一些与事件独立有关的概率的计算。

情感、态度与价值观:通过对实例的分析,会进行简单的应用。

教学重点:独立事件同时发生的概率教学难点:有关独立事件发生的概率计算授课类型:新授课课时安排:4课时教 具:多媒体、实物投影仪教学过程:一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++=12()()()n P A P A P A +++探究:(1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少?事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上(2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球问题(1)、(2)中事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)问题(1)、(2)中事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响)思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A 为“第一名同学没有抽到中奖奖券”, 事件B 为“最后一名同学抽到中奖奖券”. 事件A 的发生会影响事件B 发生的概率吗?显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A 的发生不会影响事件B 发生的概率.于是P (B| A )=P(B ),P (AB )=P( A ) P ( B |A )=P (A )P(B).二、讲解新课:1.相互独立事件的定义:设A, B 为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立(mutually independent ) .事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立2.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.(简称积事件)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果同时摸出白球的结果有32⨯种所以从这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即 1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅.3.对于事件A 与B 及它们的和事件与积事件有下面的关系: ()()()(B A P B P A P B A P ⋅-+=+三、讲解范例:例 1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解: (1)记“第一次抽奖抽到某一指定号码”为事件A, “第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB .由于两次抽奖结果互不影响,因此A 与B 相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025. (2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(A B )U (A B )表示.由于事件A B 与A B 互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P (A B )十P (A B )=P (A )P (B )+ P (A )P (B )= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( A B )U (A B )表示.由于事件 AB , A B 和A B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P ( AB ) + P (A B )+ P (A B ) = 0.0025 +0. 095 = 0. 097 5.例2.甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率?解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,A 与B ,A 与B ,A 与B 为相互独立事件,(1)2人都射中的概率为:()()()0.80.90.72P A B P A P B ⋅=⋅=⨯=, ∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A B ⋅发生),另一种是甲未击中、乙击中(事件A B ⋅发生)根据题意,事件A B ⋅与A B ⋅互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:()()()()()()P A B P A B P A P B P A P B ⋅+⋅=⋅+⋅0.8(10.9)(10.8)0.90.080.180.26=⨯-+-⨯=+=∴2人中恰有1人射中目标的概率是0.26.(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为()[()()]0.720.260.98P P A B P A B P A B =⋅+⋅+⋅=+=.(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,2个都未击中目标的概率是()()()(10.8)(10.9)0.02P A B P A P B ⋅=⋅=--=, ∴“两人至少有1人击中目标”的概率为1()10.020.98P P A B =-⋅=-=.(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”, 故所求概率为:()()()P P A B P A B P A B =⋅+⋅+⋅()()()()()()P A P B P A P B P A P B =⋅+⋅+⋅0.020.080.180.28=++=.(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,故所求概率为1()1()()10.72P P A B P A P B =-⋅=-⋅=-=例 3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率 解:分别记这段时间内开关A J ,B J ,C J 能够闭合为事件A ,B ,C .由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是()()()()P A B C P A P B P C ⋅⋅=⋅⋅[][][]1()1()1()P A P B P C =--- (10.7)(10.7)(10.7)0.027=---=∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是1()10.0270.973P A B C -⋅⋅=-=.答:在这段时间内线路正常工作的概率是0.973.变式题1:如图添加第四个开关D J 与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率 (1()()0.9730.70.6811P A B C P D ⎡⎤-⋅⋅⋅=⨯=⎣⎦) 变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率方法一:()()()()()P A B C P A B C P A B C P A B C P A B C ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅()()()()()()()()()()()()()()()P A P B P C P A P B P C P A P B P C P A P B P C P A P B P C =⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅0.847=方法二:分析要使这段时间内线路正常工作只要排除CJ 开且A J 与B J 至少有1个开的情况 []21()1()10.3(10.7)0.847P C P A B --⋅=-⨯-=例 4.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率; (2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮? 分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k 门高炮击中的事件为K A (k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为12345()P A A A A A ⋅⋅⋅⋅=12345()()()()()P A P A P A P A P A ⋅⋅⋅⋅5(10.2)=-=)54( ∴敌机未被击中的概率为5)54(.(2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得: 敌机被击中的概率为1-n)54(∴令41()0.95n -≥,∴41()510n ≤ 两边取常用对数,得113lg 2n ≥≈- ∵+∈N n ,∴n = ∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点评:上面例1和例2的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便四、课堂练习:1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )()A 320 ()B 15 ()C 25 ()D 9202.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C 2个球不都是白球的概率 ()D 2个球中恰好有1个是白球的概率3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是( )()A 0.128 ()B 0.096 ()C 0.104 ()D 0.3844.某道路的A 、B 、C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是 ( )()A 35192 ()B 25192 ()C 35576 ()D 651925.(1)将一个硬币连掷5次,5次都出现正面的概率是 ;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是 .6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,(1)每穴播两粒,此穴缺苗的概率为 ;此穴无壮苗的概率为 .(2)每穴播三粒,此穴有苗的概率为 ;此穴有壮苗的概率为 .7.一个工人负责看管4台机床,如果在1小时内这些机床不需要人去照顾的概率第1台是0.79,第2台是0.79,第3台是0.80,第4台是0.81,且各台机床是否需要照顾相互之间没有影响,计算在这个小时内这4台机床都不需要人去照顾的概率.8.制造一种零件,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1件,其中恰有1件废品的概率是多少?9.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?答案:1. C 2. C 3. B 4. A 5.(1)132 (2) 0.56 6.(1) 0.01 , 0.16 (2) 0.999,0.9367. P=220.790.810.404⨯≈8. P=0.040.950.960.050.086⨯+⨯≈9. 提示:86461121212122P =⋅+⋅= 五、小结 :两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响的,而相互独立事件是以它们能够同时发生为前提的个事件发生的概率的积,这一点与互斥事件的概率和也是不同的六、课后作业:课本58页练习1、2、3第60页习题2. 2A组4. B组1七、板书设计(略)八、教学反思:1. 理解两个事件相互独立的概念。

【新教材教案】10.2 事件的相互独立性 教学设计(1)-人教A版高中数学必修第二册

【新教材教案】10.2 事件的相互独立性 教学设计(1)-人教A版高中数学必修第二册

10.2 事件的相互独立性本节《普通高中课程标准数学教科书-必修二(人教A版)第十章《10.2 事件的相互独立性》,本节课主要事在已学互斥事件和对立事件基础上进一步了解事件之间的关系,相互独立性是另一种重要的事件关系,注意对概率思想方法的理解。

发展学生的直观想象、逻辑推理、数学建模的核心素养。

课程目标学科素养A.理解两个事件相互独立的概念.B.能进行一些与事件独立有关的概念的计算.C. 通过对实例的分析,会进行简单的应用.1.数学建模:相互独立事件的判定2.逻辑推理:相互独立事件与互斥事件的关系3.数学运算:相互独立事件概率的计算4.数据抽象:相互独立事件的概念1.教学重点:理解两个事件相互独立的概念2.教学难点:事件独立有关的概念的计算多媒体教学过程教学设计意图核心素养目标一、探究新知前面我们研究过互斥事件,对立事件的概率性质,还研究过和事件的概率计算方法,对于积事件的概率,你能提出什么值得研究的问题吗?我们知道积事件AB就是事件A与事件B同时发生,因此,积由知识回顾,提()A A B B AB AB()()()P A P AB P AB[]()()()(()1()P AB P A P AB P P A P B P ∴=-==-=AB根据概率的加法公式和事件独立性定义,得)AB AB)()P B P⋅++⨯0.10.2AB AB+AB P ABAB AB)()()+0.72P AB AB=:由于事件“至少有一人中靶根据对立事件的性质,得事件“至少有一人中靶=0.020.98甲,乙同时射击,甲击中敌机并不影响乙击中敌机的可能性,与B 独立,进而.独立CABAB ,()1()P C P C1()()1[1()][1()]P A P B P A P B 1(10.6)(10.5)0.8三、达标检测1.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12 B.512C.14D.16答案:B解析:恰有一个一等品即有一个是一等品、一个不是一等品,故所求概率为23×1-34+1-23×34=23×14+13×34=212+312=512,故选B . 2.甲、乙两人各进行1次射击,如果两人击中目标的概率都是0.7,则其中恰有1人击中目标的概率是( ) A.0.49 B.0.42C.0.7D.0.91解析:记甲击中目标为事件A ,乙击中目标为事件B ,且A ,B 相互独立.则恰有1人击中目标为A B 或A B ,所以只有1人击中目标的概率P=P (A B )+P (A B )=0.7×0.3+0.3×0.7=0.42. 答案:B3.一件产品要经过2道独立的加工程序,第一道工序的次品率为a ,第二道工序的次品率为b ,则产品的正品率为( ) A.1-a-b B.1-ab C.(1-a )(1-b ) D.1-(1-a )(1-b )答案:C解析:设A 表示“第一道工序的产品为正品”,B 表示“第二道工序的产品为正品”,且P (AB )=P (A )P (B )=(1-a )(1-b ).4.已知A ,B 相互独立,且P (A )=14,P (B )=23,则P (A B )= . 答案:112解析:根据题意得,P (A B )=P (A )P (B )=P (A )(1-P (B ))=14×1-23=112. 5.某天上午,李明要参加“青年文明号”活动.为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是 . 答案:0.98解析:至少有一个准时响的概率为1-(1-0.90)×(1-0.80)=1-0.10×0.20=0.98.6.已知诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题的概率为0.5,老二为0.45,老三为0.4,且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大? 略解: 三个臭皮匠中至少有一人解出的概率为1()10.50.550.60.835P A B C -⋅⋅=-⨯⨯=0.8()P D >=所以,合三个臭皮匠之力就解出的概率大过诸葛亮.()()AB AB AB AB “两次抽奖恰有一次抽到某一指定号码可以用表示。

学新教材高中数学概率与统计条件概率与事件的独立性全概率公式贝叶斯公式教案新人教B版选择性必修第二册

学新教材高中数学概率与统计条件概率与事件的独立性全概率公式贝叶斯公式教案新人教B版选择性必修第二册

第2课时全概率公式、贝叶斯公式学习目标核心素养1.理解并掌握全概率公式.(重点)2.了解贝叶斯公式.(难点)3.会用全概率公式及贝叶斯公式解题.(易错点)1.通过学习全概率公式及贝叶斯公式,体会逻辑推理的数学素养.2.借助全概率公式及贝叶斯公式解题,提升数学运算的素养.有三个罐子,1号装有2红1黑球,2号装有3红1黑球,3号装有2红2黑球.某人从中随机取一罐,再从中任意取出一球,求取得红球的概率.问题:如何求取得红球的概率?1.全概率公式(1)P(B)=P(A)P(B|A)+P(错误!)P(B|错误!);(2)定理1若样本空间Ω中的事件A1,A2,…,A n满足:1任意两个事件均互斥,即A i A j=∅,i,j=1,2,…,n,i≠j;2A1+A2+…+A n=Ω;3P(A i)>0,i=1,2,…,n.则对Ω中的任意事件B,都有B=BA1+BA2+…+BA n,且P(B)=错误!=错误!.思考:全概率公式体现了哪种数学思想?[提示] 全概率公式体现了转化与化归的数学思想,即采用化整为零的方式,把各块的概率分别求出,再相加求和即可.2.贝叶斯公式(1)一般地,当0<P(A)<1且P(B)>0时,有P(A|B)=错误!=错误!.(2)定理2若样本空间Ω中的事件A1,A2,…,A n满足:1任意两个事件均互斥,即A i A j=∅,i,j=1,2,…,n,i≠j;2A1+A2+…+A n=Ω;31>P(A i)>0,i=1,2,…,n.则对Ω中的任意概率非零的事件B,有P(A j|B)=错误!=错误!.拓展:贝叶斯公式充分体现了P(A|B),P(A),P(B),P(B|A),P(B|错误!),P(AB)之间的转化.即P(A|B)=错误!,P(AB)=P(A|B)P(B)=P(B|A)P(A),P(B)=P(A)P(B|A)+P(错误!)P(B|错误!)之间的内在联系.1.思考辨析(正确的打“√”,错误的打“×”)(1)P(A)=P(B)P(A|B)+P(错误!)P(A|错误!).()(2)P(B)=P(A)P(B|A)+P(A)P(错误!|A).()(3)P(A|B)=错误!=错误!. ()[答案] (1)√(2)×(3)×2.已知事件A,B,且P(A)=错误!,P(B|A)=错误!,P(B|错误!)=错误!,则P(B)等于()A.错误!B.错误!C.错误!D.错误!C[P(B)=P(A)P(B|A)+P(错误!)P(B|错误!)=错误!×错误!+错误!×错误!=错误!.故选C.]3.一袋中装有大小、形状均相同的5个球,其中2个黑球,3个白球,从中先后不放回地任取一球,则第二次取到的是黑球的概率为________.错误![设事件A,B分别表示第一、二次取到的是黑球,由古典概型可知P(A)=错误!,P(B|A)=错误!,P(B|错误!)=错误!.则P(B)=P(AB)+P(错误!B)=P(A)P(B|A)+P(错误!)P(B|错误!)=错误!×错误!+错误!×错误!=错误!.]4.对以往数据分析结果表明,当机器调整得良好时,产品的合格率为98%, 而当机器发生某种故障时,其合格率为55%. 每天早上机器开动时,机器调整良好的概率为95%.则已知某日早上第一件产品是合格时,机器调整得良好的概率约是________.0.97 [设A为事件“产品合格”,B为事件“机器调整良好”.P(A|B)=0.98,P(A|错误!)=0.55,P(B)=0.95,P(错误!)=0.05,所求的概率为P(B|A)=错误!≈0.97.]全概率公式及其应用(1)从甲箱中任取2个产品,求这2个产品都是次品的概率;(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.[解] (1)从甲箱中任取2个产品的事件数为C错误!=错误!=28,这2个产品都是次品的事件数为C错误!=3.∴这2个产品都是次品的概率为错误!.(2)设事件A为“从乙箱中取出的一个产品是正品”,事件B1为“从甲箱中取出2个产品都是正品”,事件B2为“从甲箱中取出1个正品1个次品”,事件B3为“从甲箱中取出2个产品都是次品”,则事件B1、事件B2、事件B3彼此互斥.P(B1)=错误!=错误!,P(B2)=错误!=错误!,P(B3)=错误!=错误!,P(A|B1)=错误!,P(A|B2)=错误!,P(A|B3)=错误!,∴P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)=错误!×错误!+错误!×错误!+错误!×错误!=错误!.通过本例我们发现,当直接求事件A发生的概率不好求时,可以采用化整为零的方式,即把A事件分解,然后借助全概率公式间接求出事件A发生的概率.错误!1.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?[解] 记事件A:最后从2号箱中取出的是红球;事件B:从1号箱中取出的是红球.P(B)=错误!=错误!,P(错误!)=1—错误!=错误!.(1)P(A|B)=错误!=错误!.(2)∵P(A|错误!)=错误!=错误!,∴P(A)=P(AB)+P(A错误!)=P(A|B)P(B)+P(A|错误!)P(错误!)=错误!×错误!+错误!×错误!=错误!.贝叶斯公式及其应用的人呈阳性反应,而健康的人通过化验也会有1%的人呈阳性反应.某地区此种病的患者仅占人口的0.5%.若某人化验结果为阳性,问此人确实患有此病的概率是多大?[解] 设A=“呈阳性反应”,B=“患有此种疾病”,则P(A)=P(B)·P(A|B)+P(错误!)·P (A|错误!)=0.5%×95%+99.5%×1%=1.47%.所以P(B|A)=错误!=错误!=32.3%.利用贝叶斯公式求概率的步骤第一步:利用全概率公式计算P(A),即P(A)=错误!P(B i)P(A|B i);第二步:计算P(AB),可利用P(AB)=P(B)P(A|B)求解;第三步:代入P(B|A)=错误!求解.错误!2.某工厂有四条流水线生产同一种产品,该四条流水线的产量分别占总产量的15%、20%、30%、35%,又这四条流水线的不合格品率依次为0.05、0.04、0.03及0.02,现在从该厂产品中任取一件,问恰好抽到不合格品的概率为多少?该不合格品是由第四条流水线上生产的概率为多少?[解] 设A i=第i条流水线生产的产品,i=1,2,3,4;B=抽到不合格品,∴P(A1)=0.15;P(A2)=0.20;P(A3)=0.30;P(A4)=0.35.∴P(B|A1)=0.05;P(B|A2)=0.04;P(B|A3)=0.03;P(B|A4)=0.02,(1)P(B)=错误!P(A i)P(B|A i)=0.0315.(2)P(A4|B)=错误!≈0.2222.全概率公式与贝叶斯公式的综合应用贝叶斯公式的实质是什么?[提示] 贝叶斯公式实质上是条件概率公式P(B i|A)=错误!,P(B i A)=P(B i)·P(A|B i),全概率公式P(A)=错误!P(B i)P(A|B i)的综合应用.【例3】假定具有症状S={S1,S2,S3,S4}的疾病有d1,d2,d3三种,现从20 000份患有疾病d1,d2,d3的病历卡中统计得到下列数字:疾病人数出现S症状人数d17 7507 500d25254200d37 0003500试问当一个具有S据的诊断手段情况下,诊断该病人患有这三种疾病中哪一种较合适?[解] 以A表示事件“患有出现S中的某些症状”,D i表示事件“患者患有疾病d i”(i=1,2,3),由于该问题观察的个数很多,用事件的频率作为概率的近似是合适的,由统计数字可知P(D1)=错误!=0.387 5,P(D2)=错误!=0.2625,P(D3)=错误!=0.35,P(A|D1)=错误!≈0.967 7,P(A|D2)=错误!=0.8,P(A|D3)=错误!=0.5.从而P(A)=P(A|D1)P(D1)+P(A|D2)P(D2)+P(A|D3)P(D3)=0.387 5×0.967 7+0.2625×0.8+0.35×0.5≈0.76.由贝叶斯公式得P(D1|A)=错误!=错误!≈0.4934,P(D2|A)=错误!=错误!≈0.276 3,P(D3|A)=错误!=错误!≈0.230 3,从而推测病人患有疾病d1较为合理.若随机试验可以看成分两个阶段进行,且第一阶段的各试验结果具体结果怎样未知,那么:1如果要求的是第二阶段某一个结果发生的概率,则用全概率公式;2如果第二个阶段的某一个结果是已知的,要求的是此结果为第一阶段某一个结果所引起的概率,一般用贝叶斯公式,类似于求条件概率,熟记这个特征,在遇到相关的题目时,可以准确地选择方法进行计算,保证解题的正确高效.错误!3.同一种产品由甲、乙、丙三个厂供应.由长期的经验知,三家的正品率分别为0.95、0.90、0.80,三家产品数所占比例为2∶3∶5,将三家产品混合在一起.(1)从中任取一件,求此产品为正品的概率;(2)现取到一件产品为正品,问它是由甲、乙、丙三个厂中哪个厂生产的可能性大?[解] 设事件A表示“取到的产品为正品” ,B1,B2,B3分别表示“产品由甲、乙、丙厂生产”,由已知P(B1)=0.2,P(B2)=0.3,P(B3)=0.5,P(A|B1)=0.95,P(A|B2)=0.9,P(A|B3)=0.8.(1)由全概率公式得:P(A)=错误!P(B i)P(A|B i)=0.2×0.95+0.3×0.9+0.5×0.8=0.86.(2)由贝叶斯公式得P(B1|A)=错误!=错误!≈0.220 9,P(B2|A)=错误!=错误!≈0.3140,P(B3|A)=错误!=错误!≈0.4651.由以上3个数作比较,可知这件产品由丙厂生产的可能性最大.1.全概率公式P(B)=错误!P(A i)P(B|A i)在解题中体现了化整为零的转化化归思想.2.贝叶斯概率公式反映了条件概率P(B|A)=错误!,全概率公式P(A)=错误!P(B i)P(A|B i)及乘法公式P(AB)=P(B)P(A|B)之间的关系.即P(B j|A)=错误!=错误!=错误!.1.有朋自远方来,乘火车、船、汽车、飞机来的概率分别为0.3,0.2,0.1,0.4,迟到的概率分别为0.25,0.3,0.1,0.则他迟到的概率为()A.0.65B.0.075C.0.145D.0C[设A1=他乘火车来,A2=他乘船来,A3=他乘汽车来,A4=他乘飞机来,B=他迟到.易见:A1,A2,A3,A4构成一个完备事件组,由全概率公式得P(B)=错误!P(A i)P(B|A i)=0.3×0.25+0.2×0.3+0.1×0.1+0.4×0=0.145.]2.两台机床加工同样的零件,第一台的废品率为0.04,第二台的废品率为0.07,加工出来的零件混放,并设第一台加工的零件是第二台加工零件的2倍,现任取一零件,则它是合格品的概率为()A.0.21B.0.06C.0.94D.0.95D[令B=取到的零件为合格品,A i=零件为第i台机床的产品,i=1,2.由全概率公式得:P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)=错误!×0.96+错误!×0.93=0.95.故选D.]3.某小组有20名射手,其中一、二、三、四级射手分别有2、6、9、3名.又若选一、二、三、四级射手参加比赛,则在比赛中射中目标的概率分别为0.85、0.64、0.45、0.32,今随机选一人参加比赛,则该小组在比赛中射中目标的概率为________.0.527 5[设B={该小组在比赛中射中目标},A i={选i级射手参加比赛},(i=1,2,3,4).由全概率公式,有P(B)=错误!P(A i)P(B|A i)=错误!×0.85+错误!×0.64+错误!×0.45+错误!×0.32=0.527 5.]4.袋中有10个黑球,5个白球.现掷一枚均匀的骰子,掷出几点就从袋中取出几个球.若已知取出的球全是白球,则掷出3点的概率为________.0.04835[设B={取出的球全是白球},A i={掷出i点}(i=1,2,…,6),则由贝叶斯公式,得P(A3|B)=错误!=错误!=0.048 35.]5.设甲、乙、丙三个地区爆发了某种流行病,三个地区感染此病的比例分别为错误!,错误!,错误!.现从这三个地区任抽取一个人.(1)求此人感染此病的概率;(2)若此人感染此病,求此人来自乙地区的概率.[解] 设A i=第i个地区,i=1,2,3;B=感染此病∴P(A1)=错误!;P(A2)=错误!;P(A3)=错误!.∴P(B|A1)=错误!;P(B|A2)=错误!;P(B|A3)=错误!.(1)P(B)=错误!P(A i)P(B|A i)=错误!≈0.198,(2)P(A2|B)=错误!=错误!≈0.337.。

第三章概率的进一步认识回顾与思考(教案)

第三章概率的进一步认识回顾与思考(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《第三章概率的进一步认识回顾与思考》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断事件独立性或使用概率来帮助做决策的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解事件独立性、条件概率和贝叶斯定理的基本概念。事件独立性是指两个事件的发生与否互不影响;条件概率是在某一事件发生的条件下,另一事件发生的概率;贝叶斯定理则是用来在已知某一结果时,反推事件发生概率的公式。这些概念在数据分析、决策制定等方面具有重要意义。
在学生小组讨论环节,我发现大家对于概率在实际生活中的应用有很丰富的想法,但有些小组在分享成果时表达不够清晰。针对这个问题,我计划在接下来的课程中,加强学生的口头表达和逻辑思维能力训练,帮助他们更好地展示自己的思考过程。
此外,我还注意到,部分学生在课堂上的参与度不高。为了提高他们的积极性,我将在下一节课尝试采用更多互动性强的教学方法,如小组竞赛、角色扮演等,激发学生的学习兴趣,让他们更主动地参与到课堂中来。
2.提高学生的数据分析能力,学会从实际情境中提取信息,运用概率知识解决实际问题,培养解决复杂问题的能力。
3.培养学生的创新意识和应用意识,将概率知识与社会生活实际相结合,激发学生运用概率知识解决实际问题的兴趣。
4.增强学生的团队合作意识,通过小组讨论和合作完成习题,培养学生的沟通能出问题、分析问题,培养勇于探索的精神。
五、教学反思
在这节课中,我发现学生们对概率的基本概念有了较好的掌握,特别是事件独立性、条件概率和贝叶斯定理。在导入新课环节,通过提问同学们在日常生活中遇到的概率问题,成功引起了他们对本节课的兴趣。在新课讲授环节,我注意引导学生理解这些概念在实际生活中的应用,并尝试用生动的案例进行分析,让学生更好地理解这些抽象的概念。

高考数学复习知识点讲解教案第62讲 随机事件的相互独立性与条件概率

高考数学复习知识点讲解教案第62讲 随机事件的相互独立性与条件概率

概率的积,则事件,为相互独立事件.
2.求两个相互独立事件同时发生的概率的步骤
(1)首先确定两个事件是相互独立的;
(2)确定两个事件可以同时发生;
(3)求出每个事件发生的概率,再求积.
变式题(1)
(多选题)[2023·新课标Ⅱ卷] 在信道内传输0,1信号,信号
的传输相互独立.发送0时,收到1的概率为 0 < < 1 ,收到0的概率为1 − ;
由相互独立事件的概率公式得,所求概率为 1 −
2 ,故B正确.
对于C,采用三次传输方案,发送1,1,1,收到的译码为1,
则收到的信号可能为 1,1,0 , 1,0,1 , 0,1,1 , 1,1,1 ,
故所求概率为3ሺ1 −
2

+ 1−
3 ,故C错误.
对于D,若采用三次传输方案,发送0,收到的译码为0,
5
1 2
别为 , ,则该谜题被破解的概率为___.
6
2
3
[解析] 设“甲独立地破解出该谜题”为事件,“乙独立地破解出该谜题”为事件,
“该谜题被破解”为事件,且事件与相互独立,
则 = 1 − = 1 − 1 −
1
2
× 1−
2
3
=
5
.
6
3.[教材改编]
交通部门对某地上、下班时间拥堵状况统计调查,发现该地区上
4.结合古典概型,会利用乘法公式计算概率.
◆ 知识聚焦 ◆
1.事件的相互独立性
(1)定义:对任意两个事件与,如果

=____________成立,则称事件与
事件相互独立.
(2)判断方法:
①根据定义;

第6讲 事件的独立性——教案

第6讲 事件的独立性——教案

第6讲事件的独立性——教案
1. 课程目标:
(1)引导学生了解事件的独立性的概念,理解不同的事件之间的关联性和影响;
(2)培养学生分析复杂关系的能力,能够灵活运用;
2. 教学过程
(1)复习:复习课堂讨论中讨论出的相关概念。

(2)介绍:介绍事件独立性的概念,以及不同事件之间的关联性和影响,让学生了解事件独立性的重要性。

(3)活动:让学生先利用课堂中讨论过的概念来尝试解决一些事件独立性的问题,以培养学生分析复杂关系的能力。

(4)复习:做一个总结,复习课堂上讨论的概念,并对事件独立性进行综合讨论,促使学生更好地掌握。

3. 教学方式
(1)复习:由学生复述总结,锻炼学生思维能力,激发学生发表见解。

(2)介绍:教师利用PPT和课后材料,对相关内容进行讲解,以便学生有效地听取知识和概念,并深入了解。

(3)活动:教师准备事件独立性的案例以及一些桥梁游戏或拼图等活动,让学生进行实践,进而深入理解事件独立性的概念。

(4)复习:教师分享一些综合实践案例,让学生从另一种角度思考和学习事件独立性的重要性,学会如何运用和分析复杂关系。

4. 教学反思
本次课程的重点是学习了解事件的独立性。

课堂上的讨论激发了同学们发挥的热情,有效地开发学生发散思维能力,扩大学生对事件独立性的理解,提高了学生分析、理解复杂现象的能力。

数学组集体备课活动记录表试卷教案

数学组集体备课活动记录表试卷教案

数学组集体备课活动记录表试卷教案一、教学内容本节课选自《数学》教材第四章“概率与统计”的第三节“事件的独立性”。

具体内容包括:事件的独立性定义,如何判断两个事件是否独立,以及如何运用独立性进行概率计算。

二、教学目标1. 理解并掌握事件的独立性定义,能够判断两个事件是否独立。

2. 学会运用独立性进行概率计算,解决实际问题。

3. 培养学生的逻辑思维能力和数据分析能力。

三、教学难点与重点教学难点:事件的独立性定义及判断,以及如何运用独立性进行概率计算。

教学重点:掌握事件的独立性,学会运用独立性进行概率计算。

四、教具与学具准备教具:黑板、粉笔、PPT学具:教材、练习本、计算器五、教学过程1. 实践情景引入(5分钟)通过讲述一个与生活相关的例子,让学生了解概率在实际生活中的应用,激发学生兴趣。

2. 知识讲解(15分钟)(1)回顾上节课内容,提问检查学生对组合与排列的理解。

(2)讲解事件的独立性定义,举例说明。

(3)讲解如何判断两个事件是否独立,以及如何运用独立性进行概率计算。

3. 例题讲解(15分钟)出示例题,引导学生运用独立性进行解题,讲解解题步骤,强调注意事项。

4. 随堂练习(10分钟)学生独立完成随堂练习,教师巡回指导,解答学生疑问。

5. 课堂小结(5分钟)六、板书设计1. 事件的独立性定义2. 判断两个事件是否独立的方法3. 运用独立性进行概率计算的步骤七、作业设计1. 作业题目:A. 从一副52张的扑克牌中随机抽取一张,得到红桃;B. 从同一副扑克牌中再抽取一张,得到方块。

A. 事件A:抛硬币正面朝上;B. 事件B:掷骰子点数为4;P(A且B)。

2. 答案:(1)事件A和事件B不独立。

(2)P(A且B) = 1/12。

八、课后反思及拓展延伸1. 课后反思:本节课学生对事件的独立性理解较好,但在运用独立性进行概率计算时,部分学生仍存在困难,需要在课后加强练习。

2. 拓展延伸:引导学生思考如何运用事件的独立性解决更复杂的问题,例如条件概率等。

人教版高中数学选修2-3:2.2.2 事件的相互独立性教案

人教版高中数学选修2-3:2.2.2 事件的相互独立性教案

(一) 复习引入问题1:三个臭皮匠能顶一个诸葛亮吗?诸葛亮一人组成的团队PK臭皮匠三人组成的团队,他们解决同一个问题的概率分别为:诸葛亮解决问题的概率为0.85;臭皮匠老大解决问题的概率为0.5,老二为0.4,老三为0.3,要求臭皮匠团队成员必须独立解决,三人中至少有一人解决问题就算团队胜出,问臭皮匠团队与诸葛亮团队谁的胜算比较大?臭皮匠团队的亲友团做了如下的解释,设事件A:臭皮匠老大能解决问题;事件B:臭皮匠老二能解决问题;事件C:臭皮匠老三能解决问题;则臭皮匠团队能胜出的概率为P=P(A)+P(B)+P(C)=0.5+0.45+0.4=1.35,所以臭皮匠团队必胜。

你认为这种计算方法合理吗?教师提问,让学生利用已有知识对臭皮匠亲友团的回答做出是否正确的判断。

将我们的俗语改编成题,激发学生学习兴趣,同时引出本节主要内容:事件的独立性。

课题2.2.2 事件的相互独立性课时 1 授课时间主备人:教学目标知识与技能了解相互独立事件的概念,初步掌握用定义判断某些事件是否相互独立,能区分互斥事件与相互独立事件。

了解相互独立事件同时发生的概率的乘法公式,会运用此公式计算一些简单的概率问题。

过程与方法:经历概念的形成及公式的探究、应用过程,培养学生观察、分析、类比、归纳的能力,培养学生自主学习的能力与探究问题的能力。

情感态度与价值观:通过设置恰当而有趣的课前引例,激发学生学习本小节知识的兴趣,通过小组合作学习让学生体会合作学习的乐趣教学准备ppt重点难点教学重点:了解相互独立事件的概念,如何求相互独立事件都发生的概率。

教学难点:公式的推导与应用。

教师活动学生活动设计意图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.2.2事件的独立性
学习目标
1.理解两个事件相互独立的概念。

学习过程
【任务一】问题分析
问题1:准备知识回顾:
(1)互斥事件:不可能同时发生的两个事件,=+)(B A P
一般地:如果事件12,,,n A A A L 中的任何两个都是互斥的,那么就说事件
12,,,n A A A L 彼此互斥
(2)对立事件:必然有一个发生的互斥事件.()___()_________P A A P A +=⇒=
(3)互斥事件的概率的求法:如果事件12,,,n A A A L 彼此互斥,那么
12()n P A A A +++L =
问题2:袋子中装有大小质地均相同的5个小球,其中3个红球,2个白球,每次取一个,无放回地取两次,求在已知第一次取到红球的条件下,第二次取到红球的概率。

问题3:上述问题中,将“无放回”改为“有放回”,问题中事件的概率会改变吗?请尝试猜想并验证你的猜想。

【任务二】概念理解
1.相互独立事件:事件A 是否发生对事件B 发生的概率没有影响,称两个事件B A ,相互独立,并把这两个事件叫做相互独立事件。

2.若两个事件B A ,相互独立,则有)()()(B P A P B A P ⨯=I
【任务三】典型例题分析
例1:甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:
(1)2人都射中目标的概率;
(2)2人中恰有1人射中目标的概率;
(3)2人至少有1人射中目标的概率;
(4)2人至多有1人射中目标的概率?
例2:某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:
(1)都抽到某一指定号码;
(2)恰有一次抽到某一指定号码;
(3)至少有一次抽到某一指定号码.
【任务四】课后作业
1.已知某种高炮在它控制的区域内击中敌机的概率为0.2,假定有5门这种高炮控制某个区域,则敌机进入这个区域后未被击中的概率是
2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是
3.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34
,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为
4.来成都旅游的外地游客中,若甲,乙,丙三人选择去武侯祠游览的概率均为35
,且他们的选择互不影响,则这三人中至多有两人选择去武侯祠游览的概率为
5.从10位同学(其中6女,4男)中随机选出3位参加测验,每位女同学能通过
测验的概率均为45,每位男同学通过测验的概率均为35
,求: (1)选出的3位同学中,至少有一位男同学的概率;
(2)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.。

相关文档
最新文档