2006年浙江大学427数学分析考研真题【圣才出品】
浙江大学经济学综合2006真题及答案

浙江大学2006年硕士研究生入学考试试题考试科目:经济学综合编号:402本试卷由三部分组成:其一是西方经济学部分,共有l00分,所有专业必考;其二是国际经济学部分,共有50分,国际贸易学和世界经济专业必考;其三是政治经济学部分,共有50分,除国际贸易学和世界经济专业外其他专业必考。
西方经济学部分一、名词解释(每题5分,共30分)1.生命周期假说2.货币供给乘数3.奥肯法则4.后此谬误5. 公共品6.停业原则二、简答题(每题10分,共40分)1.简述货币的职能和货币需求的原因。
2.简述通货膨胀的三种类型。
3.对土地征税会产生什么影响?4.市场效率的限制?三、论述题(每题15分,共30分)1.论述并比较古典学派和凯恩斯主义的宏观经济理论和政策。
2.试述不完全竞争的经济成本。
国际经济学部分一、名词解释(每题5分,共15分)1.有效保护税率2.许可证贸易3.价格转移二、简答题(共20分;请在A、B两组中选答一组,电子商务考生可选考B组)A组1.简述要素禀赋理论与需求偏好相似理论的主要差别。
2.就国际收支弹性理论进行简要评述。
B组:1.结合图形与公式,简要比较传统经济与网络经济中的边际效用规律及其产生原因。
2.简要举例说明电子商务解决方案的种类及影响选择的主要因素。
三、论述题(15分)试述波特的国际竞争优势理论及其对我国外贸政策的启示,并分析比较优势理论与竞争优势理论的相互联系。
政治经济学部分一、名词解释(每题5分,共15分)1.纸币流通规律2.资本周转3.产业结构高度化二、简答题(每题l0分,共20分)1.你如何理解:“任何生产都是社会的生产”这一论断?2.简述劳动力商品的价值与使用价值。
三、论述题(15分)在论述政府宏观调控目标与内容的基础上,再结合我国当前的宏观经济状况,谈谈我国当前宏观调控的重点领域。
浙江大学2006年硕士研究生入学考试试题考试科目:经济学综合编号:402本试卷由三部分组成:其一是西方经济学部分,共有l00分,所有专业必考;其二是国际经济学部分,共有50分,国际贸易学和世界经济专业必考;其三是政治经济学部分,共有50分,除国际贸易学和世界经济专业外其他专业必考。
2006年考研数学试题详解及评分参考

.
(6) 设随机变量 X 与 Y 相互独立,且均服从区间 [0, 3] 上的均匀分布,则
P{ max { X , Y } £ 1 } =
【答】 应填 1 / 9 .
【解】 P{ max { X , Y } £ 1} = P{ X £ 1, Y £ 1} = P{ X £ 1} × P{Y £ 1} =
(13) 设 A , B 为随机事件,且 P ( B ) > 0 , P ( A | B ) = 1 ,则必有 (C) P ( A U B ) = P ( A) . 【答】 应选 (C). 【解】 因 P ( A | B ) = (A) P ( A U B ) > P ( A) . (D) P ( A U B ) = P ( B ) . (B) P ( A U B ) > P ( B ) .
.
【答】 应填 2 . 【解】 因 x ® 0 时, ln(1 + x) : x, 1 - cos x : (2) 微分方程 y ¢ =
1 2 x×x x ,故原式= lim 1 2 = 2 . x 0 ® 2 2 x
y (1 - x) 的通解是 . x 【答】 应填 y = C x e - x ( C 为任意常数). dy 1 - x 【解】 分离变量,得 = dx . 两边积分,有 ln | y |= ln | x | - x + C1 ,即 y x | y |= eC1 | x | e- x . 记 C = ± eC1 ,则有 y = C x e - x . 由于 y = 0 也是原方程的解,故上式中 C 可以为零,于是得通解 y = C x e - x ( C 为任意常数). x 2 + y 2 ( 0 £ z £ 1 )的下侧,则 òò xdydz + 2 ydzdx + 3( z - 1)dxdy = .
浙江大学2006年数学分析

浙江大学2006年数学分析考试试题一. (20分) (1)证明:数列1111log (1,2,3)23n x n n n=+++⋅⋅⋅-=⋅⋅⋅是收敛的,其中log 表示以自然数e 为底的对数. (2)计算:1111lim 1232n n n n n →∞⎛⎫++⋅⋅⋅+⎪+++⎝⎭. 二. (15分)设()f x 是闭区间[],a b 上的连续函数,对任一点(),x a b ∈,存在趋于零的数列{}k r ,使得()()()22lim0k k k kfx r f x r f x r →∞++--=.证明函数()fx 为一线性函数.三. (15分)设()h x 是(),-∞+∞上的无处可导的连续函数,试以此构造连续函数()f x ,在(),-∞+∞上仅在两点可导,并且说明理由.四. (15分)设()()22222221sin ,0,0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩(1)求(),f x y x ∂∂以及(),f x y y∂∂.(2)问(),f x y x∂∂,(),f x y y∂∂在原点是否连续?(),f x y 在原点是否连续?试说明理由.五. (20分)设()f x 在[)0,+∞的任何闭子区间[],αβ上黎曼可积,且()0f x dx +∞⎰收敛,证明:对于常数1a >,成立()()0xyaf x dx f x dx +∞+∞-=⎰⎰.六. (15分)计算曲面积分()32222sxdydz ydzdx zdxdyI axby cz++=++⎰⎰其中(){}2222,,S x y z x y z r =|++=,常数0,0,0,0a b c r >>>>七. (15分)设V 为单位球:2221x y z ++≤,又设,,a b c 为不全为零的常数,计算:()cos VI ax by cz dxdydz =++⎰⎰⎰八. (20分)设函数()2112f x x x=--,证明级数()()0n n n f∞=!∑收敛.九. (15分)设()f x 在[)0,+∞上可微,()00f =.若有常数0A >,使得对任意[)0,x ∈+∞,有()()f x A f x '≤.证明:在[)0,+∞,()0f x =.。
2006年考研数学一试题与答案解析

2006年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim1cos x x x x→+=-. (2)微分方程(1)y x y x-'=の通解是 .(3)设∑是锥面z =(01z ≤≤)の下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=の距离z = .(5)设矩阵2112⎛⎫= ⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上の均匀分布,则{}max{,}1P X Y ≤= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分,若0x ∆>,则(A)0dx y <<∆ (B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)(,)xf x y dy ⎰⎰(B)(,)f x y dy ⎰⎰(C)(,)yf x y dx ⎰⎰(C)(,)f x y dx ⎰⎰(9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 (B)1(1)nn n a ∞=-∑收敛(C)11n n n a a∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下の一个极值点,下列选项正确の是(A)若00(,)0x f x y '=,则00(,)0y f x y '=(B)若00(,)0x f x y '=,则00(,)0y f x y '≠(C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s αααL 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确の是 (A)若12,,,,s αααL 线性相关,则12,,,,s A αA αA αL 线性相关 (B)若12,,,,s αααL 线性相关,则12,,,,s A αA αA αL 线性无关(C)若12,,,,s αααL 线性无关,则12,,,,s A αA αA αL 线性相关 (D)若12,,,,s αααL 线性无关,则12,,,,s A αA αA αL 线性无关.(12)设A 为3阶矩阵,将A の第2行加到第1行得B ,再将B の第1列の-1倍加到第2列得C ,记110010001⎛⎫⎪= ⎪ ⎪⎝⎭P ,则(A)1-=C P AP (B)1-=C PAP(C)T =C P AP(D)T=C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P A B P A >U(B)()()P A B P B >U(C)()()P A B P A =U(D)()()P A B P B =U(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ, 且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ< (B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分10分) 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y+=++⎰⎰. (16)(本题满分12分) 设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==.求:(1)证明lim n x x →∞存在,并求之.(2)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. (17)(本题满分12分) 将函数()22xf x x x=+-展开成x の幂级数. (18)(本题满分12分) 设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式22220z zx y∂∂+=∂∂. (1)验证()()0f u f u u'''+=. (2)若()()10,11,f f '==求函数()f u の表达式.(19)(本题满分12分) 设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意の0t >都有()()2,,f tx ty t f x y =.证明: 对L 内の任意分段光滑の有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰Ñ.(20)(本题满分9分) 已知非齐次线性方程组 有3个线性无关の解,(1)证明方程组系数矩阵A の秩()2r =A .(2)求,a b の值及方程组の通解. (21)(本题满分9分)设3阶实对称矩阵A の各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A の两个解.(1)求A の特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A . (22)(本题满分9分)随机变量x の概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y の分布函数.(1)求Y の概率密度()Y f y .(2)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分9分)设总体X の概率密度为(,0)F X = 10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X の简单随机样本,记N 为样本值12,...,n x x x 中小于1の个数,求θの最大似然估计.2006年全国硕士研究生入学考试数学一真题解析一、 填空题(1)0ln(1)lim 1cos x x x x→+-= 2 .221cos 1,)1ln(x x x x -+Θ (0x →当时)(2)微分方程(1)y x y x-'=の通解是(0)xy cxe x -=≠,这是变量可分离方程.(3)设∑是锥面1)Z ≤≤の下侧,则23(1)2xdydz ydzdx z dxdy π∑++-=⎰⎰补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧∴16dxdydz ∑∑Ω+=⎰⎰⎰⎰⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)而123(1)0dydz ydzdx z dxdy ∑⨯++-=⎰⎰(∵在1∑上:1,0zdz ==)(4),1,0,450x y z d ++==点(2)到平面3的距离(5)设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2.(6)91 二、 选择题(7)设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分.若0>∆x ,则[A](11)设?1,?2,…,?s 都是n 维向量,A 是m ?n 矩阵,则( )成立.(A) 若?1,?2,…,?s 线性相关,则A ?1,A ?2,…,A ?s 线性相关. (B) 若?1,?2,…,?s 线性相关,则A ?1,A ?2,…,A ?s 线性无关. (C) 若?1,?2,…,?s 线性无关,则A ?1,A ?2,…,A ?s 线性相关. (D) 若?1,?2,…,?s 线性无关,则A ?1,A ?2,…,A ?s 线性无关. 解: (A)本题考の是线性相关性の判断问题,可以用定义解.若?1,?2,…,?s 线性相关,则存在不全为0の数c 1,c 2,…,c s 使得c 1?1+c 2?2+…+c s ?s =0,用A 左乘等式两边,得c 1A ?1+c 2A ?2+…+c s A ?s =0,于是A ?1,A ?2,…,A ?s 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1.??1,?2,…,?s ?线性无关? r(?1,?2,…,?s ?)=s. 2. r(AB )? r(B ).矩阵(A ?1,A ?2,…,A ?s )=A (??1,??2,…,?s ?),因此r(A ?1,A ?2,…,A ?s )? r(?1,??2,…,?s ?).由此马上可判断答案应该为(A).(12)设A 是3阶矩阵,将A の第2列加到第1列上得B ,将B の第1列の-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则0 0 1(A) C =P -1AP . (B) C =PAP -1. (C) C =P TAP . (D) C =PAP T.解: (B)用初等矩阵在乘法中の作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1.0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B) P(A ⋃B)=P(A)+P(B)-P(AB)=P(A) 应选C (14)依题:).1,0(~),10(~2211N Y N x σμσμ--,因},1{}1{21<-><-μμY P X P即 .11222111⎭⎬⎫⎩⎨⎧<->⎭⎬⎫⎩⎨⎧<-σσμσσμY P X p 所以.,112121σσσσ<>应选A 三、 解答题(18)设函数()(0,)f u +∞在内具有二阶导数,且Zf=满足等式(I )验证()()0f u f u u'''+= (II )若(1)0,(1)1f f '== 求函数()f u 的表达式证:(I )zzf f xy∂∂''==∂∂(II )令(),;dp p dp du f u p c du u p u'==-=-+⎰⎰则(19)设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意0t >都有2(,)(,)f tx ty tf x y -=证明:对D 内任意分段光滑の有向简单闭曲线L ,都有0),(),(=-⎰dy y x xf dx y x yf L.证:把2(,)(,)f tx ty t f x y t -=两边对求导得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=- 令1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=-再令 (,),(,)P yf x y Q xf x y ==-所给曲线积分等于0の充分必要条件为Q Px y∂∂=∂∂ 今(,)(,)x Qf x y xf x y x∂'=--∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立. (20)已知非齐次线性方程组??????????????????????x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,??????????? a x 1+x 2+3x 3+bx 4=1 有3个线性无关の解.① 证明此方程组の系数矩阵A の秩为2. ② 求a,b の值和方程组の通解.解:① 设?1,?2,?3是方程组の3个线性无关の解,则?2-?1,?3-?1是AX =0の两个线性无关の解.于是AX =0の基础解系中解の个数不少于2,即4-r(A )?2,从而r(A )?2.又因为A の行向量是两两线性无关の,所以r(A )?2. 两个不等式说明r(A )=2.② 对方程组の增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |?)= 4 3 5 -1 -1 ? 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a 由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2 ? 0 1 -1 5 -3 . 0 0 0 0 0 得同解方程组 x 1=2-2x 3+4x 4, x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T和AX =0の基础解系(-2,1,1,0)T,(4,-5,0,1) T.得到方程组の通解:(2,-3,0,0)T+c 1(-2,1,1,0)T+c 2(4,-5,0,1)T, c 1,c 2任意.(21) 设3阶实对称矩阵A の各行元素之和都为3,向量?1=(-1,2,-1)T,??2=(0,-1,1)T都是齐次线性方程组AX =0の解.① 求A の特征值和特征向量. ② 求作正交矩阵Q 和对角矩阵?,使得 Q TAQ =?.解:① 条件说明A (1,1,1)T=(3,3,3)T,即 ?0=(1,1,1)T是A の特征向量,特征值为3.又?1,?2都是AX =0の解说明它们也都是A の特征向量,特征值为0.由于?1,?2线性无关, 特征值0の重数大于1.于是A の特征值为3,0,0.属于3の特征向量:c ?0, c ?0.属于0の特征向量:c 1?1+c 2?2, c 1,c 2不都为0. ② 将?0单位化,得?0=(33,33,33)T. 对?1,?2作施密特正交化,の?1=(0,-22,22)T ,??2=(-36,66,66)T. 作Q =(?0,?1,?2),则Q 是正交矩阵,并且3 0 0 Q TAQ =Q -1AQ = 0 0 0 . 0 0 0(22)随机变量X の概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其他,020,4101,21)(x x x f X ,令2X Y =,),(y x F 为二维随机变量)(Y X ,の分布函数. (Ⅰ)求Y の概率密度;(Ⅱ))4,21(-F 解:(Ⅰ)⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=≤=≤=y y y y y X P y Y P y F Y 4,141,)2(10,)1(0,0)()()(2式式⎰⎰=+=≤≤-=-yyy dx dx y X y P 0434121)()1(式; ⎰⎰+=+=≤≤-=-yy dx dx y X y P 0141214121)()2(式. 所以:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y这个解法是从分布函数の最基本の概率定义入手,对y 进行适当の讨论即可,在新东方の辅导班里我也经常讲到,是基本题型. (Ⅱ))4,21(-F )212()22,21()4,21()4,21(2-≤≤-=≤≤--≤=≤-≤=≤-≤=X P X X P X X P Y X P 4121211==⎰--dx .(23)设总体X の概率密度为⎪⎩⎪⎨⎧≤≤-<<=其他,021,110,),(x x x f θθθ,其中θ是未知参数(0<θ<1).n X X X Λ,,21为来自总体の简单随机样本,记N 为样本值n x x x Λ,,21中小于1の个数.求θの最大似然估计.解:对样本n x x x Λ,,21按照<1或者≥1进行分类:pN p p x x x Λ,,21<1,pn pN pN x x x Λ,,21++≥1.似然函数⎩⎨⎧≥<-=++-其他,,01,,,1,,)1()(2121pn pN pN pN p p N n N x x x x x x L ΛΛθθθ,在pN p p x x x Λ,,21<1,pn pN pN x x x Λ,,21++≥1时,)1ln()(ln )(ln θθθ--+=N n N L ,01)(ln =---=θθθθN n N d L d ,所以nN=最大θ.2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为. ____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ρ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1Λ中任取一个数,记为Y, 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)の一个原函数,""N M ⇔表示“M の充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ] (9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ ] (10)设有三元方程1ln =+-xze y z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数の隐函数z=z(x,y). (B) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z). [ ] (11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B, **,B A 分别为A,B の伴随矩阵,则(A) 交换*A の第1列与第2列得*B . (B) 交换*A の第1行与第2行得*B . (C) 交换*A の第1列与第2列得*B -. (D) 交换*A の第1行与第2行得*B -.[ ](13)设二维随机变量(X,Y) の概率分布为 X Y 0 1 0 a 1 b 已知随机事件}0{=X与}1{=+Y X 相互独立,则(A) a=, b= (B) a=, b=(C) a=, b= (D) a=, b= [ ](14)设)2(,,,21≥n X X X n Λ为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nSχ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D,]1[22y x ++表示不超过221y x ++の最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n の收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕの表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2. (I ) 求a の值; (II ) 求正交变换Qy x=,把),,(321x x x f 化成标准形;(III ) 求方程),,(321x x x f =0の解. (21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0の通解..(22)(本题满分9分)设二维随机变量(X,Y)の概率密度为求:(I ) (X,Y)の边缘概率密度)(),(y f x f Y X ; (II )Y X Z-=2の概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n Λ为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i Λ=-=求:(I ) i Y の方差n i DY i ,,2,1,Λ=; (II )1Y 与n Y の协方差).,(1n Y Y Cov。
2006年考研数学二真题

2006年全国硕士研究生入学考试数学(二)一、填空题(1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =(3)广义积分22(1)xdxx +∞=+⎰(4)微分方程(1)y x y x-'=的通解是 (5)设函数()y y x =由方程1yy xe =-确定,则0x dy dx== (6) 设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[ ](A )0dy y <<∆ (B )0y dy <∆<(C )0y dy ∆<<(D )0dy y <∆<(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[ ](A )连续的奇函数(B )连续的偶函数(C )在x =0间断的奇函数(D )在x =0间断的偶函数(9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x eh g +''===则g (1)等于[ ](A )ln31-(B )ln31--(C )ln 21--(D )ln21- ∵ 1()()()g x h x g x e+''=,1(1)12g e+= g (1)= ln 21--(10)函数212x x xy c e c xe -=++满足的一个微分方程是[ ](A )23xy y y xe '''--= (B )23xy y y e '''--=(C )23x y y y xe '''+-=(D )23xy y y e '''+-=将函数212x x xy c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rd πθθθγ⎰⎰等于[ ](A )(,)xf x y dy ⎰(B )(,)dx f x y dy ⎰(C )(,)yf x y dx ⎰(D )(,)f x y dx ⎰(12)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[ ](A )若0000(,)0,(,)0x y f x y f x y ''==则 (B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则(D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(13)设α1,α2,…,αs 都是n 维向量,A 是mn 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关.(14)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则0 0 1 (A) C =P -1AP . (B) C =PAP -1.(C) C =P TAP . (D) C =PAP T.三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()xe Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.(16)求arcsin xxe dx e ⎰.(17)设区域22{(,)||,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.(18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1lim n n x +→∞存在,并求极限;(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. (20)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂. (I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '== 求函数()f u 的表达式.(21)已知曲线L 的方程221(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积.(22)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1,4x1+3x2+5x3-x4=-1,a x1+x2+3x3+bx4=1有3个线性无关的解.①证明此方程组的系数矩阵A的秩为2.②求a,b的值和方程组的通解.(23) 设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T, α2=(0,-1,1)T都是齐次线性方程组AX=0的解.①求A的特征值和特征向量.②求作正交矩阵Q和对角矩阵,使得Q T AQ=.。
2006考研数学(二)真题及参考答案

2006年全国硕士研究生入学考试数学(二)一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰.(4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1yy xe =-确定,则A dy dx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2B A BE =+,则B = . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则 (A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()x f t dt ⎰是(A )连续的奇函数. (B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】(9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln 31-. (B )ln 3 1.--(C )ln 2 1.--(D )ln 2 1.-【 】(10)函数212xxx y C e C e xe -=++满足一个微分方程是(A )23.xy y y xe '''--= (B )23.xy y y e '''--=(C )23.xy y y xe '''+-=(D )23.xy y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )22120(,).x xdx f x y dy -⎰⎰(B )22120(,).x dx f x y dy -⎰⎰(C )22120(,).y ydy f x y dx -⎰⎰(D )22120(,).y dy f x y dx -⎰⎰【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(13)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP =三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()xe Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小.16.arcsin xxe dx e ⎰求. 17.{}22(,)1,0D x y x y x =+≤≥设区域,221.1DxyI dxdy x y +=++⎰⎰计算二重积分 18.{}110,sin (0,1,2,)n n n x x x x n π+<<== 设数列满足1lim n x x +→∞证明: (1) 存在,并求极限;211(2)lim()n x n x nx x +→∞计算. 19.sin 2cos sin cos .<a <b b b b b a a a a a πππ<++>++证明: 当0时, 20 设函数()()0,,f u +∞在内具有二阶导数且()22z fx y=+满足等式22220z zx y∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=;(Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 21 已知曲线L 的方程为221,(0),4x l t y l t⎧=+≥⎨=-⎩(Ⅰ)讨论L 的凹凸性;(Ⅱ)过点(-1,0)引L 的切线,求切点00(,)x y ,并写出切线的方程; (Ⅲ)求此切线与L (对应于0x x ≤的部分)及x 轴所围成的平面图形的面积.22 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有个线性无关的解Ⅰ证明方程组系数矩阵A 的秩()2r A =; Ⅱ求,a b 的值及方程组的通解.23 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得TQ AQ A =.真题解析一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为15y =4sin 11lim lim2cos 55x x xx y x x→∞→∞+==-(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =132200()1lim ()lim 33x x sm x f x x →→==(3)广义积分22(1)xdxx +∞=+⎰1222222201(1)11110(1)2(1)2(1)22xdx d x x x x +∞+∞+∞+==-⋅=+=+++⎰⎰(4)微分方程(1)y x y x-'=的通解是xy cxe -=)0(≠x(5)设函数()y y x =由方程1yy xe =-确定,则0x dy dx==e-当x =0时,y =1,又把方程每一项对x 求导,y yy e xe y ''=--01(1)1x x y yyyye y xe ey e xe ===''+=-=-=-+(6) 设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4, 计算出|A -E |=2,因此|B |=2. 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[A](A )0dy y <<∆(B )0y dy <∆<(C )0y dy ∆<<(D )0dy y <∆<由()0()f x f x '>可知严格单调增加()0()f x f x ''>可知是凹的即知(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[B](A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数 (D )在x =0间断的偶函数(9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C] (A )ln 31- (B )ln 31--(C )ln 21--(D )ln 21- ∵ 1()()()g x h x g x e +''=,1(1)12g e+= g (1)= ln 21--(10)函数212x x x y c e c xe -=++满足的一个微分方程是[D] (A )23x y y y xe '''--= (B )23x y y y e '''--=(C )23xy y y xe '''+-=(D )23xy y y e '''+-=将函数212x x x y c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rd πθθθγ⎰⎰等于[C](A )2212(,)x xdx f x y dy -⎰⎰(B )2212(,)x dx f x y dy -⎰⎰(C )2212(,)y ydy f x y dx -⎰⎰(D )2212(,)y dy f x y dx -⎰⎰(12)设(,)(,)f xyxy ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[D](A )若0000(,)0,(,)0x y f x y f x y ''==则(B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则 (D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y F f x y x y F f x y x y F f x y x y F x y λλϕλϕλϕϕ=+'''=+=⎧⎪'''=+=⎨⎪'==⎩令今000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'代入(1) 得 00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='今 00000000(,)0,(,)(,)0(,)0x y xy f x y f x y x y f x y ϕ''''≠∴≠≠则 故选[D] (13)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(14)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1. (C) C =P TAP . (D) C =PAP T. 解: (B)用初等矩阵在乘法中的作用得出B =PA , 1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()x e Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.解:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得B +1=A ①C +B +12=0 ② 1026B C ++= ③ 式②-③得120233B B +==-则 代入①得13A = 代入②得16C = (16)求arcsin xxe dx e ⎰.解:原式=22arcsin arcsin ()x x xx e t de e t dt e t =⎰⎰令21arcsin arcsin ()1t dttd t t t t =-=-+-⎰⎰2222arcsin arcsin 1(2)12(1)1t tdt t udu t u t t u u t t -=-+-==-+--⎰⎰令2arcsin 1t dut u =-+-⎰arcsin 11ln 21t u C t u -=-+++22arcsin arcsin 111ln 211x x x x x x e e e dx C e e e --∴=-++-+⎰. (17)设区域22{(,)||,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.解:用极坐标系2201D xydxdy x y ⎛⎫= ⎪++⎝⎭⎰⎰11222002ln(1)ln 2122r I d dr r r ππππθ-==+=+⎰⎰. (18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1lim n n x +→∞存在,并求极限;(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证:(1)212sin ,01,2x x x n =∴<≤≥ 因此 1sin ,{}n n n n x x x x +=≤单调减少有下界()0n x ≥根据准则1,lim n n x A →∞=存在在1sin n n x x +=两边取极限得sin 0A A A =∴=因此1lim 0n n x +→∞=(2)原式21sin lim "1"n x n n n x x ∞→∞⎛⎫= ⎪⎝⎭为型 离散型不能直接用洛必达法则先考虑 22011s i n l i m l n 0s i n l i m t t t t t t t e t →⎡⎤⎢⎥⎣⎦→⎛⎫= ⎪⎝⎭用洛必达法则2011(cos sin )limsin 2t t t t t tt te→-=23233310()0()26cos sin limlim22t t t t t t t t t t tt t ee →→⎡⎤⎡⎤-+--+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==3330110()261lim26t t t t ee →⎛⎫-++ ⎪⎝⎭-==.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. 证:令()sin 2cos f x x x x x π=++ 只需证明0a x π<<<时,()f x 严格单调增加()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+()cos sin cos sin 0f x x x x x x x ''=--=-< ()f x '∴严格单调减少又()cos 0f ππππ'=+=故0()0()a x f x f x π'<<<>时则单调增加(严格)()()b a f b f a >>由则得证(20)设函数()(0,)f u +∞在内具有二阶导数,且()22Z fx y=+满足等式22220z zx y∂∂+=∂∂.(I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '== 求函数()f u 的表达式.证:(I )()()22222222;zx zy f x y f x y xyx yx y∂∂''=+=+∂∂++()()()()22222223222222zx y f x yf x yx x y x y ∂'''=+++∂++()()()()22222223222222zy x f x yf x yy x y x y ∂'''=+++∂++()2222222222()0()()0f x y z zf x yx y x yf u f u u'+∂∂''+=++=∂∂+'''∴+=代入方程得成立(II )令(),;,dp p dp du c f u p c p du u p u u'==-=-+=⎰⎰则22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+==∴= 由(21)已知曲线L 的方程221(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积.解:(I )4222,42,12dx dy dy t t t dt dt dx t t-==-==-222312110(0)2dy d d y dx t dx dx dt t t t dt ⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<> ⎪⎝⎭处(0L t ∴>曲线在处)是凸(II )切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+⎪⎝⎭得200000020,(1)(2)001t t t t t t +-=-+=>∴=点为(2,3),切线方程为1y x =+(III )设L 的方程()x g y =则()3()(1)S g y y dy =--⎡⎤⎣⎦⎰ ()224024241t t y y x y -+==±-=±-+解出t 得由于(2,3)在L 上,由()232241()y x x y g y ===--+=得可知()30944(1)S y y y dy ⎡⎤=-----⎣⎦⎰ 3300(102)44y dy ydy =---⎰⎰3333220002(10)44(4)214(4)3y y yd y y =-+--=+⨯⨯-⎰8642213333=+-=- (22)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1,4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2.② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2→ 0 1 -1 5 -3 .0 0 0 0 0得同解方程组x 1=2-2x 3+4x 4,x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T.得到方程组的通解: (2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(23) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T , α2=(0,-1,1)T 都是齐次线性方程组AX =0的解.① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得 Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即 α0=(1,1,1)T 是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0.② 将α0单位化,得η0=(33,33,33)T . 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T . 作Q =(η0,η1,η2),则Q 是正交矩阵,并且 3 0 0Q T AQ =Q -1AQ = 0 0 0 .0 0 0。
陈纪修《数学分析》(第2版)(下册)名校考研真题-Euclid空间上的极限和连续(圣才出品)

第11章Euclid空间上的极限和连续一、判断题1.若f(x,y)在D内对x和y都是连续的,则f(x,y)对(x,y)∈D为二元连续函数.[重庆大学研]【答案】错【解析】举反例:,很明显但是不存在,如果选取路径y=kx趋于0,有不唯一.二、填空题(1)函数的定义域是______,它是______区域;(2)函数的定义域是______;(3)函数的定义域是______;(4)二元函数的定义域是______;(5)函数的定义域是______.[西安交通大学研]【答案】(1)(2)(3)椭圆与抛物线所围的区域;(4)(5)三、解答题1.设f(x)为定义在上的连续函数,α是任意实数,有证明:E是开集,F是闭集.[江苏大学2006研]证明:对任意的,有.因为f(x)在上连续,所以由连续函数的局部保号性知,存在的一个邻域使得当时有,从而,故E是开集.设为F 的任意一个聚点,则存在F中的点列使得.由于f(x)在上连续,所以,又,从而,即,故F是闭集.2.求.[南京大学研、厦门大学研、山东科技大学研]解:方法一由于令,有所以方法二由于,,所以,故有3.设f(x,y)在[a,b]×[c,d]上连续,证明:在[c,d]上连续.[南京理工大学研、华东师范大学研]证明:反证法.假设g(y)在某点处不连续,则存在及点列,使得因为f(x,y)在[a,b]×[c,d]上连续,故在[a,b]×[c,d]上一致连续.于是对,存在δ>0,当时恒有.特别当时,即.固定y,让x在[a,b]上变化,取最大值,可得即时,.因为,所以对δ>0,存在N >0,当n>N时有,从而有,这与一开始得到的不等式矛盾,结论得证.4.设,为有界闭集,试证:开集W、V,使得A证明:A、B为有界闭集.[四川大学研]令显然W、V为开集.5.设试讨论下面三种极限:[南京工学院研]解:由于在y=0和x=0的函数极限不存在,故在(0,0)点的两个累次极限都不存在.6.设f(x,y是区域D:|x|≤1,|y|≤1上的有界k次齐次函数(k≥1),问极限是否存在?若存在,试求其值.[南京大学研]解:令x=rcosθ,y=rsinθ.由于f(x,y)是区域D上的有界k次齐次函数7.设二元函数f(x,y)在正方形区域[0,1]×[0,1]上连续.记J=[0,1].(1)试比较的大小并证明之;(2)给出并证明使等式成立的(你认为最好的)充分条件.[浙江大学研]解:(1),有上式对于任意的x都成立,则由y的任意性可知(2)若,使下面证明上面条件为充分条件显然8.设为n维欧氏空间,A是的非空子集,定义x到A的距离为证明:上的一致连续函数.[南京大学研] 证明:有对使故对时,即上的一致连续函数.9.[暨南大学2013研] 解:设,则。
2006年考研数学三真题及解析

( 8) 设函数 f x 在 x
f h2
0 处连续,且 lim
h0
h2
1 ,则
(A) f 0 0且 f 0 存在
(B) f 0 1且 f 0 存在
-7-
(C) f 0 0且 f 0 存在
(D) f 0 1且 f 0 存在
[ C]
2
fh
【分析 】从 lim
h0
2
h
1 入手计算 f (0) ,利用导数的左右导数定义判定
(Ⅲ) F
1 ,4 .
2
( 23)(本题满分 13 分) 设总体 X 的概率密度为
f x;
, 0 x 1, 1 ,1 x 2, 0, 其他,
其中 是未知参数 0
1 , X 1 , X 2 ..., X n 为来自总体 X 的简单随机样本,记 N 为样本值 x1 , x2 ..., x n 中
小于 1 的个数 . (Ⅰ)求 的矩估计; (Ⅱ)求 的最大似然估计
(D) 若 1 , 2 , , s 线性无关,则 A 1 , A 2 , , A s 线性无关 .
[
]
( 13) 设 A 为 3 阶矩阵,将 A 的第 2 行加到第 1 行得 B ,再将 B 的第 1 列的 1 倍加到第 2 列得 C ,记
110 P 0 1 0 ,则
001
(A) C
P
1
AP
.
(B) C PAP 1 .
(A) 若 f x ( x0 , y0 ) 0 ,则 f y ( x0 , y0 ) 0 .
(B) 若 f x ( x0 , y0 ) 0 ,则 f y ( x0 , y0 ) 0 . (C) 若 f x ( x0 , y0 ) 0 ,则 f y ( x0 , y0 ) 0 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 3
2006年浙江大学427数学分析考研真题
浙江大学2006年攻读硕士学位研究生入学试题
考试科目:数学分析(427) 考生注意:
1.本试卷满分为150 分,全部考试时间总计180 分钟;
2.答案必须写在答题纸上,写在试题纸上或草稿纸上均无效。
一、(20分) ()i 证明:数列
1111ln (1,2,3,)23n x n n n =++++-=收敛; ()ii 计算:1111lim()1232n n n n n →∞
+++++++.
二、(15分) 设()f x 是闭区间
[],a b 上的连续函数,对任一点(),x a b ∈,存在趋于零的数列,使得
2()()2()lim 0k k k k f x r f x r f x r →∞++--=.
证明:函数()f x 为一线性函数.
三、(15分) 设()h x 是
(),-∞+∞上的无处可导的连续函数,试以此构造连续函数()f x ,在
(),-∞+∞上仅在两点可导,并且说明理由.
2 / 3
四、(15分) 设22222221()sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩.
()i 求(,)f x y x ∂∂以及(,)f x y y ∂∂;
()ii 问(,),(,)f f x y x y x y ∂∂∂∂在原点是否连续?(,)f x y 在原点是否可微?试说明理由.
五、(20分) 设()f x 在()0,+∞的任何闭子区间[],αβ上黎曼可积,且0()f x dx +∞
⎰收敛,
证明:对于常数 1a >,成立
000lim ()()xy y a f x dx f x dx ++∞+∞-→=⎰⎰.
六、(15分) 计算曲面积分
32222()S xdydz ydzdx zdxdy I ax by cz ++=++⎰⎰ 其中
{}2222(,,)S x y z x y z r =++=,常数0,0,0,0a b c r >>>>.
七、(15分) 设V 为单位球:
2221x y z ++≤,又设,,a b c 为不全为零的常数,计算: cos()V I ax by cz dxdydz
=++⎰⎰⎰.
八、(20分) 设函数21()12f x x x =--,证明级数
()0!(0)n n n f ∞=∑收敛.
九、(15分) 设()f x 在)0,+∞⎡⎣上可微,(0)0f =.若有常数0A >,使得对任意
)
0,x ∈+∞⎡⎣,有
3 / 3
()()f x A f x '≤.证明在)
0,+∞⎡⎣,()0f x =.。