实验一 线性规划求解、运输问题、整数规划求解

实验一 线性规划求解、运输问题、整数规划求解
实验一 线性规划求解、运输问题、整数规划求解

西华大学上机实验报告

一、实验目的

掌握线性规划求解的基本方法,熟悉灵敏度分析的步骤和内容;掌握运输问题的模型,概念,求解方法;掌握整数规划的算法。在熟悉lingo软件基本功能基础上,能熟练操作,正确完成模型求解过程及分析过程。

二、实验内容或设计思想

1.lingo软件或运筹学实验软件的安装及菜单熟悉了解.

2.lingo软件或运筹学实验软件应用内容之:任选几种不同类型的LP输入计算程序,运行求解;完成产销平衡的运输问题求解;求解任一整数规划。

三、实验环境与工具

计算机、lingo软件

四、实验过程或实验数据

1用lingo求解线性规划

某家具公司制造书桌、餐桌和椅子,所用的资源有三种:木料、木工和漆工。生产数据如下表所示:

用DESKS、TABLES和CHAIRS分别表示三种产品的生产量,建立LP模型。

max=50*desks+34*tables+22*chairs;

8*desks+6*tables+chairs<=43;

4*desks+2*tables+1.5*chairs<=20;

2*desks+2*tables+.5*chairs<=8;

tables<=5;

求解这个模型,并激活灵敏性分析。这时,查看报告窗口(Reports Window),可以看到如下结果。

Global optimal solution found.

Objective value: 298.0000

Infeasibilities: 0.000000

Total solver iterations: 2

Variable Value Reduced Cost DESKS 0.000000 11.00000 TABLES 1.000000 0.000000 CHAIRS 12.00000 0.000000 Row Slack or Surplus Dual Price

1 298.0000 1.000000

2 25.00000 0.000000

3 0.000000 13.50000

4 0.000000 3.500000

5 4.000000 0.000000 DESKS=0 , TABLES=1 , CHAIRS=12 , max=298

2 用运筹学实验软件计算运输问题和整数规划问题

(例子和过程参照教材)

使用LINGO软件计算运输问题和整数规划问题

model:

!6发点8收点运输问题;

sets:

warehouses/wh1..wh6/: capacity;

vendors/v1..v8/: demand;

links(warehouses,vendors): cost, volume;

endsets

!目标函数;

min=@sum(links: cost*volume);

!需求约束;

@for(vendors(J):

@sum(warehouses(I): volume(I,J))=demand(J));

!产量约束;

@for(warehouses(I):

@sum(vendors(J): volume(I,J))<=capacity(I));

!这里是数据;

data:

capacity=60 55 51 43 41 52;

demand=32 37 22 32 41 32 43 28;

cost=6 2 6 7 4 2 9 5

4 9

5 3 8 5 8 2

5 2 1 9 8 4 3 3

6 6

7 3 9 2 7 1

2 3 9 5 7 2 6 5

5 5 2 3 8 1 4 3;

enddata

end

Global optimal solution found.

Objective value: 644.0000

Infeasibilities: 0.000000

Total solver iterations: 12

Variable Value Reduced Cost CAPACITY( WH1) 60.00000 0.000000 CAPACITY( WH2) 55.00000 0.000000 CAPACITY( WH3) 51.00000 0.000000 CAPACITY( WH4) 43.00000 0.000000 CAPACITY( WH5) 41.00000 0.000000 CAPACITY( WH6) 52.00000 0.000000 DEMAND( V1) 32.00000 0.000000 DEMAND( V2) 37.00000 0.000000 DEMAND( V3) 22.00000 0.000000 DEMAND( V4) 32.00000 0.000000 DEMAND( V5) 41.00000 0.000000 DEMAND( V6) 32.00000 0.000000 DEMAND( V7) 43.00000 0.000000 DEMAND( V8) 28.00000 0.000000 COST( WH1, V1) 6.000000 0.000000 COST( WH1, V2) 2.000000 0.000000 COST( WH1, V3) 6.000000 0.000000 COST( WH1, V4) 7.000000 0.000000 COST( WH1, V5) 4.000000 0.000000 COST( WH1, V6) 2.000000 0.000000 COST( WH1, V7) 9.000000 0.000000 COST( WH1, V8) 5.000000 0.000000 COST( WH2, V1) 4.000000 0.000000 COST( WH2, V2) 9.000000 0.000000 COST( WH2, V3) 5.000000 0.000000 COST( WH2, V4) 3.000000 0.000000 COST( WH2, V5) 8.000000 0.000000 COST( WH2, V6) 5.000000 0.000000 COST( WH2, V7) 8.000000 0.000000 COST( WH2, V8) 2.000000 0.000000 COST( WH3, V1) 5.000000 0.000000 COST( WH3, V2) 2.000000 0.000000 COST( WH3, V3) 1.000000 0.000000 COST( WH3, V4) 9.000000 0.000000 COST( WH3, V5) 8.000000 0.000000 COST( WH3, V6) 4.000000 0.000000 COST( WH3, V7) 3.000000 0.000000 COST( WH3, V8) 3.000000 0.000000 COST( WH4, V1) 6.000000 0.000000 COST( WH4, V2) 6.000000 0.000000 COST( WH4, V3) 7.000000 0.000000 COST( WH4, V4) 3.000000 0.000000 COST( WH4, V5) 9.000000 0.000000 COST( WH4, V6) 2.000000 0.000000

COST( WH5, V1) 2.000000 0.000000 COST( WH5, V2) 3.000000 0.000000 COST( WH5, V3) 9.000000 0.000000 COST( WH5, V4) 5.000000 0.000000 COST( WH5, V5) 7.000000 0.000000 COST( WH5, V6) 2.000000 0.000000 COST( WH5, V7) 6.000000 0.000000 COST( WH5, V8) 5.000000 0.000000 COST( WH6, V1) 5.000000 0.000000 COST( WH6, V2) 5.000000 0.000000 COST( WH6, V3) 2.000000 0.000000 COST( WH6, V4) 3.000000 0.000000 COST( WH6, V5) 8.000000 0.000000 COST( WH6, V6) 1.000000 0.000000 COST( WH6, V7) 4.000000 0.000000 COST( WH6, V8) 3.000000 0.000000 VOLUME( WH1, V1) 0.000000 5.000000 VOLUME( WH1, V2) 19.00000 0.000000 VOLUME( WH1, V3) 0.000000 5.000000 VOLUME( WH1, V4) 0.000000 6.000000 VOLUME( WH1, V5) 41.00000 0.000000 VOLUME( WH1, V6) 0.000000 2.000000 VOLUME( WH1, V7) 0.000000 6.000000 VOLUME( WH1, V8) 0.000000 6.000000 VOLUME( WH2, V1) 0.000000 1.000000 VOLUME( WH2, V2) 0.000000 5.000000 VOLUME( WH2, V3) 0.000000 2.000000 VOLUME( WH2, V4) 32.00000 0.000000 VOLUME( WH2, V5) 0.000000 2.000000 VOLUME( WH2, V6) 0.000000 3.000000 VOLUME( WH2, V7) 0.000000 3.000000 VOLUME( WH2, V8) 0.000000 1.000000 VOLUME( WH3, V1) 0.000000 4.000000 VOLUME( WH3, V2) 9.000000 0.000000 VOLUME( WH3, V3) 22.00000 0.000000 VOLUME( WH3, V4) 0.000000 8.000000 VOLUME( WH3, V5) 0.000000 4.000000 VOLUME( WH3, V6) 0.000000 4.000000 VOLUME( WH3, V7) 20.00000 0.000000 VOLUME( WH3, V8) 0.000000 4.000000 VOLUME( WH4, V1) 0.000000 3.000000 VOLUME( WH4, V2) 0.000000 2.000000 VOLUME( WH4, V3) 0.000000 4.000000 VOLUME( WH4, V4) 0.000000 0.000000 VOLUME( WH4, V5) 0.000000 3.000000 VOLUME( WH4, V6) 3.000000 0.000000 VOLUME( WH4, V7) 0.000000 2.000000 VOLUME( WH4, V8) 28.00000 0.000000 VOLUME( WH5, V1) 32.00000 0.000000 VOLUME( WH5, V2) 9.000000 0.000000 VOLUME( WH5, V3) 0.000000 7.000000 VOLUME( WH5, V4) 0.000000 3.000000 VOLUME( WH5, V5) 0.000000 2.000000 VOLUME( WH5, V6) 0.000000 1.000000 VOLUME( WH5, V7) 0.000000 2.000000 VOLUME( WH5, V8) 0.000000 5.000000 VOLUME( WH6, V1) 0.000000 3.000000 VOLUME( WH6, V2) 0.000000 2.000000 VOLUME( WH6, V3) 0.000000 0.000000

VOLUME( WH6, V6) 29.00000 0.000000

VOLUME( WH6, V7) 23.00000 0.000000

VOLUME( WH6, V8) 0.000000 3.000000

Row Slack or Surplus Dual Price

1 644.0000 -1.000000

2 0.000000 -3.000000

3 0.000000 -4.000000

4 0.000000 -3.000000

5 0.000000 -3.000000

6 0.000000 -6.000000

7 0.000000 -2.000000

8 0.000000 -5.000000

9 0.000000 -1.000000

10 0.000000 2.000000

11 23.00000 0.000000

12 0.000000 2.000000

13 12.00000 0.000000

14 0.000000 1.000000

15 0.000000 1.000000

最优方案为产地A1供应销地B219、销地B541,产地A2供应销地B432,产地A3供应销地B29、销地B322、销地B720,产地A4供应销地B63、销地B828,产地A5供应销地B132、销地B29,产地A6供应销地B629、B723。最优运费644元。

model:

!3发点4收点运输问题;

sets:

warehouses/wh1..wh3/: capacity;

vendors/v1..v4/: demand;

links(warehouses,vendors): cost, volume;

endsets

!目标函数;

min=@sum(links: cost*volume);

!需求约束;

@for(vendors(J):

@sum(warehouses(I): volume(I,J))=demand(J));

!产量约束;

@for(warehouses(I):

@sum(vendors(J): volume(I,J))<=capacity(I));

!这里是数据;

data:

capacity=62 55 61 ;

demand=35 27 22 68 ;

cost=6 2 6 6

3 9 5 3

5 2 2 9;

enddata

end Global optimal solution found.

Objective value: 516.0000

Infeasibilities: 0.000000

Total solver iterations: 6

Variable Value Reduced Cost

CAPACITY( WH1) 62.00000 0.000000

CAPACITY( WH2) 55.00000 0.000000

CAPACITY( WH3) 61.00000 0.000000

DEMAND( V1) 35.00000 0.000000

DEMAND( V2) 27.00000 0.000000

DEMAND( V3) 22.00000 0.000000

DEMAND( V4) 68.00000 0.000000

COST( WH1, V1) 6.000000 0.000000

COST( WH1, V2) 2.000000 0.000000

COST( WH1, V3) 6.000000 0.000000

COST( WH1, V4) 6.000000 0.000000

COST( WH2, V1) 3.000000 0.000000

COST( WH2, V2) 9.000000 0.000000

COST( WH2, V3) 5.000000 0.000000

COST( WH2, V4) 3.000000 0.000000

COST( WH3, V1) 5.000000 0.000000

COST( WH3, V2) 2.000000 0.000000

COST( WH3, V3) 2.000000 0.000000

COST( WH3, V4) 9.000000 0.000000

VOLUME( WH1, V1) 0.000000 1.000000

VOLUME( WH1, V2) 27.00000 0.000000

VOLUME( WH1, V3) 0.000000 4.000000

VOLUME( WH1, V4) 13.00000 0.000000

VOLUME( WH2, V1) 0.000000 1.000000

VOLUME( WH2, V2) 0.000000 10.00000

VOLUME( WH2, V3) 0.000000 6.000000

VOLUME( WH2, V4) 55.00000 0.000000

VOLUME( WH3, V1) 35.00000 0.000000

VOLUME( WH3, V2) 0.000000 0.000000

VOLUME( WH3, V3) 22.00000 0.000000

VOLUME( WH3, V4) 0.000000 3.000000

Row Slack or Surplus Dual Price

1 516.0000 -1.000000

2 0.000000 -5.000000

3 0.000000 -2.000000

4 0.000000 -2.000000

5 0.000000 -6.000000

6 22.00000 0.000000

7 0.000000 3.000000

8 4.000000 0.000000

最优方案为产地A1供应销地B227、销地B413,产地A2供应销地B455,产地A3供应销地B135、销地B322。最优运费516元。

示例3 分配问题

model:

!4个工人,4个工作的分配问题;

sets:

workers/w1..w4/;

jobs/j1..j4/;

links(workers,jobs): cost,volume;

endsets

!目标函数;

min=@sum(links: cost*volume);

!每个工人只能有一份工作;

@for(workers(I):

@sum(jobs(J): volume(I,J))=1;

);

!每份工作只能有一个工人;

@for(jobs(J):

@sum(workers(I): volume(I,J))=1;

);

data:

cost= 5 2 6 8

4 7

5 3

5 2 1 6

5 6 7 3 ;

enddata

end

Global optimal solution found.

Objective value: 10.00000

Infeasibilities: 0.000000

Total solver iterations: 6

Variable Value Reduced Cost COST( W1, J1) 5.000000 0.000000 COST( W1, J2) 2.000000 0.000000 COST( W1, J3) 6.000000 0.000000 COST( W1, J4) 8.000000 0.000000 COST( W2, J1) 4.000000 0.000000 COST( W2, J2) 7.000000 0.000000 COST( W2, J3) 5.000000 0.000000 COST( W2, J4) 3.000000 0.000000 COST( W3, J1) 5.000000 0.000000 COST( W3, J2) 2.000000 0.000000 COST( W3, J3) 1.000000 0.000000 COST( W3, J4) 6.000000 0.000000 COST( W4, J1) 5.000000 0.000000 COST( W4, J2) 6.000000 0.000000 COST( W4, J3) 7.000000 0.000000 COST( W4, J4) 3.000000 0.000000 VOLUME( W1, J1) 0.000000 3.000000 VOLUME( W1, J2) 1.000000 0.000000 VOLUME( W1, J3) 0.000000 5.000000 VOLUME( W1, J4) 0.000000 7.000000 VOLUME( W2, J1) 1.000000 0.000000 VOLUME( W2, J2) 0.000000 3.000000 VOLUME( W2, J3) 0.000000 2.000000 VOLUME( W2, J4) 0.000000 0.000000 VOLUME( W3, J1) 0.000000 3.000000 VOLUME( W3, J2) 0.000000 0.000000

VOLUME( W3, J3) 1.000000 0.000000

VOLUME( W3, J4) 0.000000 5.000000

VOLUME( W4, J1) 0.000000 1.000000

VOLUME( W4, J2) 0.000000 2.000000

VOLUME( W4, J3) 0.000000 4.000000

VOLUME( W4, J4) 1.000000 0.000000

Row Slack or Surplus Dual Price

1 10.00000 -1.000000

2 0.000000 -1.000000

3 0.000000 -3.000000

4 0.000000 -1.000000

5 0.000000 -3.000000

6 0.000000 -1.000000

7 0.000000 -1.000000

8 0.000000 0.000000

9 0.000000 0.000000

最优分配方案为甲做工作2、乙做工作1、丙做工作3、戊做工作4,所需总时间为10h。

示例4 解整数规划

在lingo窗口输入以下代码

min=4*x1+x2+3*x3+5*x4+x5+x6+3*x7;

6*x1+3*x2+2*x3+x4+x5>=60;

x2+2*x4+x5+3*x6>=25;

x3+x5+3*x7>=20;

@gin(x1);@gin(x2);@gin(x3);

@gin(x4);@gin(x3);@gin(x6);@gin(x7);

END

运行结果为:

Global optimal solution found.

Objective value: 34.00000

Objective bound: 34.00000

Infeasibilities: 0.000000

Extended solver steps: 0

Total solver iterations: 2

Variable Value Reduced Cost

X1 0.000000 4.000000

X2 14.00000 1.000000

X3 0.000000 2.000000

X4 0.000000 5.000000

X5 20.00000 0.000000

X6 0.000000 1.000000

X7 0.000000 0.000000

Row Slack or Surplus Dual Price

1 34.00000 -1.000000

2 2.000000 0.000000

3 9.000000 0.000000

4 0.000000 -1.000000

最优解为X2=14、X5=20、X1=X3=X4=X6=X7=0,最优值min=34

五、总结

线性规划在运输问题中的应用

线性规划在运输问题中的应用 【摘要】用运筹学的思想探讨运筹学课程的教学方法。运筹学中的指派问题、最短路问题,最小费用流问题可转化为运输问题或转运问题,从而可以统筹安排这些教学内容,为提高教学效果,减少教学时间找出更优的教学方法。 【关键词】运输问题;转运问题;运筹学;线性规划;教学方法 引言: 随着我国国民经济的不断发展,企业之间的交易活动更加频繁,同地区、不同地区、甚至跨国的交易活动也不断发生,运输则成为交易的活动重点了。交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。 1.线性规划简介 线性规划法是解决多变量最优决策的方法,是在各种相互关联的多变量约束条件下,解决或规划一个对象的线性目标函数最优的问题,即给与一定数量的人力、物力和资源,如何应用而能得到最大经济效益。当资源限制或约束条件表现为线性等式或不等式,目标函数表示为线性函数时,可运用线性规划法进行决策。线性规划法就是在线性等式或不等式的约束条件下,求解线性目标函数的最大值或最小值的方法。其中目标函数是决策者要求达到目标的数学表达式,用一个极大或极小值表示。约束条件是指实现目标的能力资源和内部条件的限制因素,用一组等式或不等式来表示。线性规划是决策系统的静态最优化数学规划方法之一。它作为经营管理决策中的数学手段,在现代决策中的应用是非常广泛的,它可以用来解决科学研究、工程设计、生产安排、军事指挥、经济规划;经营管理等各方面提出的大量问题。 最近几年,我国物流产业快速发展,形成了物流热。在物流作业的管理活动中,有着大量的规划问题,物资的合理调运就是其中一个比较重要的问题。求物资调运的最优调运方案,就是要在满足各种资源限制的条件下,找到使运输总费用最小的调运方案。 2.线性规划在运输中的应用 在现实的生产经营、商品销售、经济建设和物资管理过程中,常常会遇到各类物资的分配和调运问题,即将各种生产资料或生活资料消耗品从供给基地调运到需求基地,这里就需要如何根据现有条件科学、合理的安排调运方案,提高运输经济效益。这就是属于线性规划中网络配送的以最小的成本完成货物的运输问题。运输问题就是讨论有关物资调运的问题,即将数量和单位运价都给定的某种物资从供应站运送到消费站,要求在供给和需求平衡的同时,制定出流量与流向,使总运输成本最低。运输问题是特殊的线性规划问题,根据问题的要求,建立数学模型,用表上作业法或线性规划软件求解,即可得出最佳的调运方案,取得了较好的经济效益。在运输问题中,确定的需求限制占据着重要的地位,即必须确定需求以及相应地确定需求的约束条件。 3.运输问题的特征 运输问题关心的是以最低的总配送成本把供应中心(出发地)的任何产品运送到每一个接收中心(目的地)。每一个出发地都有一定供应量配送到目的地,每一个目的地都需要一定的需求量。运输问题在供应量和需求量两方面都做出了如下的假设:需求假设。每一个出发地都有一个固定的供应量,所有的供应量都必须配送到目的地。与之类似,每一个目的地都有

实验一线性规划

实验一线性规划 (一) 实验目的:运用Excel 和LINGO 软件求解线性规划问题 (二) 内容及要求:求解习题2-9、2-10 (三) 实验报告: 2-9已知线性规划问题: 用单纯形法求得最终表如表2-101所示。 表2-101 最优单纯形表 试分析在下列条件单独变化的情况下最优解的变化。 (1) 目标函数系数C1或C2分别在什么范围内变化时,最优解不变; (2) 当约束条件右端项b1,b2中一个保持不变时,另一个在什么范围内变化,上述最优 基保持不变; (3) 约束条件右端项目98?? ??? 变为1119?? ???时上述最优解的变化。 解:用lingo 求解,模型代码如下: max =10*x1+5*x2; 3*x1+4*x2<=9; 5*x1+2*x2<=8; 求解模型,结果如下: Global optimal solution found. Objective value: 17.50000 Infeasibilities: 0.000000 Total solver iterations: 2 Variable Value Reduced Cost X1 1.000000 0.000000 X2 1.500000 0.000000 Row Slack or Surplus Dual Price 1 17.50000 1.000000 2 0.000000 0.3571429 3 0.000000 1.785714 12121212max 105349..528,0z x x x x s t x x x x =++≤+≤≥?????

线性规划运输问题

第四章 运输问题 Chapter 4 Transportation Problem §4.1 运输问题的定义 设有同一种货物从m 个发地1,2,…,m 运往n 个收地1,2,…,n 。第i 个发地的供应量(Supply )为s i (s i ≥0),第j 个收地的需求量(Demand )为d j (d j ≥0)。每单位货物从发地i 运到收地j 的运价为c ij 。求一个使总运费最小的运输方案。我们假定从任一发地到任一收地都有道路通行。如果总供应量等于总需求量,这样的运输问题称为供求平衡的运输问题。我们先只考虑这一类问题。 图4.1.1是运输问题的网络表示形式。 运输问题也可以用线性规划表示。设x ij 为从发地i 运往收地j 的运量,则总运费最小的线性规划问题如下页所示。运输问题线性规划变量个数为nm 个,每个变量与运输网络的一条边对应,所有的变量都是非负的。约束个数为m+n 个,全部为等式约束。前m 个约束是发地的供应量约束,后n 个约束是收地的需求量约束。运输问题约束的特点是约束左边所有的系数都是 0或1,而且每一列中恰有两个系数是1,其他都是0。 运输问题是一种线性规划问题,当然可以用第一章中的单纯形法求解。但由于它有特殊的结构,因而有特殊的算法。在本章中,我们将在单纯形法原理的基础上,根据运输问题的特点,给出特殊的算法。 图4.1

x x x x x x x x x d x x x d x x x d x x x s x x x s x x x s x x x .t .s x c x c x c x c x c x c x c x c x c z min mn 2 m 1 m n 222 21 n 112 11n mn n 2n 122 m 22 12 11 m 21 11 m mn 2m 1m 2n 222 21 1n 11211mn mn 2m 2m 1m 1m n 2n 222222121n 1n 112121111≥ =++=++= ++=++=+++=++=+++++++++++++= 在运输问题线性规划模型中,令 X =(x 11,x 12,…,x 1n ,x 21,x 22,…,x 2n ,……,x m1,x m2,…,x mn )T C =(c 11,c 12,…,c 1n ,c 21,c 22,…,c 2n ,……,c m1,c m2,…,c mn )T A =[a 11,a 12,…,a 1n ,a 21,a 22,…,a 2n ,……,a m1,a m2,…,a mn ]T =??? ?? ? ??????????????????????????????? ?行行n m 111 111 1 1 11111 11 1 11 b =(s 1,s 2,…,s m ,d 1,d 2,…,d n )T 则运输问题的线性规划可以写成: min z=C T X s.t. AX =b X ≥0 其中A 矩阵的列向量 a ij =e i +e m+j e i 和e m+j 是m+n 维单位向量,元素1分别在在第i 个分量和第m+j 个分量的位置上。A 矩阵中的行与运输网络中的节点对应,前m 行对应于发地,后n 行对应于收地;A 矩阵的列与运输网络中的边对应。

运筹学线性规划实验报告

《管理运筹学》实验报告 实验日期: 2016年 04月 21日—— 2016 年 05 月 18 日 班级2014级04班姓名杨艺玲学号56 实验 管理运筹学问题的计算机求解 名称 实验目的: 通过实验学生应该熟练掌握“管理运筹学”软件的使用,并能利用“管理运筹学”对具体问题进行问题处理,且能对软件处理结果进行解释和说明。 实验所用软件及版本: 管理运筹学 实验过程:(含基本步骤及异常情况记录等) 一、实验步骤(以P31页习题1 为例) 1.打开软件“管理运筹学” 2.在主菜单中选择线性规划模型,屏幕中会出现线性规划页面

3.在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“≤”、“≥”或“=”,如图二所示,最后点击解决 4.注意事项: (1)输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。(2)输入前要合并同类项。 当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果,如图所示

5.输出结果如下

5.课后习题: 一、P31习题1 某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240元. 约束条件: 问题: (1)甲、乙两种柜的日产量是多少这时最大利润是多少 答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。 (2)图中的对偶价格的含义是什么 答: 对偶价格的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加元。 (3)对图中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息。 答:当约束条件1的常数项在48~192范围内变化,且其他约束条件不变时,约束条件1的对偶价格不变,仍为;当约束条件2的常数项在40~180范围内变化,而其他约束条件的常数项不变时,约束条件2的对偶价格不然,仍为。 (4)若甲组合柜的利润变为300,最优解不变为什么 . 0,0,6448,120126; 240200 z max ≥≥≤+≤++=y x y x y x y x

实验一:线性规划

实验一:线性规划 班级 姓名 学号 一、实验目的:学会用matlab 、lingo 软件求解线性规划问题。 二、实验要求: 1.熟悉线性规划问题的数学建模; 2.会用matlab 、 lingo 软件求解线性规划问题; 3.掌握线性规划的灵敏度分析。 三、实验内容: 1、求解下列线性规划问题: ????? ? ?≥≤+≤+≤++=0 ,13119241171289..68max 2121212121x x x x x x x x t s x x z (1) 给出lingo 原始代码; lingo 程序代码: model: max =8*x1+6*x2; 9*x1+8*x2<=12; 7*x1+11*x2<=24; 9*x1+11*x2<=13; end (2) 计算结果(包括灵敏度分析,求解结果粘贴);

(3) 回答下列问题: a) 最优解及最优目标函数值是多少; (x1,x2)=(1.333333,0) Z=10.66667 b) 资源的对偶价格各为多少,并说明对偶价格的含义; 第一、二、三种资源的对偶价格分别0.8888889,0,0; 表示当对应约束有微小变动时, 目标函数的变化率。当“9x1+8x2<=12”改为“9x1+8x2<=13”时,目标函数的值为10.66667+0.8888889=11.55556。对于非紧约束,DUAL PRICE 的值为0,,表示对应约束中不等式右端项的微小扰动不影响目标函数。 c) 为了使目标函数值增加最多,让你选择一个约束条件,将它的常数项增加一 个单位,你将选择哪一个约束条件?这时目标函数值将是多少? 第一个约束条件:因为它是紧约束,即原料没有剩余。

lingo解决线性规划问题的程序

Lingo12软件培训教案 Lingo 主要用于求解线性规划,整数规划,非线性规划,V10以上版本可编程。 例1 一个简单的线性规划问题 0 , 600 2 100 350 st. 3 2max >=<=+=<<=++=y x y x x y x y x z ! 源程序 max = 2*x+3*y; [st_1] x+y<350; [st_2] x<100; 2*x+y<600; !决策变量黙认为非负; <相当于<=; 大小写不区分 当规划问题的规模很大时,需要定义数组(或称为矩阵),以及下标集(set) 下面定义下标集和对应数组的三种方法,效果相同::r1 = r2 = r3, a = b = c. sets : r1/1..3/:a; r2 : b; r3 : c; link2(r1,r2): x; link3(r1,r2,r3): y; endsets data : ALPHA = ; a=11 12 13 ; r2 = 1..3; b = 11 12 13; c = 11 12 13; enddata

例2 运输问题 解: 设决策变量ij x = 第i 个发点到第j 个售点的运货量,i =1,2,…m; j =1,2,…n; 记为ij c =第i 个发点到第j 个售点的运输单价,i =1,2,…m; j =1,2,…n 记i s =第i 个发点的产量, i =1,2,…m; 记j d =第j 个售点的需求量, j =1,2,…n. 其中,m = 6; n = 8. 设目标函数为总成本,约束条件为(1)产量约束;(2)需求约束。 于是形成如下规划问题: n j m i x n j d x m i s x x c ij j n i ij i m j ij m i n j ij ij ,...,2,1,,...,2,1,0 ,...,2,1, ,...,2,1, st. z min 11 11==>=<==<==∑∑∑∑==== 把上述程序翻译成LINGO 语言,编制程序如下: ! 源程序

运筹学线性规划实验报告

《管理运筹学》实验报告实验日期: 2016年 04月 21日—— 2016 年 05 月 18 日

3.在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“≤”、“≥”或“=”,如图二所示,最后点击解决

4.注意事项: (1)输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。(2)输入前要合并同类项。 当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果,如图所示

5.输出结果如下

5.课后习题: 一、P31习题1 某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240元. 约束条件: 问题: (1)甲、乙两种柜的日产量是多少?这时最大利润是多少? 答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。 . 0,0,6448,120126;240200 z max ≥≥≤+≤++=y x y x y x y x

(2)图中的对偶价格13.333的含义是什么? 答: 对偶价格13.333的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加13.33元。 (3)对图中的常数项围的上、下限的含义给予具体说明,并阐述如何使用这些信息。 答:当约束条件1的常数项在48~192围变化,且其他约束条件不变时,约束条件1的对偶价格不变,仍为15.56;当约束条件2的常数项在40~180围变化,而其他约束条件的常数项不变时,约束条件2的对偶价格不然,仍为13.333。 (4)若甲组合柜的利润变为300,最优解不变?为什么? 答:目标函数的最优值会变,因为甲组合柜的利润增加,所以总利润和对偶价格增加;甲、乙的工艺耗时不变,所以甲、乙的生产安排不变。 二、学号题 约束条件: 无约束条件 (学号)学号43214321432143214321 0 0,30 9991285376)(53432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-+≥-+-+=-++-+++=??????????????-≥?-?-?-?-?-7606165060~5154050~414 )30(40~313)20(30~21210 20~11 10~1)(学号)(学号)(学号学号学号)(学号不变学号规则

线性规划在运输问题中的应用

线性规划在运输问题中的 应用 Newly compiled on November 23, 2020

线性规划在运输问题中的应用 【摘要】用运筹学的思想探讨运筹学课程的教学方法。运筹学中的指派问题、最短路问题,最小费用流问题可转化为运输问题或转运问题,从而可以统筹安排这些教学内容,为提高教学效果,减少教学时间找出更优的教学方法。 【关键词】运输问题;转运问题;运筹学;线性规划;教学方法 引言: 随着我国国民经济的不断发展,企业之间的交易活动更加频繁,同地区、不同地区、甚至跨国的交易活动也不断发生,运输则成为交易的活动重点了。交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。 1.线性规划简介 线性规划法是解决多变量最优决策的方法,是在各种相互关联的多变量约束条件下,解决或规划一个对象的线性目标函数最优的问题,即给与一定数量的人力、物力和资源,如何应用而能得到最大经济效益。当资源限制或约束条件表现为线性等式或不等式,目标函数表示为线性函数时,可运用线性规划法进行决策。线性规划法就是在线性等式或不等式的约束条件下,求解线性目标函数的最大值或最小值的方法。其中目标函数是决策者要求达到目标的数学表达式,用一个极大或极小值表示。约束条件是指实现目标的能力资源和内部条件的限制因素,用一组等式或不等式来表示。线性规划是决策系统的静态最优化数学规划方法之一。它作为经营管理决策中的数学手段,在现代决策中的应用是非常广泛的,它可以用来解决科学研究、工程设计、生产安排、军事指挥、经济规划;经营管理等各方面提出的大量问题。 最近几年,我国物流产业快速发展,形成了物流热。在物流作业的管理活动中,有着大量的规划问题,物资的合理调运就是其中一个比较重要的问题。求物资调运的最优调运方案,就是要在满足各种资源限制的条件下,找到使运输总费用最小的调运方案。 2.线性规划在运输中的应用 在现实的生产经营、商品销售、经济建设和物资管理过程中,常常会遇到各类物资的分配和调运问题,即将各种生产资料或生活资料消耗品从供给基地调运到需求基地,这里就需要如何根据现有条件科学、合理的安排调运方案,提高运输经济效益。这就是属于线性规划中网络配送的以最小的成本完成货物的运输问题。运输问题就是讨论有关物资调运的问题,即将数量和单位运价都给定的某种物资从供应站运送到消费站,要求在供给和需求平衡的同时,制定出流量与流向,使总运输成本最低。运输问题是特殊的线性规划问题,根据问题的要求,建立数学模型,用表上作业法或线性规划软件求解,即可得出最佳的调运方案,取得了较好的经济效益。在运输问题中,确定的需求限制占据着重要的地位,即必须确定需求以及相应地确定需求的约束条件。 3.运输问题的特征 运输问题关心的是以最低的总配送成本把供应中心(出发地)的任何产品运送到每一个接收中心(目的地)。每一个出发地都有一定供应量配送到目的地,每一个目的地都需要一定的需求量。运输问题在供应量和需求量两方面都做出了如下的假设:需求假设。每一个出发地都有一个固定的供应量,所有的供应量都必须配送到目的地。与之类似,每一个目的地都有一个固定的需求量,整个需求量都必须由出发地满足成本假设。从任何一个出发地到任何一个目的地的货物配送成本和所配送的数量成线性比例关系。因此,这个成本就等于配送的单位成本乘以所配送的数量。运输问题所需要的数据仅仅是供应量、需求量和单位成本,这些就是模型参数。如果一个问题可以完全描述成

数学建模,线性规划,运输为问题

有限制的运输问题:6个发点6个收点,其供应量、接收量和运费如下表1(”-”表示某个 设:发点i向收点j的货物供应量为xij. 目标函数: MinZ=20x11+15x12+16x13+5x14+4x15+7x16+17x21+15x22+33x23+12x24+8x25+6x26+9x31 +12x32+18x33+16x34+30x35+13x36+12x41+8x42+11x43+27x44+19x45+14x46+7x52+10x53+ 21x54+10x55+32x56+6x64+11x65+13x66 供应限制:x11+x12+x13+x14+x15+x16=20 x21+x22+x23+x24+x25x+26=30 x31+x32+x33+x34+x35+x36=50 x41+x42+x43+x44+x45+x46=40 x52+x53+x54+x55+x56=30 x64+x65+x66=30 需求限制:x11+x21+x31+x41=30 x12+x22+x32+x42+x52=50 x13+x23+x33+x43+x53=40 x14+x24+x34+x44+x54+x64=30 x15+x25+x35+x45+x55+x65=30 x16+x26+x36+x46+x56+x66=20 LINGO代码: min=20*x11+15*x12+16*x13+5*x14+4*x15+7*x16+17*x21+15*x22+33*x23+12*x24+8*x25+ 6*x26+9*x31+12*x32+18*x33+16*x34+30*x35+13*x36+12*x41+8*x42+11*x43+27*x44+19* x45+14*x46+7*x52+10*x53+21*x54+10*x55+32*x56+6*x64+11*x65+13*x66; x11+x12+x13+x14+x15+x16=20; x21+x22+x23+x24+x25+x26=30; x31+x32+x33+x34+x35+x36=50; x41+x42+x43+x44+x45+x46=40; x52+x53+x54+x55+x56=30; x64+x65+x66=30; x11+x21+x31+x41=30;

学生用-实验指导书-excel线性规划实验

实验指导书《管理决策模型与方法》

实验1 EXCEL 线性规划实验 一、实验目的 1、掌握应用Excel软件求解线性规划问题; 2、掌握应用Excel软件对线性规划问题进行灵敏度分析; 3、掌握应用Excel软件求解整数规划问题; 4、掌握应用Excel软件求解0-1整数规划问题。 二、实验设备、仪器及所需材料 配置在Pentium Ⅲ,内存128M以上的电脑;装有Microsoft Windows操作系统及Microsoft Office 2003工作软件。 三、实验原理 “规划求解”是Microsoft Excel 中的一个加载宏,借助它可以求解许多运筹学中的数学规划问题。 安装Office 2003 的时候,系统默认的安装方式不会安装该宏程序,需要用户自己选择安装。安装方法为:从Excel 菜单中选择“工具”→“加载宏”,打开如下对话框: 选择其中的“规划求解”后单击“确定”按钮,会出现提示:“这项功能目前尚未安装,是否现在安装?”,选择“是”,系统要你插入Office 的安装光盘,准备好后单击确定,很快就会安装完毕。于是,你会发现在“工具”菜单下多出一个名为“规划求解”的子菜单,说明“规划求解”功能已经成功安装。 在EXCEl2007版本中,通过点击“office按钮”,“EXCEL选项”→“加载项”→转到“EXCEL

加载项”,然后加载【规划求解加载项】便可以加载规划求解的宏。 在EXCEl2010版本中,通过点击“文件”选项卡打开“Excel选项”对话框,单击左侧 “加载项”标签,在右侧单击“转到”按钮,打开“加载宏”对话框,勾选“规划求解加载项”复选框,单击“确定”按钮,即可在工具栏的“数据”选项卡中出现 “分析”选项组,上面就有了“规划求解”按钮。 利用“规划求解”功能,就可以进行线性规划问题的求解。 例如:用EXCEL 求解数学规划问题 12121212maxZ 2328416..4120, 0 x x x x x s t x x x =++≤??≤?? ≤??≥≥? 步骤: 1. 将模型中的目标函数和约束条件的系数输入到单元格中;为了使我们在操作过程中看得 更清楚,可以附带输入相应的标识符,并给表格加上边框。如下图所示:

1-3.线性规划综合性实验参考选题

线性规划综合性实验参考选题 1.某工厂生产A、B两种产品,均需经过两道工序,每生产一吨产品A需要经第一道工序加工2小时,第二道工序加工3小时;每生产一吨产品B需要经第一道工序加工3小时,第二道工序加工4小时。可供利用的第一道工序为12小时,第二道工序为24小时。生产产品B的同时产出副产品C,每生产一吨产品B,可同时得到2吨产品C而毋需外加任何费用;副产品C一部分可以盈利,剩下的只能报废。出售产品A每吨能盈利400元、产品B每吨能盈利1000元,每销售一吨副产品C能盈利300元,而剩余要报废的则每吨损失200元。经市场预测,在计划期内产品C最大销量为5吨。 根据以上资料该工厂应如何制定生产方案,使工厂总的利润最大。 2.某厂接受了一批加工定货,客户要求加工100套钢架,每套由长2.9米、2.1米和1.5米的圆钢各一根组成。现在仅有一批长7.4米的棒料毛坯,问应如何下料,使所用的棒料根数最少? 3.某公司在5年内考虑下列投资,已知:项目A可从第一年至第四年的年初投资,并于次年末收回本利共115%;项目B在第三年的年初投资,到第五年的年末收回本利135%,但规定投资额不能超过4万元;项目C在第二年的年初投资,到第五年的年末收回本利145%,但规定投资额不能超过3万元;项目D每年年初购买债券,年底归还,利息是0.06。公司现有资金10万元,问如何投资,才能使第五年年末拥有的资金最多? 4.某企业在今后三年内有四种投资机会。第一种是在三年内每年年初投资,年底可回收本利和120%;第二种是在第一年年初投资,第二年年底可回收本利和150%,但该项投资不得超过2万元;第三种是在第二年年初投资,第三年年底回收本利和160%,但该项投资不得超过1.5万元;第四种是在第三年年初投资,该年年底可回收本利和140%,该项投资不得超过1万元。现在该企业准备拿出3万元资金,问如何制订投资计划,使到第三年年末本利和最大? 5. D&D Corporation是一家专门从事艺术品买卖业务的公司。最近,D&D以低价收购了AT&T,Bell,Cisco,Dell,Epson公司的一些艺术品。这些艺术品可分为五类,不妨称其为A类,B类,C类,D类和E类。在D&D的广告宣传下,很多顾客来D&D购买这些艺术品,每个顾客都给D&D留下了要求购买的艺术品的数量,并提供了愿意出的价格。有关数据资料如下:设A类,B类,C类,D类和E类艺术品数量分别为3 件、3件、3件、1件和1件;设有5个顾客分别为Alan、Betty、Carl、David和Elton,他们需要艺术品的最多数量分别为5件、5件、2件、1件和1件。顾客Alan对五类艺术品愿意出的价格分别为10,10,10,30,50;顾客Betty对五类艺术品愿意出的价格分别为20,5,18,40,20;顾客Carl对五类艺术品愿意出的价格分别为15,20,20,20,20;顾客David对五类艺术品愿意出的价格分别为40,40,40,60,60;顾客Elton 对五类艺术品愿意出的价格分别为25,25,25,55,55. 现在任命你为D&D的销售部经理,要求你制定一个艺术品销售方案(即向上述五位顾客如何销售艺术品),将所有艺术品全部售出,并使D&D的收入最大。 6.某公司有钢材、铝材、铜材1200吨,800吨和650吨,拟调往物资紧张的地区甲、乙、丙。已知甲、乙、丙对上述物资的总需求为:900吨,800吨和1000吨,各种物资在各地销售每吨的获利如下表所示。

线性规划在运输问题中的应用

2013届学士学位毕业论文线性规划在运输问题中的应用 学号:09404323 姓名:李勇 班级:信息0901 指导教师:董建新 专业:信息与计算科学 系别:数学系 完成时间:2013年6月

学生诚信承诺书 本人郑重声明:所呈交的论文《线性规划在运输问题中的应用》是我个人在导师董建新指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得长治学院或其他教育机构的学位或证书所使用过的材料。所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解长治学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名:日期: 指导教师声明书 本人声明:该学位论文是本人指导学生完成的研究成果,已经审阅过论文的全部内容,并能够保证题目、关键词、摘要部分中英文内容的一致性和准确性。 指导教师签名:时间

摘要 随着我国市场经济的不断完善,同地区、不同地区、甚至跨国间的企业交易更加的频繁。因此,在运输中如何降低运输费用、减少运输路线等问题,已经成为交易活动的重点,而随着社会分工的细化,物流和运输业不断的发展,运输问题也就变的越来越复杂,运输量有时候非常巨大,所以科学的组织运输显得十分重要。线性规划主要应用于解决最优化问题,而运输问题可以看作是一类特殊的线性规划问题。本文结合案例,分析了运输问题的基本特征及解决策略,并通过实例对运输问题进行了优化分析建立了线性规划的数学模型,并借助计算机进行求解,在本篇文章中主要应用的是excel求解,能快速准确的得到最优化方案,提高了实际运输工作中的经济效益。 关键词:线性规划;运输问题;excel

用线性规划方法求解运输问题

用线性规划方法求解运输问题 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素. 运输问题的提出及其数学模型:现在人们生产活动中,不可避免的要进行物资调运工作,如某时期内将生产基地的蔬菜,粮食等各类物资,分别运到需要这些物资的地区。如何根据各地的生产量和需求量及各地之间的运输费用,如何制定一个运输方案,使总的运输量费用最小,这类的问题称

为运输问题。假设有m 个产地,记为A 1、A 2….A m ,生产某种物资,可供应的产量分别为a 1,a 2….a m ,有n 个销地,记为B 1、B 2…B n ,其需求量分别为b 1、b 2…b n ,假设在供需平衡的情况下,即∑=m i ai 1=∑=n j bj 1 ,从第i 个产地到j 个销地的单位物资的运费为c ij ,在满足各地需求的前提下,求运费最小的方案。 设x ij (i=1、2…m,j=1、2…n )为第i 个产地到第j 个销地的运量,则运输问题的数学模型为 Min Z = ∑=m i 1∑=n j cijxij 1

实验二___线性规划灵敏度分析

实验二___线性规划灵敏度分析

实验二线性规划模型及灵敏度分析 (一)实验目的:掌握使用Excel软件进行灵敏度分析的操作方法。 (二)实验内容和要求:用Excel软件完成案例。 (三)实例操作: (1)建立电子表格模型; (2)使用Excel规划求解功能求解问题并生成“敏感性报告”; (3)结果分析:哪些问题可以直接利用“敏感性报告”中的信息求解,哪些问题需要重新规划求解,并对结果提出你的看法; (4)在Word文档中书写实验报告,包括线性规划模型、电子表格模型、敏感性报告和结果分析等。 案例1 市场调查问题 某市场调查公司受某厂的委托,调查消费者对某种新产品的了解和反应情况。该厂对市场调查公司提出了以下要求: (1)共对500个家庭进行调查;

(2)在被调查家庭中,至少有200个是没有孩子的家庭,同时至少有200个是有孩子的家庭; (3)至少对300个被调查家庭采用问卷式书面调查,对其余家庭可采用口头调查; (4)在有孩子的被调查家庭中,至少对50%的家庭采用问卷式书面调查; (5)在没有孩子的被调查家庭中,至少对60%的家庭采用问卷式书面调查。 对不同家庭采用不同调查方式的费用如下表所示: 市场调查费用表 家庭类型调查费用(元) 问卷式书面调查口头调查 有孩子的家庭50 30 没有孩子的家庭40 25 问:市场调查公司应如何进行调查,使得在

满足厂方要求的条件下,使得总调查费用最少? 案例2 经理会议建议的分析 某公司生产三种产品A1,A2,A3,它们在B1,B2两种设备上加工,并耗用C1,C2两种原材料,已知生产单位产品耗用的工时和原材料以及设备和原材料的每天最多可使用量如下表所示: 生产三种产品的有关数据 资源产品A1 产品A2 产品A3 每天最多可使用量 设备B1(min) 1 2 1 430 设备B2(min) 3 0 2 460 原料C1(kg) 1 4 0 420 原料C2(kg) 1 1 1 300 每件利润(元) 30 20 50

线性规划实验举例

最优化算法实验指导书 1.线性规划求解 1.1 生产销售计划 问题 一奶制品加工厂用牛奶生产A 1、A 2两种普通奶制品,以及B 1、B 2两种高级奶制品,分别是由A 1、A 2深加工开发得到的,已知每1桶牛奶可以在甲类设备上用12h 加工成3kg A 1,或者在乙类设备上用8h 加工成4kg A 2;深加工时,用2h 并花1.5元加工费,可将1kg A 1加工成0.8kg B 1,也可将1kg A 2加工成0.75kg B 2,根据市场需求,生产的4种奶制品全部能售出,且每公斤A 1、A 2、 B 1、B 2获利分别为12元、8元、22元、16元。 现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间最多为480h ,并且乙类设备和深加工设备的加工能力没有限制,但甲类设备的数量相对较少,每天至多能加工100kg A 1,试为该厂制定一个生产销售计划,使每天的净利润最大,并讨论以下问题: (1)若投资15元可以增加供应1桶牛奶,应否作这项投资; (2)若可以聘用临时工人以增加劳动时间,支付给临时工人的工资最多是每小时几 元? (3)如果B 1、B 2的获利经常有10%的波动,波动后是否需要制定新的生产销售计划? 模型 这是一个有约束的优化问题,其模型应包含决策变量、目标函数和约束条件。 决策变量用以表述生产销售计划,它并不是唯一的,设A 1、A 2、 B 1、B 2每天的销售量分别为1234,,,x x x x (kg ),34,x x 也是B 1、B 2的产量,设工厂用5x (kg )A 1加工B 1,6x (kg )A 2加工B 2(增设决策变量5x 、6x 可以使模型表达更清晰)。 目标函数是工厂每天的净利润z ,即A 1、A 2、 B 1、B 2的获利之和扣除深加工费,容易写出1234561282216 1.5 1.5z x x x x x x =+++--(元)。 约束条件 原料供应:A 1每天的产量为15x x +(kg ),用牛奶13()/3x x +(桶),A 2的每天产量为26x x +(kg ),用牛奶26()/4x x +(桶),二者之和不得超过每天的供应量50(桶)。 劳动时间:每天生产A 1、A 2的时间分别为154()x x +和262()x x +,加工B 1、B 2的时间分别为52x 和62x ,二者之和不得超过总的劳动时间480h 。 设备能力:A 1每天的产量15x x +,不得超过甲类设备的加工能力100(kg )。 加工约束:1(kg )A 1加工成0.8(kg )B 1,故350.8x x =;类似的460.75x x =。 非负约束:123456,,,,,x x x x x x 均为非负。 由此得如下基本模型: 123456max 1282216 1.5 1.5z x x x x x x =+++--

运用线性规划对运输问题研究

运用线性规划对运输问题研究 班级:金融103班姓名:王纬福学号:5400210132摘要:由于企业选择运输路线或运输工具不合理而导致物流运输成本不能最小化的问题普遍存在而管理运筹学却能很好的解决此问题。通过科学的方法对问题进行具体化再建立数学模型并求解,就能找到运输成本最小的运输组合。 关键词:物流运输成本、输成本、管理运筹学、WinQSB2.0、线性规划 一、引言 日常生活中,人们经常需要将某些物品由一个空间位置移动到另一个空间位置,这就产生了运输。如何判定科学的运输方案,使运输所需的总费用最少,就是管理运筹学在运输问题上的运用需要解决的问题。 运输问题是一类应用广泛的特殊的线性规划问题,在线性规划的一般理论和单纯形法出现以前,康托洛维奇(L.V.Kant)和希奇柯克(F.L.Hitchcock)已经研究了运输问题。所以,运输问题又有“康-希问题”之称。对于运输问题(Transportation Problem TP)当然可用前面所讲的单纯形法求解,但由于该问题本身的特殊性,我们可以找到比标准单纯形法更简单有效的专门方法,从而节约计算时间和费用。主要是因为它们的约束方程组的系数矩阵具有特殊结构,使得这类问题的求解方法比常规的单纯形法要更为简便。 一、研究现状 运输问题的研究较多,并且几乎所有的线性规划书中都有论述。遗憾的是一些书中所建立的数学模型都不够全面和系统的。但是也有一些模型是严谨的没有漏洞和缺陷,并且很容易在此基础上修改或添加一些其他约束条件便于在实际工程中进行应用。管理运筹学在运输问题上的研究较为深入、全面、系统。对于计算机软件的引用也很前言,winQSB2.0对于普通甚至深入研究运输问题就已经是简单而又使用、耐用、好用的了。现在相关的杂志、期刊都越来越多关于管理运筹学,关于运输问题的文章论文初版,越来越得到重视。 二、文献回顾 随着物流行业和企业对物流运输要求的不断提高,企业的面临着更大的市场竞争,其运输活动在企业不断发展过程中,面临着越来越大难度的运输组合的选择决策问题。如何正确解决这个问题,是企业能够持续经营和发展不可忽视和必须面对的。这个问题同时也引起了企业界、学术界等社会各界的广泛关注。运输问题的实质是企业与运输组合的经济性问题,成功的企业通常都会面临如何选取最佳运输组合或运输路线这样一个重要问题,即以企业运输成本最小化作为确定最佳运输组合或运输路线的原落脚点。 四、案例分析 例:某公司下设生产同类产品的加工厂A1、A2、A3,生产的产品由4个销售点B1、B2、B3、B4出售。各工厂的生产量、各销售点的销量以及各工厂到各销售点的单位运价如下表:

运筹学实验一线性规划

实验项目一线性规划 实验学时:2 实验目的:线性规划(Linear Programming,简写LP)是运筹学中最成熟的一个分枝,而且是应用最为广泛的一个运筹学分枝,是解决最优化问题的重要工具。而目前 Lindo/lingo 是求解线性规划比较成熟的一个软 件,通过本实验,掌握线性规划模型在 Lindo/lingo 中的求解,并能达到灵活运用。 实验要求:1.掌握线性规划的建模步骤及方法; 2.掌握Lindo/lingo 的初步使用; 3.掌握线性规划模型在Lindo/lingo 建模及求解; 4.掌握线性规划的灵敏度分析 实验内容及步骤: 例:美佳公司计划制造I、II 两种家电产品。已知各制造一件时分别占用设备A、B 的台时、调试时间、调试工序每天可用于这种家电的能力、各售出一件时的获利情况,如表1-1 所示。 1.问该公司应制造两种家电各多少件,使其获取的利润最大。 2. 如果资源出租,资源出租的最低价格至少是多少(即每种资源的影子价格是多少)。 3.若家电I 的利润不变,家电II 的利润在什么范围内变化时,则该公司的最优生产计划将不发生变化。 4. 若设备A 和B 每天可用能力不变,则调试工序能力在什么范围内变化时,问题的最优基不变。 解:设x1表示产品I 的生产量; x2表示产品II 的生产量,所在该线性规划的模型为:

从此线性规划的模型中可以看出,第一个小问是典型的生产计划问题,第二小问是相应资源的影子价格,第三和第四个小问则是此问题的灵敏度分析。 现在我们利用lingo8.0 来教你求解线性规划问题。 第一步,启动lingo 进入初始界面如下图1-1 和图1-2 所示: 第二步,在进行线性规划模型求解时,先要对初始求解方法及参数要进行设置,首先选择ling o 菜单下的Option 菜单项,并切换在general solver(通用求解器)页面下,如下图1-3所示:

数学实验——线性规划

实验5 线性规划 分1 黄浩 43 一、实验目的 1.掌握用MATLAB工具箱求解线性规划的方法 2.练习建立实际问题的线性规划模型 二、实验内容 1.《数学实验》第二版(问题6) 问题叙述: 某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示。按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税。此外还有如下限制: (1).政府及代办机构的证券总共至少要购进400万元; (2).所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高); (3).所购证券的平均到期年限不超过5年 I.若该经理有1000万元资金,该如何投资? II.如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作? III.在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变? 模型转换及实验过程: I. 设经理对于上述五种证券A、B、C、D、E的投资额分别为:、、、、(万

元),全部到期后的总收益为z万元。 由题目中的已知条件,可以列出约束条件为: 而决策变量的上下界约束为: 目标函数 将上述条件转变为matlab的要求形式: 使用matlab解上述的线性规划问题(程序见四.1),并整理成表格: 得出结论: 当经理对A、B、C、D、E五种证券分别投资218.18、0、736.36、0、45.45万元时,在全部收回时可得到29.836万元的税后收益,而且这种投资方式所得收益是最大的。 讨论: 尝试输出该约束条件下的拉格朗日乘子: 该乘子表示,第一个约束条件对目标函数的取值不起作用,而剩余三个约束条件取严格等号的时候,目标函数达到最优解。下面验证之: 由解得的x值,代入四个约束条件中,得:

相关文档
最新文档