《二项分布与超几何分布》复习课程

合集下载

课件2:4.2.3 二项分布与超几何分布(二)

课件2:4.2.3 二项分布与超几何分布(二)

2.在实际应用中,从大批产品中抽取少量样品的不放回 检验,可以看作独立重复试验吗?
[提示] 独立重复试验的实际原型是有放回地抽样检 验问题,但在实际应用中,从大批产品中抽取少量样 品的不放回检验,可以近似地看作此类型.
【例 3】 某食品厂为了检查一条自动包装流水线的生产 情况,随机抽取该流水线上的 40 件产品作为样本称出它 们的 质量( 单位:克 ),质 量的分 组区间为 (490,495] , (495,500],…,(510,515].由此得到样本的频率分布直方 图如图.
[解] 设所得金额为 X,X 的可能取值为 3,7,11.
P(X=3)=CC31380=175,P(X=7)=CC28C31012=175, P(X=11)=CC18·31C0 22=115. 故 X 的分布列为
X 3 7 11
P
7 15
7 15
1 15
类型3 超几何分布与二项分布间的联系 [探究问题] 1.超几何分布适合解决什么样的概率问题? [提示] 超几何分布适合解决一个总体(共有 N 个个体) 内含有两种不同事物 A(M 个)、B(N—M 个),任取 n 个, 其中恰有 X 个 A 的概率分布问题.
B.5 件产品中有 2 件次品的概率
C.5 件产品中有 2 件正品的概率
D.5 件产品中至少有 2 件次品的概率
【解析】根据超几何分布的定义可知 C23表示从 3 件次品 中任选 2 件,C37表示从 7 件正品中任选 3 件,故选 B. 【答案】B
4.高二·一班共有 50 名学生,其中有 15 名学生戴眼镜, 从班级中随机抽取 5 人,设抽到戴眼镜的人数为 X, 则 X~ ________. 【解析】由超几何分布的定义可知,X~H(50,5,15). 【答案】H(50,5,15)

《二项分布与超几何分布》知识讲解

《二项分布与超几何分布》知识讲解

二项分布与超几何分布★ 知 识 梳理 ★1.条件概率:称)()()|(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的概率。

特别提醒: ①0≤P (B|A )≤1;②P(B ∪C|A)=P(B|A)+P(C|A)。

2. 相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。

特别提醒:①如果事件A 、B 是相互独立事件,那么,A 与_B 、_A 与B 、_A 与_B 都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

我们把两个事件A 、B 同时发生记作A ·B ,则有P (A ·B )= P (A )·P (B )推广:如果事件A 1,A 2,…A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。

即:P (A 1·A 2·…·A n )= P (A 1)·P (A 2)·…·P(A n )3.独立重复试验: 在同样的条件下,重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.4.如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率计算公式:P n (k )=C k n P k (1-P )n -k ,其中,k =0,1,2,…,n 5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ 0 1… k … n P n n q p C 00 111-n n q p C … k n k k n q p C - …0q p C n n n 由于k n k k n q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--ΛΛ中的各项的值,所以称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ).6. 两点分布:X 0 1P 1-p p特别提醒: 若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率.7. 超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则},,min{,,1,0,)(n M m m k C C C k X P n Nk n M N k M ====--Λ其中,N M N n ≤≤,。

高考数学知识点复习:二项分布与超几何分布 课件

高考数学知识点复习:二项分布与超几何分布 课件

2. 位于坐标原点的一个质点 P 按下述规则移动:质点每次移动一个单位,移动的 方向为向上或5向右,若向上、向右移动的概率都是12,则质点 P 移动五次后位于点(2,3) 的概率是___1_6____.
【解析】 因为质点每次移动一个单位,移动的方向为向上或向右,移动五次后位 于点(2,3),所以质点 P 必须向右移动两次,向上移动三次,故其概率为 C35123·122=C3512 5=156.
答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完三道题后至少答
对两道题的概率为( A )
112 A. 125
80 B. 125
113 C. 125
124 D. 125
【解析】 该参赛者答完三道题后至少答对两道题的概率为 P=453+C2345215=111225.
(1) 在求 n 次独立重复试验中事件恰好发生 k 次的概率时,首先要确定好 n 和 k 的 值,再准确利用公式求概率;(2) 在根据独立重复试验求二项分布的有关问题时,关键 是理清事件与事件之间的关系,确定二项分布的试验次数 n 和变量的概率,求得概率.
2. 两点分布与二项分布的均值、方差 (1) 若随机变量 X 服从两点分布,则 E(X)=__p_,D(X)=______p_(_1_-__p_)______. (2) 若 X~B(n,p),则 E(X)=___n_p__,D(X)=_______n_p_(_1_-__p_) _______.
3. 超几何分布
4. 在含有 3 件次品的 10 件产品中,任取 4 件,X 表示取到的次品数,则 P(X=2) 3
=_____1_0_______.
【解析】 由题意,X 服从超几何分布,其中 N=10,M=3,n=4,故 P(X=2)=CC23C14027 =130.

高考数学复习知识点讲解教案第65讲 二项分布与超几何分布、正态分布

高考数学复习知识点讲解教案第65讲 二项分布与超几何分布、正态分布

正态曲线: =
1


⋅e
− 2
22
, ∈ ,其中 ∈ , > 0为参数,称
正态密度曲线
为正态密度函数,函数 的图象为_________________,简称正态曲线.
(2)
正态曲线的特点
=
①曲线是单峰的,它关于直线________对称.

=
1
曲线在________处达到峰值
3
[思路点拨](1)由题可求出一次试验成功的概率,设试验成功的次数为,可
知服从二项分布,再利用方差的性质即可求解.
[解析] 由题意得,启动一次出现的数字为 = 1010的概率 =
设试验成功的次数为,则~
所以的方差 = 54 ×
2
27
×
25
27
2
54,
27
=
2
1
3
2
3
× =
2
.
记选出女生的人数为,则服从超几何分布,③满足题意;
盒中有4个白球和3个黑球,每次从中随机摸出1个球且不放回,
记第一次摸出黑球时摸取的次数为,
则不服从超几何分布,④不满足题意.故填③.
5.已知随机变量 ∼
2
2,
0.35
, ≤ 0 = 0.15,则 2 ≤ ≤ 4 =______.
0 < < 1 ,用表示事件发生的次数,则的分布列为( = ) =


C 1 −
_________________________,
= 0,1,2,⋯ ,,称随机变量服从二项分布,记作
∼ , .
(2)
1 −

二项分布和超几何分布(含答案)讲课教案

二项分布和超几何分布(含答案)讲课教案

二项分布和超几何分布(含答案)超几何分布和二项分布一、两者的定义是不同的1超几何分布的定义2独立重复试验与二项分布的定义(1)独立重复试验.(2)二项分布.本质区别(1)超几何分布描述的是不放回抽样问题,而二项分布描述的是放回抽样问题.(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题.二、两者之间是有联系的人教版新课标选修2-3第59页习题2.2B组第3题:例1某批n件产品的次品率为2%,现从中任意地依次抽出3件进行检验,问:(1)当n=500,5000,500000时,分别以放回和不放回的方式抽取,恰好抽到1件产品的概率各是多少?(2)根据(1)你对超几何分布与二项分布的关系有何认识?【说明】由于数字比较大,可以利用计算机或计算器进行数值计算.另外,本题目也可以帮助学生了解超几何分布和二项分布之间的关系:第一,n次试验中,某一事件A出现的次数X可能服从超几何分布或二项分布.当这n次试验是独立重复试验时,X服从二项分布;当这n次试验是不放回摸球问题,事件A为摸到某种特性(如某种颜色)的球时,X服从超几何分布第二,在不放回n次摸球试验中,摸到某种颜色的次数X服从超几何分布,但是当袋子中的球的数目N 很大时,X的分布列近似于二项分布,并且随着N的增加,这种近似的精度也增加.从以上分析可以看出两者之间的联系:当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布.例2袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取一个球,求(1)又放回抽样时,取到黑球的个数X的分布列;(2)无放回地抽样时,取到黑球的个数Y的分布列.[错解分析]第二问的选人问题是不放回抽样问题,按照定义先考虑超几何分布,但是题目中又明确给出:“以这16人的样本数据来估计整个社区的总体数据,从该社区(人数很多)任选3人”,说明不是从16人中任选3人,而是从该社区(人数很多)任选3人,所以可以近似看作是3次独立重复试验,应该按照二项分布去求解,而不能按照超几何分布去处理.【正解】(1)同上;从以上解题过程中我们还发现,错解中的期望值与正解中的期望值相等,好多学生都觉得不可思议,怎么会出现相同的结果呢?其实这还是由于前面解释过的原因,超几何分布与二项分布是有联系的,看它们的期望公式:综上可知,当提问中涉及“用样本数据来估计总体数据”字样的为二项分布。

超几何分布及二项分布二轮复习教学设计及导学案

超几何分布及二项分布二轮复习教学设计及导学案

超几何分布及二项分布二轮复习教学设计及导学案【导学案】课题名称:超几何分布及二项分布学科:数学年级:高一教学时间:2课时教学目标:1.理解超几何分布和二项分布的概念与特点。

2.掌握超几何分布和二项分布的计算方法。

3.能够应用超几何分布和二项分布解决实际问题。

教学重点:1.超几何分布和二项分布的概念与特点。

2.超几何分布和二项分布的计算方法。

教学难点:1.能够应用超几何分布和二项分布解决实际问题。

教学准备:1.教师准备PPT。

2.学生铅笔、橡皮、作业本。

教学过程:Step 1 导入新课(5分钟)1.让学生回顾前一节课的内容,回答几个问题:什么是离散型随机变量?如何计算离散型随机变量的期望?2.引入本节课的新内容,告诉学生本节课要学习和复习超几何分布和二项分布。

Step 2 课堂教学(55分钟)1.引导学生回忆超几何分布的概念和特点,并结合具体例子进行讲解。

提醒学生注意超几何分布中的各个参数的含义和计算方法。

2.引导学生回忆二项分布的概念和特点,并结合具体例子进行讲解。

提醒学生注意二项分布中的各个参数的含义和计算方法。

3.给学生讲解超几何分布和二项分布的计算方法,并通过例题进行演示。

帮助学生掌握计算过程和技巧。

4.给学生出几道练习题,让学生独立完成,并在课堂上逐题讲解答案和解题思路。

帮助学生巩固所学知识。

Step 3 课堂小结(5分钟)1.总结本节课的重点内容,强调超几何分布和二项分布的概念和特点。

2.提醒学生进行课后复习,并解答学生的问题。

Step 4 课后作业(2分钟)1.布置适量的课后作业,巩固学生对超几何分布和二项分布的理解和掌握。

2.提醒学生及时批改作业,并预习下节课内容。

备注:以上为教学设计概要,具体教学内容及时间可根据实际情况灵活调整。

超几何分布与二项分布二轮复习教育教学设计与导学案

超几何分布与二项分布二轮复习教育教学设计与导学案

超几何分布与二项分布二轮复习教学设计与导学案————————————————————————————————作者:————————————————————————————————日期:高三二轮复习教学设计1 超几何分布与二项分布知识与技能:1、进一步了解并熟悉超几何分布与二项分布产生的实际背景,理解超几何分布的导出过程,理解独立重复试验与二项分布的关系,进一步建构并完善知识体系与结构;2、明确两种分布基本特征,能正确区分两种分布,能准确运用两种概率分布分析解决实际问题;3、训练提升运算能力、数学阅读与理解能力,分析与解决实际问题的能力。

过程与方法:1、通过自主学习,熟化基本知识与思想方法,完成知识体系建构;2、借助实例,通过合作与探究学习,在讨论交流中实现对两种分布本质特征的再认识,完善知识结构,达到深刻理解与准确应用。

情感态度与价值观:以学生考试中的正、误两种解答导入,引发学生对问题与解决方法的关注度,激发学生积极主动参与数学思维活动;通过主动探究、合作学习、相互交流,形成良好地思维习惯和理性思考问题的思维品质;借助高考真题的解析,增强学习的自信心,增强学生敢于超越并勇于超越的自我激励与竞争进取的意志品质。

教学重点:二项分布与超几何分布的辨别与应用教学难点:二项分布与超几何分布的区别与运用教学媒体:多媒体教学方法:讨论探究与讲授相结合课型:复习课教学流程和情境设计流程问题情境设计意图师生活动解题回放提出问题问题1“低碳生活”题中出现的两种解答中,知识依据与过程完全不同,得到的期望值却相同。

纯属巧合吗?哪种解借助学生考试中给出的解答提出问题,既给学生以警示,又引发疑问,诱发思考,有利于吸引学生的注意力并激发学生的学习激情。

展示学生答题过程,学生赏析,判断正误。

答更符合题意呢?辨别正误发现错因问题2造成错解的核心问题为何?怎样有效避免?引导学生快速进入学习主题,弄清区分两种分布是避免错误的关键。

引发学生积极思考,主动探究解决问题的方法。

超几何分布和二项分布的复习课教学建议

超几何分布和二项分布的复习课教学建议

超几何分布和二项分布的复习课教学建议在人教A版《数学选修2-3》的课本中,第二章《概率》的2.1.2节和2.2.3节分别介绍了两种离散型随机变量的概率分布,超几何分布与二项分布。

通过实例,让学生认识模型所刻画的随机变量的共同特点,从而建立新的模型,并能运用两模型解决一些实际问题。

同时超几何分布与二项分布模型是理科数学选修2—3概率问题的重要内容。

然而在教学过程中,我发现学生对这两模型的定义不能很好的理解,在高三好几次模拟考试中,针对解答题的第二题概率与统计问题中,同学们往往不能准确辨别所要解决的问题是到底是属于超几何分布还是二项分布。

一遇到含“取”或“摸”的题型, 就认为是超几何分布,不加分析,随便滥用公式。

事实上,超几何分布和二项分布确实有着密切的联系,但也有明显的区别。

为了让同学们对这两种分布有更加深刻地认识与理解,以免再在实际解决问题中出错,在第二轮复习教学中,我特别设计了一节课来帮助同学们更好地区别超几何分布与二项分布。

以下是我本节课的简要设计过程。

一、问题引入:(学生易混淆)袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1) 有放回抽样时,取到黑球的个数X的分布列;(2) 不放回抽样时,取到黑球的个数Y的分布列.分析思路:(1) 有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为15,3次取球可以看成3次独立重复试验,则X~B13,5⎛⎫⎪⎝⎭。

(2) 不放回抽样时,取到的黑球数Y服从超几何分布。

二、超几何分布与二项分布概念的区别:1、超几何分布:课本上以实例引入,在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k 则,此时我们称随机变量X服从超几何分布。

归纳:一般的,若一个随机变量X 的分布列为,其中,则称X服从超几何分布。

其概率分布表为:特征:超几何分布的模型是不放回抽样。

12 超几何分布必须同时满足两个条件:一是抽取的产品不再放回;二是产品数目为有限个.当这两个条件中任何一个发生改变,则不再是超几何分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项分布与超几何分布★ 知 识 梳理 ★1.条件概率:称)()()|(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的概率。

特别提醒: ①0≤P (B|A )≤1;②P(B ∪C|A)=P(B|A)+P(C|A)。

2. 相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。

特别提醒:①如果事件A 、B 是相互独立事件,那么,A 与_B 、_A 与B 、_A 与_B 都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

我们把两个事件A 、B 同时发生记作A ·B ,则有P (A ·B )= P (A )·P (B )推广:如果事件A 1,A 2,…A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。

即:P (A 1·A 2·…·A n )= P (A 1)·P (A 2)·…·P(A n )3.独立重复试验: 在同样的条件下,重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.4.如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率计算公式:P n (k )=C k n P k (1-P )n -k ,其中,k =0,1,2,…,n 5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ 0 1… k … n P n n q p C 00 111-n n q p C … k n k k n q p C - …0q p C n n n 由于k n k k n q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--ΛΛ中的各项的值,所以称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ).6. 两点分布:X 0 1P 1-p p特别提醒: 若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率.7. 超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则},,min{,,1,0,)(n M m m k C C C k X P n Nk n M N k M ====--Λ其中,N M N n ≤≤,。

称分布列X 0 1 … mP n N n M N M C C C 00-- n N n M N M C C C 11-- … n Nm n M N m M C C C -- 为超几何分布列, 称X 服从超几何分布★ 重 难 点 突 破 ★1.重点:理解超几何分布及其导出过程.了解条件概率和两个事件相互独立的概念,能理解n 次独立重复实验的模型及二项分布.2.难点:能利用超几何分布, 二项分布及n 次独立重复实验解决一些简单的实际问题3.重难点:.(1) “互斥”与“独立”混同问题1: 甲投篮命中率为O .8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?错解 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,则两人都恰好投中两次为事件A+B ,P(A+B)=P(A)+P(B): 2222330.80.20.70.30.825c c ⨯+⨯=点拨: 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.正确解答:设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,且A ,B 相互独立,则两人都恰好投中两次为事件A·B,于是P(A·B)=P(A)×P(B)= 2222330.80.20.70.30.169c c ⨯+⨯≈.(2)“条件概率P(B / A)”与“积事件的概率P(A·B)”混同问题2:袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.错解 记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B,”第二次才取到黄球”为事件C,所以P(C)=P(B/A)=6293=. 点拨:本题错误在于P(A ⋅B)与P(B/A)的含义没有弄清, P(A ⋅B)表示在样本空间S 中,A 与B 同时发生的概率;而P (B/A )表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率。

正确答案:P (C )= P(A ⋅B)=P (A )P (B/A )=46410915⨯=。

★ 热 点 考 点 题 型 探 析★考点一: 条件概率,相互独立事件和独立重复试验题型1. 条件概率[例1] 一张储蓄卡的密码共有6位数,每位数字都可从0~9中任选,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:⑴按第一次不对的情况下,第二次按对的概率;⑵任意按最后一位数字,按两次恰好按对的概率;⑶若他记得密码的最后一位是偶数,不超过2次就按对的概率[解题思路]:⑴这是一个一般概率还是条件概率?应选择哪个概率公式?⑵“按两次恰好按对”指的是什么事件?为何要按两次?隐含什么含义?第一次按与第二次按有什么关系?应选择哪个概率公式?⑶“最后一位是偶数”的情形有几种?“不超过2次就按对”包括哪些事件?这些事件相互之间是什么关系?应选择用哪个概率公式?【名师指引】⑴条件概率相当于随机试验及随机试验的样本空间发生了变化,事件A 发生的条件下事件B 发生的概率可以看成在样本空间为事件A 中事件B 发生的概率,从而得出求条件概率的另一种方法——缩减样本空间法 ⑵将条件概率的计算公式进行变形,可得概率的乘法公式)()()(A B P A P AB P =【新题导练】1.设 100 件产品中有 70 件一等品,25 件二等品,规定一、二等品为合格品.从中任取1 件,求 (1) 取得一等品的概率;(2) 已知取得的是合格品,求它是一等品的概率.题型2。

相互独立事件和独立重复试验[例2] (2010四川省成都市一诊)某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定.他们三人都有“同意”、“中立”、“反对”三类票各一张.投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,他们的投票相互没有影响.规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目投资.(Ⅰ)求此公司一致决定对该项目投资的概率;(Ⅱ)求此公司决定对该项目投资的概率;[解题思路]: 注意相互独立事件和独立重复试验恰有k 次发生的区别【名师指引】 除注意事件的独立性外, 还要注意恰有k 次发生与指定第k 次发生的区别, 对独立重复试验来说,前者的概率为(1)k k n k n C p p --,后者的概率为(1)k n k p p --【新题导练】1. (湖南卷16).(本小题满分12分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是12,且面试是否合格互不影响.求:至少有1人面试合格的概率;2.(山东卷18)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分, 答错得零分。

假设甲队中每人答对的概率均为32,乙队中3人答对的概率分别为21,32,32且各人正确与否相互之间没有影响.用ε表示甲队的总得分.(Ⅰ)求随机变量ε分布列; (Ⅱ)用A 表示“甲、乙两个队总得分之和等于3”这一事件,用B 表示“甲队总得分大于乙队总得分”这一事件,求P (AB ).考点二: 两点分布与超几何分布题型1: 两点分布与超几何分布的应用[例3] 高二(十)班共50名同学,其中35名男生,15名女生,随机从中取出5名同学参加学生代表大会,所取出的5名学生代表中,女生人数X 的频率分布如何?[解题思路]:5名学生代表中,女生人数有6种情况.[例4] 若随机事件A 在1次试验中发生的概率是p ,用随机变量ξ表示A 在1次实验中发生的次数。

(1)求方差ξD 的最大值;(2)求ξξE D 12-的最大值。

[解题思路]:(1)由两点分布,分布列易写出,而要求方差ξD 的最大值需求得ξD 的表达式,转化为二次函数的最值问题;(2)得到pp p p p E D 1221)(2122--=--=-ξξ后自然会联想均值不等式求最值。

【名师指引】在超几何分布中,只要知道N,M 和n,就可以根据公式求出X 取不同m 值时的概率P(X=m).【新题导练】1.在一个口袋中装有30个球,其中有10个红球,其余为白球,这些球除颜色外完全相同.游戏者一次从中摸出5个球.摸到4个红球就中一等奖,那么获一等奖的概率是多少?2.假定一批产品共100件,其中有4件不合格品,随机取出的6件产品中,不合格品数X 的概率分布如何? 考点三: 独立重复试验与二项分布题型1: 独立重复试验与二项分布的应用[例6] 一口袋内装有5个黄球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则)12(=ξP =______________。

(填计算式)[解题思路]:这是一个“12次独立重复试验恰有10次发生”的概率问题,同学们很容易由二项分布原理得到2101012)85()83()12(C P ==ξ,这就忽视了隐含条件“第12次抽取的是红球”,此种解法的结果包含着第12次抽取到黄球。

[例7] 某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?[解题思路]:“至多”,“至少”问题往往考虑逆向思维法【名师指引】要熟练掌握二项分布的特征,更要注意挖掘题目信息中的隐含信息。

【新题导练】1. 广东深圳外国语学校2009—2010学年高三月考理 某科研小组进行某项科学实验的成功率为32。

相关文档
最新文档