12《基本概念与运算法则》测试题

合集下载

集合与运算的基本概念与性质

集合与运算的基本概念与性质

集合与运算的基本概念与性质一、集合的基本概念1.集合的定义:集合是由一些确定的、互不相同的对象构成的整体。

2.集合的表示方法:用大括号{}括起来,里面列出集合中的元素,如集合A={1,2,3}。

3.集合的元素:集合中的每一个对象称为集合的元素。

4.空集:不含有任何元素的集合,用符号∅表示。

5.集合的性质:a.确定性:集合中的元素是确定的,不存在模糊不清的情况。

b.互异性:集合中的元素是互不相同的。

c.无序性:集合中的元素排列顺序不影响集合的本质。

二、集合的运算1.并集:两个集合A和B的并集,记作A∪B,包含所有属于A或属于B的元素。

2.交集:两个集合A和B的交集,记作A∩B,包含所有同时属于A和属于B的元素。

3.补集:对于全集U,集合A的补集,记作A’,包含所有不属于A的元素。

4.运算法则:a.交换律:A∪B=B∪A,A∩B=B∩Ab.结合律:(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)c.分配律:A(B∪C)=(AB)∪(AC),A(B∩C)=(AB)∩(AC)三、集合的其他概念1.子集:如果集合A的所有元素都是集合B的元素,那么集合A是集合B的子集,记作A⊆B。

2.超集:如果集合A包含集合B的所有元素,那么集合A是集合B的超集,记作A⊇B。

3.真子集:如果集合A是集合B的子集,并且A不等于B,那么A是B的真子集,记作A⊊B。

4.空集的特殊性质:空集是任何集合的子集,也是任何集合的超集。

四、整数的运算1.加法:两个整数相加,得到它们的和。

2.减法:一个整数减去另一个整数,得到它们的差。

3.乘法:两个整数相乘,得到它们的积。

4.除法:一个整数除以另一个整数(不为0),得到它们的商。

5.幂运算:一个整数的n次幂,表示这个整数连乘n次。

五、实数的运算1.加法:两个实数相加,得到它们的和。

2.减法:一个实数减去另一个实数,得到它们的差。

3.乘法:两个实数相乘,得到它们的积。

4.除法:一个实数除以另一个实数(不为0),得到它们的商。

2023年教师资格之中学数学学科知识与教学能力过关检测试卷B卷附答案

2023年教师资格之中学数学学科知识与教学能力过关检测试卷B卷附答案

2023年教师资格之中学数学学科知识与教学能力过关检测试卷B卷附答案单选题(共30题)1、血管损伤后伤口的缩小和愈合有赖于血小板的哪项功能A.黏附B.聚集C.收缩D.促凝E.释放【答案】 C2、内源凝血途径和外源凝血途径的主要区别在于A.启动方式和参与的凝血因子不同B.启动方式不同C.启动部位不同D.启动时间不同E.参与的凝血因子不同【答案】 A3、设f(x)为[a,b]上的连续函数,则下列命题不正确的是()。

A.f(x)在[a,b]上有最大值B.f(x)在[a,b]上一致连续C.f(x)在[a,b]上可积D.f(x)在[a,b]上可导【答案】 D4、女性,20岁,头昏、乏力半年,近2年来每次月经持续7~8d,有血块。

门诊检验:红细胞3.0×10A.缺铁性贫血B.溶血性贫血C.营养性巨幼细胞贫血D.再生障碍性贫血E.珠蛋白生成障碍性贫血【答案】 A5、抗病毒活性测定主要用于哪种细胞因子的测定A.ILB.INFC.TNFD.SCFE.MCP【答案】 B6、患者,男,28岁,患尿毒症晚期,拟接受肾移植手术。

兄弟间器官移植引起排斥反应的物质是A.异种抗原B.自身抗原C.异嗜性抗原D.同种异体抗原E.超抗原【答案】 D7、在接触抗原后,T和B淋巴细胞增殖的主要场所是A.骨髓和淋巴结B.肝和淋巴结C.脾和淋巴结D.淋巴结E.卵黄囊和淋巴结【答案】 C8、重症肌无力的自身抗原是A.甲状腺球蛋白B.乙酰胆碱受体C.红细胞D.甲状腺细胞表面TSH受体E.肾上腺皮质细胞【答案】 B9、某中学高一年级560人,高二年级540人,高三年级520人,用分层抽样的方法抽取容量为81的样本,则在高一、高二、高三三个年级抽取的人数分别是()A.28、27、26B.28、26、24C.26、27、28D.27、26、25【答案】 A10、命题P的逆命题和命题P的否命题的关系是()。

A.同真同假B.同真不同假C.同假不同真D.不确定【答案】 A11、抛掷两粒正方体骰子(每个面上的点数分别为1, 2, .... 6),假定每个面朝上的可能性相同,观察向上的点数,则点数之和等于5的概率为()A.5/36B.1/9C.1/12D.1/18【答案】 B12、珠蛋白生成障碍性贫血的主要诊断依据是A.粒红比缩小或倒置B.血红蛋白尿C.外周血出现有核红细胞D.血红蛋白电泳异常E.骨髓中幼稚红细胞明显增高【答案】 D13、编制数学测试卷的步骤一般为()。

2017年教师资格证考试《高中数学》真题及答案

2017年教师资格证考试《高中数学》真题及答案

2017年教师资格证考试《数学学科知识与教学能力》(高级中学)真题及答案◇本卷共分为6大题17小题,作答时间为120分钟,总分150 分,90 分及格。

一、单项选择题(本大题共8小题,每小题5分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案字母按要求涂黑。

错选、多选或未选均无分。

A2 [单选题] 下列矩阵所对应的线性变换为旋转变换的是( )。

D3 [单选题]参考答案:C 参考解析:所求柱面的母线平行于x轴,则柱面方程中不含参数x,通过题中的方程组,消去x即可得到C选项。

考4 [单选题] 若ƒ(x)是连续函数,则下列命题不正确的是( )。

A5 [单选题]A.P(B)<P(A\B)B.P(A)≤P(A\B)C.P(B)>P(A\B)D.P(A)≥P(A\B)收藏本题参考答案:B6 [单选题]C7 [单选题] 与意大利传教士利玛窦共同翻译了《几何原本》(I-Ⅵ卷)的我国数学家是( )。

A.徐光启B.刘徽C.祖冲之D.杨辉收藏本题参考答案:A 参考解析:明朝末年,《原本》传人中国。

1606年,由我国数学家徐光启执笔,意大利传教士利玛窦口译,合作翻译了《原本》的前六卷,并于1607年在北京印刷出版。

这是我国最早的汉译本,在翻译时,徐光启在“原本”前加上了“几何”一词.“几何原本”一词由此而来。

8 [单选题] “有一个角是直角的平行四边形是矩形”,这个定义方式属于( )。

A.公理定义B.属加种差定义C.递归定义D.外延定义收藏本题参考答案:B 参考解析:A项公理定义是由数学公理而对被定义项进行定义,如概率的公理化定义;B项属加种差定义是由被定义概念的邻近的属和种差所组成的定义,即“邻近的属+种差=被定义概念”,题干中“有一个角是直角的平行四边形是矩形”,它邻近的属为平行四边形,种差为其一角为直角;C项递归定义也称归纳定义,是指用递归的方法给一个概念下定义,它由初始条件和归纳条件构成;D项外延定义是指通过揭示属概念所包括的种概念来明确该属概念之所指的定义,如有理数和无理数统称实数。

《基本概念与运算法则》史宁中

《基本概念与运算法则》史宁中

小学数学教学中的若干问题史宁中东北师范大学数学与统计学院目录前言第一部分数的认识问题1数量是什么?数量关系的本质是什么?数量是对现实生活中事物量的抽象 / 数量关系的本质是多与少问题2如何认识自然数?数是对数量的抽象/ 数关系是对数量关系的抽象:大与小 / 可以有两种方法实现这种抽象:对应的方法和定义的方法问题3表示自然数的关键是什么?十个符号和数位 / 数位法则是依次相差十倍 / 自然数集合问题4如何认识自然数的性质?依据性质可以对自然数进行分类 / 奇数与偶数 / 素数与合数问题5如何认识负数?负整数是与自然数数量相等意义相反的数 / 绝对值表示数量问题6如何认识分数?分数本身是数而不是运算 / 整体与等分关系/ 整比例关系问题7如何认识小数?对应的方法 / 重新理解十进制 / 基底与线性组合 / 表示有理数与无理数问题8什么是数感?数与现实的联系 / 抽象的核心是舍去现实背景 / 联系的核心是回归现实背景第二部分数的运算问题9如何解释自然数的加法运算?可以有两种方法解释加法:对应的方法和定义的方法 / 如何体现数学思想问题10为什么说减法是加法的逆运算?四则运算源于加法 / 减法是加法的逆运算 / 相反数/ 整数集合问题11 乘法是加法的简便运算吗?自然数集合上的乘法 / 乘法运算的性质 / 整数集合上的乘法不是加法的简便运算问题12整数集合上的乘法是如何得到的?整数集合上的乘法运算是一种推广 / 为什么负负为正 / 运算与算理等价问题13为什么说除法是乘法的逆运算?如何表示除法 / 得到的商是一个整数 / 得到的商不是整数 / 倒数 / 有理数集合问题14 为什么混合运算要先乘除后加减?运算次序的两个基本法则 / 所有混合运算都是在讲述两个以上的故事问题15 为什么要学习估算?精算有利于培养抽象能力 / 估算有利于培养直观能力 / 估算问题要有合适的实际背景:合适的量纲 / 大多数的估算问题是为了得到上界或者下界问题16 什么是符号意识?用字母表示数 / 代数学的开始 / 两类符号:概念符号和关系符号 / 基于符号的运算/符号的表达具有一般性问题17 方程的本质是什么?用字母表示未知的量 / 讲述的是现实世界中的两个故事 / 两个故事的共同点 / 要用等式的性质解方程问题18什么是模型?小学数学中有哪些模型?用数学的语言讲述现实世界中一类与数量有关的故事 / 总量模型 / 路程模型 /植树模型 / 工程模型问题19发现问题和提出问题有什么不同?从双基到四基 / 发现问题与创新意识 / 提出问题与创新能力第三部分图形与几何问题20为什么要把“空间与图形”修改为“图形与几何”?时间和空间是人类认识世界最为基本的概念 / 几何学是研究如何构建空间度量方法的学科 / 欧几里得几何是平直的 / 欧几里得几何的核心是直线距离问题21如何理解点、线、面、体、角?看到的物体都是立体的 / 点、线、面、体、角是从立体图形中抽象出来的概念 / 如何用描述的方法给出几何概念问题22认识图形的教育价值是什么?更重要的是让学生学会分类 / 制定标准和遵循标准 / 培养学生的抽象能力问题23如何理解长度、面积、体积?长度是一维空间图形的度量 / 面积是二维空间图形的度量/ 体积是三维空间图形的度量 / 度量的基础是直线距离问题24如何理解平移、旋转、轴对称?图形的运动 / 保持两点间直线距离不变:刚体运动 / 运动的参照物问题25如何理解空间观念和几何直观?空间观念的本质是空间想象力 / 直观是对事物的直接判断因此是经验层面的 / 直观能力的养成依赖本人参与其中的思维活动 / 几何直观不限于几何甚至不限于数学第四部分统计与概率问题26:为什么要强调数据分析观念?统计学研究的基础是数据 / 描述数据分析/ 推断数据分析 / 通过样本推断总体问题27:三种统计图之间有什么共性和差异?直观地表述数据是三种统计图的共性 / 条形统计图表述数量的多少 / 扇形统计图表述数量的比例 / 折线统计图表述数量的变化问题28:如何理解数据的随机性?随机性与不确定性有所区别 / 减少系统误差/ 减少人为因素 / 估计是统计推断的重要手段 / 最大似然估计/ 通过样本频率估计概率问题29:平均数的意义是什么?样本平均数不仅是一个算式 / 误差模型 / 误差的随机性:正负抵消和为零 / 样本平均数是随机的 / 样本平均数是无偏估计问题30:什么是概率?如何得到概率?概率是随机事件发生的属性 / 概率是未知的/ 估计概率 / 定义概率 / 定义概率是一种度量 / 古典概率模型附录1 若干与小学数学有关的话题话题1 几种古代的数字符号话题2数量的本质话题3 数量多少的比较话题4十进制的自然数话题5十二进制与六十进制话题6公理体系定义的自然数话题7 借助算术公理体系解释加法运算话题8公理体系的必要性与数学证明的形式话题9 加法运算和减法运算性质的证明话题10 负数的意义话题11 用符号表示分类话题12 素数的故事话题13 有理数与无理数话题14 用反证法证明√2是无理数话题15数学证明的思维过程话题16逻辑推理的思维起点话题17数学归纳法的逻辑基础话题18 用小数定义有理数和无理数话题19乘法的定义话题20 除法运算规定0不能为除数话题21 除数是分数时的除法运算话题22 数学中的符号表达话题23 路程模型:绝对时间和相对时间话题24 几何学的由来话题25 欧几里得《几何原本》话题26 几何基本概念的进一步抽象话题27 长度单位的确定话题28 曹冲称象与浮力话题29 统计学的由来话题30 概率的定义和基于概率模型的估计附录2 相关内容的教学设计问题2“如何认识自然数”的相关教学设计问题3“表示自然数的关键是什么”的相关教学设计问题4“如何认识自然数的性质”的相关教学设计问题5“如何认识负数”的相关教学设计问题6“如何认识分数”的相关教学设计问题7“如何认识小数”的相关教学设计问题8“什么是数感”的相关教学设计问题9“如何解释自然数的加法运算”的相关教学设计问题11“乘法是加法的简便运算吗”的相关教学设计问题13“为什么说除法是乘法的逆运算”相关教学设计问题14“为什么混合运算要先乘除后加减”的相关教学设计问题15“为什么要学习估算”的相关教学设计问题16“什么是符号意识”的相关教学设计问题17“方程的本质是什么”的相关教学设计问题18“小学数学中有哪些模型”的相关教学设计问题21“如何理解点、线、面、体、角”的相关教学设计问题23“如何理解长度、面积、体积”的相关教学设计问题24“如何理解平移、旋转、轴对称”相关教学设计问题27“三种统计图之间有什么共性和差异”相关教学设计问题29“平均数的意义是什么”相关教学设计前言自从1998年担任东北师范大学校长以后,我开始关注基础教育,但关注的是一般性的问题,并没有深入到学科内部。

复数的基本概念与基本运算

复数的基本概念与基本运算

复数的基本概念与基本运算一、《考试说明》中复数的考试内容(1)数的概念的发展,复数的有关概念(实数、虚数、纯虚数、复数相等、共轭复数、模);(2)复数的代数表示与向量表示;(3)复数的加法与减法,复数的乘法与除法,复数的三角形式,复数三角形式的乘法与乘方,复数三角形式的除法与开方;(4)复数集中解实系数方程(包括一元二次方程、二项方程)。

二、考试要求(1)使学生了解扩充实数集的必要性,正确理解复数的有关概念.掌握复数的代数、几何、三角表示及其转换;(2)掌握复数的运算法则,能正确地进行复数的运算,并理解复数运算的几何意义;(3)掌握在复数集中解实数系数一元二次方程和二项方程的方法.(4)通过内容的阐述,带综合性的例题和习题的训练,继续提高学生灵活运用数学知识解题的能力.(5)通过数的概念的发展,复数、复平面内的点及位置向量三者之间的联系与转换的复习教学,继续对学生进行辩证观点的教育.三、学习目标(1)联系实数的性质与运算等内容,加强对复数概念的认识;?(2)理顺复数的三种表示形式及相互转换:z = r(cosθ+isinθ) , OZ(Z(a,b)) , z=a+bi (3)正确区分复数的有关概念;(4)掌握复数几何意义,注意复数与三角、解几等内容的综合;复(5)正确掌握复数的运算:复数代数形式的加、减、乘、除;三角数实数集集形式的乘、除、乘方、开方及几何意义;虚数单位i及1的立方虚根纯虚数集ω的性质;模及共轭复数的性质;(6)掌握化归思想——将复数问题实数化(三角化、几何化);(7)掌握方程思想——利用复数及其相等的有关充要条件,建立相应的方程,转化复数问题。

四、本章知识结构与复习要点1.知识体系表解 1 1/16页2.复数的有关概念和性质:(1)i称为虚数单位,规定2i,,1,形如a+bi的数称为复数,其中a,b?R.(2)复数的分类(下面的a,b均为实数) (3)复数的相等设复数,那么的充要zz,zabizabiababR,,,,,,(,,,)121112221122条件是:.abab,,且1122 (4)复数的几何表示复数z=a+bi(a,b?R)可用平面直角坐标系内点Z(a,b)来表示.这时称此平面为复平面,x轴称为实轴,y轴除去原点称为虚轴.这样,全体复数集C与复平面上全体点集是一一对应的. 2 2/16页复数z=a+bi.在复平面内还可以用以原点O为起点,以点Z(a,b) abR,,,,向量所成的集合也是一一对应的(例外的是复数0对应点O,看成零向量).(7)复数与实数不同处?任意两个实数可以比较大小,而任意两个复数中至少有一个不是实数时就不能比较大小.?实数对于四则运算是通行无阻的,但不是任何实数都可以开偶次方.而复数对四则运算和开方均通行无阻.3.有关计算:?**n4k,rrkNrN,,,nN,ii,i怎样计算?(先求n被4除所得的余数,),,,,1313?,,,,i、,,,,i是1的两个虚立方根,并且:122222113322 ,,,,1,,,,,,,,,,12122121,,12 ,,,,,1 ,,,,,,1212 21? 复数集内的三角形不等式是:z,z,z,z,z,z,其中左边在复数121212z、z对应的向量共线且反向(同向)时取等号,右边在复数z、z对应的向量共1212线且同向(反向)时取等号。

2023年教师资格之中学数学学科知识与教学能力题库综合试卷A卷附答案

2023年教师资格之中学数学学科知识与教学能力题库综合试卷A卷附答案

2023年教师资格之中学数学学科知识与教学能力题库综合试卷A卷附答案单选题(共40题)1、设 A 为 n 阶方阵,B 是 A 经过若干次初等行变换得到的矩阵,则下列结论正确的是( )。

A.|A|=|B|B.|A|≠|B|C.若|A|=0,则-定有|B|=0D.若|A|>0,则-定有|B|>0【答案】 C2、男性,10岁,发热1周,并有咽喉痛,最近两天皮肤有皮疹。

体检:颈部及腋下浅表淋巴结肿大,肝肋下未及,脾肋下1cm。

入院时血常规结果为:血红蛋白量113g/L:白细胞数8×10A.慢性淋巴细胞白血病B.传染性单核细胞增多症C.上呼吸道感染D.恶性淋巴瘤E.急性淋巴细胞白血病【答案】 B3、临床检测血清,尿和脑脊液中蛋白质含量的常用仪器设计原理是A.化学发光免疫测定原理B.电化学发光免疫测定原理C.酶免疫测定原理D.免疫浊度测定原理E.免疫荧光测定原理【答案】 D4、对某目标进行100次独立射击,假设每次射击击中目标的概率是0.2,记X 为100次独立射击击中目标的总次数,则E(X2)等于()。

A.20B.200C.400D.416【答案】 D5、标准定值血清可用来作为A.室间质控B.室内检测C.变异系数D.平均值E.标准差【答案】 B6、B细胞成为抗原呈递细胞主要是由于A.分泌大量IL-2的能力B.表达MHC-Ⅱ类抗原C.在骨髓内发育成熟的D.在肠道淋巴样组织中大量存在E.吞噬能力【答案】 B7、义务教育阶段的数学教育的三个基本属性是()。

A.基础性、竞争性、普及型B.基础性、普及型、发展性C.竞争性、普及性、发展性D.基础性、竞争性、发展性【答案】 B8、下列关于椭圆的叙述:①平面内到两个定点的距离之和等于常数的动点轨迹是椭圆;②平面内到定直线和直线外的定点距离之比为大于 1 的常数的动点轨迹是椭圆;③从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆的另一个焦点;④平面与圆柱面的截面是椭圆。

七年级数学上册整式的加减单元测试卷

七年级数学上册整式的加减单元测试卷

七年级数学上册整式的加减单元测试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.“m 与n 差的3倍”用代数式可以表示成( )A .3m n -B .3m n -C .()3n m -D .()3m n -2.在棋盘上的米粒故事中,皇帝往棋盘的第1格中放1粒米,第2格中放2粒米,在第3格中加倍至4粒米……,以此类推,每一格均是前一格的双倍,那么他在 第12格中所放的米粒数是( )A .22B .24C .211D .2123.若2335a x y --与425b xy +相加后,结果仍是个单项式,则相加后的结果为( ) A .24x y B .315x y C .315y x D .315xy - 4.若2360x y -+=,则213922x y -+-的值为( ) A .0 B .6 C .﹣6 D .15.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,6.小李今年a 岁,小王今年(a -15)岁,过n +1年后,他们相差( )岁A .15B .n +1C .n +16D .16 7.整式532x y -,0,12x + ,2312ab a b -,-46中是单项式的个数有( ) A .2个 B .3个 C .4个 D .58.下列变形正确的是( )A .452x x -=+与425x x -=-+B .215332x x -=+得4533x x -=+C .4(1)2(3)x x -=+得4126x x -=+D .32x =得23x = 9.下列说法中,错误的是( )A .单项式2a bc -的系数是1-,次数是4B .整式可分为单独一个数字、单独一个字母、单项式、多项式C .多项式243a b -是二次二项式D .()243x -与()223x --可以看作是同类项 10.《九章算术》中记载一问题:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?设有x 人,则表示物价的代数式可以是( )A .83-xB .83x +C .74x -D .()74x +二、填空题11.请你写出一个系数为3,次数为4,只含字母a 、b 的单项式:________.12.如图,在△ABC 中,点D 在BC 的延长线上,△A =m °,△ABC 和△ACD 的平分线交于点A 1,得△A 1;△A 1BC 和△A 1CD 的平分线交于点A 2,得△A 2;…;△A 2019BC 和△A 2019CD 的平分线交于点A 2020,则△A 2020=________°.13.若|a |=2,|b |=5,且a <b ,则a ﹣b 的值为______.14.单项式2335a bc 的系数是m ,次数是n ,则m n +=____. 15._____________________,叫做合并同类项.16.如图,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是_____.17.已知:2321A B a a -=--,223B C a -=-,则C A -的值是__________三、解答题18.已知:23231A x xy y =++-,2B x xy =-.(1)计算:A -3B ;(2)若()2120x y ++-=,求A -3B 的值;(3)若A -3B 的值与y 的取值无关,求x 的值.19.如图,将长和宽分别是a 、b 的矩形纸片折成一个无盖的长方体纸盒,方案是在矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a 、b 、x 的代数式表示纸片剩余部分的面积;(2)当10,8a b ==,且剪去部分的正方形的边长为最小的正整数时,求无盖长方体纸盒的底面积;(3)当10,8a b ==,若x 取整数,以x 作为高,将纸片剩余部分折成无盖长方体,求长方体的体积最大值. 20.将边长相等的黑、白两色小正方形按如图所示的方式拼接起来,第1个图由5个白色小小正方形和1个黑色小正方形拼接起来,第2个图由8个白色小正方形和2个黑色小正方形拼接起来,第3个图由11个白色小正方形和3个黑色小正方形拼接起来,依此规律拼接.(1)第4个图白色小正方形的个数为__;(2)第10个图白色小正方形的个数为___;(3)第n 个图白色小正方形的个数为(用含n 的代数式表示,结果应化简);(4)是否存在某个图形,其白色小正方形的个数为2021个,若存在,求出是第几个图形;若不存在,请说明理由.21.在整式的加减练习课中,已知2232A a b ab =-,嘉淇错将“A B -”看成“A B +”,所算的错误..结果是2243a b ab -.请你解决下列问题.(1)求出整式B ;(2)若1a =-,2b =.求B 的值;(3)求该题的正确计算结果.22.有理数a ,b 在数轴上的位置如图所示.(1)在数轴上表示出-a ,-b ,122-;(2)把a ,b ,-a ,-b ,122-,用“<”连接起来.23.如图,在数轴上,点A 所表示的数为a ,点B 所表示的数为b ,满足211(4)08a b ++-=,点D 从点A 出发以2个单位长度/秒的速度沿数轴向右运动,点E 从点B 出发以1个单位长度/秒的速度沿数轴向左运动,当D 、E 两点相遇时停止运动.(1)点A 表示的数为 ,点B 表示的数为 ;(2)点P 为线段DE 的中点,D 、E 两点同时开始运动,设运动时间为t 秒,试用含t 的代数式表示BP 的长度.(3)在(2)的条件下,探索3BP -DP 的值是否与t 有关,请说明理由.参考答案:1.D【分析】先求x 与y 的差,最后写出它们的3倍来求解.【详解】解:m 与n 差的即m n -,m 与n 差的3倍为()3m n -.故选:D .【点睛】本题考查了列代数式的知识,解答本题的关键是熟练读题,找出题目所给的等量关系. 2.C【分析】根据题意找出规律:每一格均是前一格的双倍,所以a n =2n -1.【详解】解:设第n 格中放的米粒数是a n ,则a 1=1,a 2=a 1×2,a 3=a 2×2=a 1×22,…a n =a 1×2n -1,△a 12=a 1×211=211.故选:C .【点睛】本题考查探索与表达规律,解答本题的关键是从题意中找出规律:每一格均是前一格的双倍,即a n =2n -1.3.D 【分析】根据单项相加后,结果仍是个单项式可知,2335a x y --与425b xy +为同类项 【详解】△2335a x y --与425b xy +相加后,结果仍是个单项式, △2335a x y --与425b xy +是同类项, △2143a b -=⎧⎨+=⎩,解得31a b =⎧⎨=-⎩△2335a x y --+425b xy +=335xy -+325xy =315xy -, 故选D.【点睛】本题考查了利用同类项的定义求字母的值以及合并同类项,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程求解即可.4.C 【分析】先将213922x y -+-化为21(3)92x y ---,然后整体代入即可得出答案. 【详解】213922x y -+-=21(3)92x y ---,236x y -=-, ∴21319(6)96222x y -+-=-⨯--=-. 故选:C .【点睛】本题考查代数式求值,解题的关键是熟练掌握整体代入法在代数式求值中的应用.5.D【分析】逐项代入,寻找正确答案即可.【详解】解:A 选项满足m≤n ,则y=2m+1=3;B 选项不满足m≤n ,则y=2n -1=-1;C 选项满足m≤n ,则y=2m+1=3;D 选项不满足m≤n ,则y=2n -1=1;故答案为D ;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值. 6.A【分析】用大李今年的年龄减去小王今年的年龄,即可求出两人的年龄差,再根据年龄差不会随着时间的变化而改变,由此即可确定再过n +1年后,大李和小王的年龄差仍然不变.【详解】解:a ﹣(a ﹣15)=15(岁)答:他们相差15岁.故选:A .【点睛】此题考查了列代数式及年龄问题,要注意:两个人的年龄差是一个永远也不变的数值. 7.B【分析】根据单项式的定义判断即可.【详解】解:整式532x y -,0,12x +,2312ab a b -,-46中, 是单项式的为:-2x 5y 3,0,-46,共有3个;故选:B .【点睛】本题考查了单项式,熟练掌握单项式的定义是解题的关键.8.D【分析】根据等式基本性质和去括号法则进行判断即可.【详解】解:A 、452x x -=+变形为425x x -=+,故A 错误,不符合题意;B 、215332x x -=+变形得:430318x x -=+,故B 错误,不符合题意; C 、4(1)2(3)x x -=+得:4426x x -=+,故C 错误,不符合题意;D 、32x =得23x =,故D 正确,符合题意. 故选:D .【点睛】本题主要考查了等式的基本性质和去括号法则,熟练掌握等式的基本性质和去括号法则,是解题的关键.9.B【分析】根据单项式的系数和次数,整式的定义,多项式的次数和项数以及同类项的概念进行判断即可.【详解】解:A .单项式2a bc -的系数是1-,次数是4,不符合题意;B .整式分为单项式和多项式,符合题意;C .多项式243a b -是二次二项式,不符合题意;D .()243x -与()223x --是同类项,不符合题意; 故选:B .【点睛】本题考查了单项式的系数和次数,整式的定义,多项式的次数和项数以及同类项的概念,熟练地掌握以上知识是解决问题的关键.10.A【分析】根据题意可直接进行求解.【详解】设有x 人,由题意可表示物价的代数式是83-x 或74x +,故选A .【点睛】本题主要考查代数式的实际意义,熟练掌握代数式的书写是解题的关键.11.3a 2b 2(答案不唯一)【分析】根据单项式的系数和次数的意义判断即可.【详解】解:一个系数为3,次数为4,只含字母a 、b 的单项式:3a 2b 2,故答案为:3a 2b 2(答案不唯一).【点睛】本题考查了单项式,熟练掌握单项式的次数的意义,所有字母的指数和是解题的关键.12.20202m【分析】根据角平分线的性质可得△A 1CD =12△ACD ,△A 1BD =12△ABC ,再根据外角的性质可得△A 1=12△A ,找出规律即可求出△A 2020.【详解】解:△BA 1平分△ABC ,A 1C 平分△ACD ,△△A 1CD =12△ACD ,△A 1BD =12△ABC ,△△A 1=△A 1CD -△A 1BD =12△ACD △-12△ABC =12△A ,同理可得△A 2=12△A 1=(12)2△A ,△△A 2020=(12)2020△A ,△△A =m °,△△A 2020=2020°2m , 故答案为:2020°2m . 【点睛】本题考查了角平分线的性质与图形规律的综合,涉及三角形外角性质,找出△A 1和△A 之间的规律是解题的关键.13.3-或7-【分析】根据绝对值的定义求出a ,b 的值,再根据a <b ,分两种情况分别计算即可.【详解】解:△|a |=2,|b |=5,△a =±2,b =±5,△a <b ,△a =2时,b =5,a ﹣b =2﹣5=﹣3,a =﹣2时,b =5,a ﹣b =﹣2﹣5=﹣7,综上所述,a ﹣b 的值为﹣3或﹣7.故答案为:﹣3或﹣7.【点睛】本题主要考查了绝对值和代数式求值,解题的关键在于能够根据题意确定a 、b 的值. 14.335【分析】根据单项式的定义求出m 和n ,代入求值即可.【详解】解:△单项式2335a bc 的系数是m ,次数是n ,△35m =,2136n =++=, △33303365555m n +=+=+=, 故答案为:335. 【点睛】本题考查代数式求值,熟练掌握单项式定义,得到m 和n 的值是解决问题的关键.15.把同类项合并成一项【解析】略16.1【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解.【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么:第1次输出的结果是5,第2次输出的结果是16,第3次输出的结果是8,第4次输出的结果是4,第5次输出的结果是2,第6次输出的结果是1,第7次输出的结果是4,……综上可得,从第4次开始,每三个一循环,由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等.故答案为:1.【点睛】本题主要考查了代数式求值问题,解题的关键是通过计算特殊结果发现一般规律.17.21a -【分析】根据两个等式的左端式子的特征,将两个等式相加先求出21A C a -=-+,进而求出21C A a -=-.【详解】解: 2321①A B a a -=--,223②B C a -=-,∴①+②得()()()()2232123A B B C a a a -+-=--+-,()()2232123A B B C a a a -+-=--+-,2232123A C a a a -=--+-,21A C a -=-+,∴()()2121C A A C a a -=--=--+=-,故答案为:21a -.【点睛】本题主要考查了整式的加减,熟练运用合并同类项法则是解题的关键.18.(1)5xy +3y -1(2)-5 (3)35x =-【分析】(1)把A 和B 代入计算即可;(2)利用非负数的性质求出x ,y 的值,代入计算即可;(3)A -3B 变形后,其值与y 的取值无关,确定出x 的值即可.(1)解:A -3B=23231x xy y ++--3(2x xy -)=23231x xy y ++--3x 2+3xy=5xy +3y -1(2)解:因为()2120x y ++-=,()21x +≥0,2y -≥0,所以x +1=0,y -2=0,解得x =-1,y =2,把x =-1,y =2代入得,原式=5×(-1)×2+3×2-1=-5.(3)解:A -3B=5xy +3y -1=(5x +3)y -1,要使A -3B 的值与y 的取值无关,则5x +3=0,所以35x =-. 【点睛】本题考查整式的加减,整式的化简求值,非负数的性质,熟练掌握运算法则是解题的关键. 19.(1)24ab x -(2)48(3)48【分析】(1)根据图形可知剩余部分的面积=长方形的面积﹣4个小正方形的面积,从而可以用代数式表示出来;(2)根据题意可以求得正方形边长x 的值,从而求出长方体纸盒的底面积.(3)根据题意可以求得x 的取值范围,然后由x 取整数,从而可以分别求各种情况下长方体的体积,进而求出长方体体积的最大值.(1)由题意得,纸片剩余部分的面积是ab ﹣4x 2;(2)设:正方形边长为x由已知得,当a=10,b=8时,S=(a﹣2x)(b﹣2x)=(10﹣2x)×(8﹣2x)△边长为最小的正整数时△x=1,当x=1时,S=(10﹣2×1)(8﹣2×1)=48,即底面积是48.(3)由已知得,当a=10,b=8时,V=(a﹣2x)(b﹣2x)x=(10﹣2x)×(8﹣2x)×x△10﹣2x>0且8﹣2x>0,解得,x<4,△x取整数,△x=1或x=2或x=3,当x=1时,V=(10﹣2×1)(8﹣2×1)×1=48,当x=2时,V=(10﹣2×2)(8﹣2×2)×2=48,当x=3时,V=(10﹣2×3)(8﹣2×3)×3=24,即长方体的体积最大值是48.【点睛】本题考查列代数式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(1)14(2)32(3)32n(4)存在,第673个【分析】(1)由图可知,第一个图形由5个白色小正方形,第二个图形由8个,第三个图形由11个,往后每个图形依次增加3个,第四个图形在第三个图形的基础上增加3个即可;(2)根据(1)中观察得到的结论“往后每个图形依次增加3个白色小正方形”,则第十个应该在第一个的基础上增加9×3个;(3)第一个:5=2+3,第二个:8=2+3×2,第三个:11=2+3×3,则第n 个应该在2的基础上增加3n 个; (4)设第n 个图白色小正方形的个数为2021,将2021代入(3)中的代数式,求出n ,若n 为整数,则存在,否则,不存在.(1)11+3=14(个),故答案为:14(2)5+3×9=32(个),则答案为:32(3)第一个:5=2+3,第二个:8=2+3×2,第三个:11=2+3×3,则地n 个:2+3n ,故答案为:2+3n(4)设第n 个图白色小正方形的个数为2021则322021n +=解得673n =所以第673个图白色小正方形的个数为2021【点睛】本题主要考查了图形的变化规律,根据题目给出的图形找出其中的变化规律是解题的关键. 21.(1)a 2b -ab 2(2)6(3)2a 2b -ab 2【分析】(1)根据A B +=2243a b ab -即可得B =4a 2b -3ab 2-A ,从而可求出整式B ;(2)把1a =-,2b =代入(1)中的整式B 即可求解;(3)直接将整式A 、B 代入A -B ,利用整式的加减法则即可求解.(1)解:△A B +=2243a b ab -,2232A a b ab =-,△B =4a 2b -3ab 2-A =4a 2b -3ab 2-(3a 2b -2ab 2)=a 2b -ab 2;(2)解:当1a =-,2b =时,B =()()22-12-12=2+4=6⨯-⨯;(3)解△△2232A a b ab =-, B =a 2b -ab 2,△A -B =3a 2b -2ab 2-(a 2b -ab 2)=2a 2b -ab 2.【点睛】本题考查了整式的加减以及求代数式的值,熟练掌握合并同类项法则是解题的关键. 22.(1)数轴表示见解析;(2)122b a a b <-<-<<- 【分析】(1)先画出数轴,然后把根据题意表示出对应的有理数即可;(2)根据数轴上点表示的有理数左边的数小于右边的数进行求解即可.【详解】解:(1)数轴表示如下所示:(2)根据数轴上点的位置可得:122b a a b <-<-<<-. 【点睛】本题主要考查了用数轴表示有理数,利用数轴比较有理数的大小,解题的关键在于能够熟练掌握有理数与数轴的关系.23.(1)-8,4 (2)162BP t =- (3)3BP -DP 为定值12,与t 无关,理由见解析【分析】(1)根据若干个非负数的和为0,则这些非负数均为0,建立方程求解即可;(2)用含t 的代数式表示点D 、E 对应数,再利用中点性质即可求得点P 对应的数,最后利用B 对应数与P 对应数的差,表示数轴上两点之间的距离即可;(3)由(2)得:162BP t =-,1(123)2DP t =-,代入3BP -DP 即可得出答案. (1)解:△211(4)08a b ++-=,△110,408a b +=-=,解得:8,4a b =-=,△点A 表示的数为-8,点B 表示的数为4;故答案为:-8,4(2)解:如图,根据题意得:得:AD =2t ,BE =t ,△点D 、E 对应数分别为:-8+2t ,4-t ,且点E 在点D 的右侧,△DE =4-t -(-8+2t )=12-3t ,△点P 为线段DE 的中点,△11(123)22DP DE t ==-,△点P 对应的数为1182(123)222t t t -++-=-,△114(2)622BP t t =--=-; (3)解:3BP -DP 为定值12,与t 无关,理由如下:由(2)得:162BP t =-,1(123)2DP t =-,△113333(6)(123)186122222BP DP t t t t ⎡⎤-=---=--+=⎢⎥⎣⎦,△3BP -DP 为定值12,与t 无关. 【点睛】本题考查了数轴、绝对值、代数式、数轴上两点之间的距离、整式加减的应用等,找准等量关系,正确列出代数式是解题的关键.。

《整式运算》中考专题复习(知识点+基础应用+能力提高+中考真题)

《整式运算》中考专题复习(知识点+基础应用+能力提高+中考真题)

基本知识点总结一、主要概念:1.单项式2.多项式3.同类项4.整式单项式(定义、系数、次数)整式多项式(定义、项、次数、同类项、升降幂排列)二、基本运算法则1.合并同类项法则:合并同类项时,把系数相加,字母和字母指数不变.2. 添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。

3. 整式加减法法则:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项。

步骤:第一步:有括号的先去括号第二步:题目中标出同类项第三步:合同同类型整式加减运算专题应用考点一:同类项概念及其应用 基础应用1.下列各组式子中是同类项的是 ( ) A.n m mn 2541与 B.abc ab 55与 C.b a y x 2222与 D.52与32 2.下列说法正确的是 ( )A.a 是单项式,它的系数为0B. -πx 是一次单项式C.多项式222y xy x +-是单项式2x 、xy 2、2y 的和 D 是一个单项式3.下列各组中,不是同类项的是A.3和0B.2222R R ππ与 C.xy 与2pxy D.11113+--+-n n n n x y y x 与 4.下列各对单项式中,不是同类项的是 ( ) A.0与31B.23n m x y +-与22m n y x +C.213x y 与225yxD.20.4a b 与20.3ab 5.下列各组中的两项不属于同类项的是 ( ) A.233m n 和23m n - B.5xy和5xy C.-1和14 D.2a 和3x6.与y x 221不仅所含字母相同,而且相同字母的指数也相同的是 ( ) A.z x 221 B. xy 21C.2yx -D. x 2y 7.下列各组式子中,两个单项式是同类项的是( )A.2a 与2aB.5b a 2 与b a 2C. xy 与y x 2D. 0.3m 2n 与0.3x 2y8.说出下列各题中的两项是不是同类项?为什么? (1)-4x 2y 、4xy 2(2)a 2b 2、-a 2b2(3)3.5abc 、0.5acb(4)43、a 3(5)a 2、a 2(6)2πx 、4x 能力提高1.如果23321133a b x y x y +--与是同类项,那么a 、b 的值分别是( )A.12a b =⎧⎨=⎩B.02a b =⎧⎨=⎩C.21a b =⎧⎨=⎩D.11a b =⎧⎨=⎩2.若2313m x y z -与2343x y z 是同类项,则m = .x13.已知:23 x 3my 3与-1 x 6y n+1是同类项,求 m 、n 的值4.若单项式22m x y 与313n x y -是同类项,求m n +的值5.已知31394b a m -与12583+-n b a 是同类项,求2013(25)m n -的值 中考真题1.(2016•上海)下列单项式中,与a 2b 是同类项的是( )A. 2a 2bB. a 2b 2C. a b 2D . 3a b2.(2012•梅州)若代数式﹣4x 6y 与x 2ny 是同类项,则常数n 的值为 .3.(2010•红河自治州)如果的取值是和是同类项,则与n m y x y x m m n 31253-- ( ) A.3和-2 B.-3和2 C.3和2 D.-3和-24.(2013•凉山州)如果单项式﹣xa +1y 3与是同类项,那么a 、b 的值分别为( )A.a=2,b=3B.a=1,b=2C.a=1,b=3D.a=2,b=2 5.(2015•遵义)如果单项式﹣xy b+1与xa ﹣2y 3是同类项,那么(a ﹣b )2015= .6.(2012•黔西南州)已知﹣2xm ﹣1y 3和x n ym+n 是同类项,则(n ﹣m )2012= .7.(2012•河源)若代数式﹣4x 6y 与x 2ny 是同类项,则常数n 的值为 . 8.(2012•莆田)如果单项式x a+1y 3与2x 3y b 是同类项,那么a b= .考点二:合并同类项 基础应用1.合并下列多项式中的同类项:(1)6ab-ab (2)5xy-5yx (3)33225m m - (4)bc a b a 2221c 2+(5)23232b a b a +- (4)225354ba b a -3.下列各题合并同类项的结果对不对?752222(5)3222=-x x (6) 7mn-7nm=0 (7)a +a =2a (8)422532x x x =+(9)xy y x 523=+ (10)43722=-x x (11)628=-a a (12)532725x x x =+(13)b a ab b a 22223=- (14)y x y x y x 222835-=-- (15)2x+5y=7y (16)y x xy y x 33398=-(17)abc c ab 945=+ (18)523523x x x =+ (19)22254x x x =+ (20)ab ab b a 47322-=- 能力提高1.若2243a b x y x y x y -+=-,则a b +=__________. 2.若22+k k y x 与n y x 23的和为5n y x 2,则k= ,n= 3.若与的和是单项式,则 ,.4.如果- x a y a+1 与3x 5y b-1的和仍是一个单项式,求2a-b 的值.5.52114m a b +与3613n a b -的和仍是单项式,求m,n.6.已知,求m+n-p 的值.中考真题1.(2010•株洲市)在22x y ,22xy -,23x y ,xy - 四个代数式中找出两个同类项,并合并这两个同类项.2.(2014•毕节地区)若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m n 的值是( ) 223m a b 40.5n a b -m =n =35414527m n a b pa b a b ++-=-3.(2010•衡阳)若3x m+5y 2与x 3y n 的和是单项式,则n m= .考点二:添括号法则1.a ,b ,c 都是有理数,那么a-b+c 的相反数是( ) A.b-a-cB.b+a-cC.-b-a+cD.b-a+c2.下列去括号正确的是( ) A.2y 2-(3x-y+3z)=2y 2-3x-y+3z B.9x 2-[y-(5z+4)]=9x 2-y+5z+4 C.4x+[-6y+(5z-1)]=4x-6y-5z+1D.-(9x+2y)+(z+4)=-9x-2y-z-43. 在3a -2b+4c -d=3a -d -( )的括号里应填上的式子是( ) A. 2b -4c B. –2b -4c C. 2b+4c D. –2b+4c4.在括号内填上适当的项:(a+b -c)(a -b+c)=[][](_______)(________)-+a a . 5.去括号运算:-{-[-(-a )2-b 2 ]}-[-(-b 2)]考点三:整式及整式加减法运算 基础应用1. 下列代数式5.2,1,2,1,22--+-+yx a x x x x ,其中整式有( )个 A.4 B.3 C.2 D.1 2. 下列说法中,错误的是( )A.单项式与多项式统称为整式B.单项式x 2yz 的系数是1 C.ab+2是二次二项式 D.多项式3a+3b 的系数是3 3. 下列代数式a+bc,5a,mx 2+nx+p,-x.,1,5xyz,nm,其中整式有( )个 A.7 B.6 C.5 D.4 4. 下列运算正确的是( )A.3a+2b=5abB.3a 2b -3ba 2=0 C.3x 2+2x 3=5x 5D.5y 2-4y 2=1 能力提高1.若b a ,互为相反数,求b b b b b a a a a a 865429753+++++++++的值.2.已知A= mx ²+ 2x- 1,B= 3x ²- nx+ 3,且多项式A- B 的值与m 、n 的取值无关,试确定m 、n 的值.3.化简(1)22231722m m m +- (2)3x 2-1-2 x -5+3x - x 2(3)b a b a b a 2222132-+;(4) 222432132b ab a ab a -++- (5)4x 2y-8xy 2+7-4x 2y+12xy 2-4 (6) 3x 2-4xy+4y 2-5x 2+2xy-2y 2;(7)a 2-2a b +b 2+2a 2+2a b -b 2(8)2222642336a b ab b ab a ++---(9)322223b ab b a ab b a a +-+-+ (10)-0.8a 2b -6a b -1.2a 2b +5a b +a 2b(11)22222243845b a ab ab ab b a ab +-+-- (12)6x 2y+2 xy-3x 2y 2-7x-5yx-4y 2x 2-6x 2y4.先化简后求值:(1)x 3-x +1-x 2,其中x =-3; (2)x 5-y 3+4x 2y -4x +5,其中x =-1,y =-2;(3)2222342251, 2.xy yx y x x y x y ---+=-=,其中(7分)5. 已知2 a +(b +1)2=0,求5a b 2-[2a 2b -(4a b 2-2a 2b )]的值.中考真题1.( 2012•广州)下面的计算正确的是( )A .6a ﹣5a=1 B.a+2a 2=3a 3C.﹣(a ﹣b )=﹣a+bD.2(a+b )=2a+b 2.( 2014•广东)计算3a ﹣2a 的结果正确的是( )A.1B.aC.﹣aD.﹣5a 3.(2011•四川)计算a+(-a)的结果是( )A.2aB.0C.-a2D.-2a4.(2010•重庆)计算3x +x 的结果是( )A.3x 2B.2xC.4xD. 4x 25.(2010•浙江)化简a +b -b ,正确的结果是( )A.a -bB.-2bC.a +bD.a +2 6.(2014•济宁)化简﹣5ab +4ab 的结果是( )A.-1B. aC. bD.﹣ab 7.(2012•广东)计算﹣2a 2+a 2的结果为( )A.﹣3aB.﹣aC.﹣3a2D.﹣a28.(2015•梧州)先化简,再求值:2x+7+3x ﹣2,其中x=2.9.(2012•乐山)化简:3(2x 2﹣y 2)﹣2(3y 2﹣2x 2). 10.(2014 •嘉荫县)计算:(1)2x+3y ﹣6xy 与﹣2y+3x+xy 的和 (2)化简多项式:3x 2y ﹣4xy 2﹣3+5x 2y+2xy 2+5.单项式、多项式专题练习一、单项式1.(2015•台州)单项式2a 的系数是( ) A .2B .2aC .1D .a2.(2011•柳州)单项式3x 2y 3的系数是 3 .3.(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是( ) A .﹣2xy 2B .3x 2C .2xy 3D .2x 34.(2015•通辽)下列说法中,正确的是( ) A .﹣x 2的系数是 B .πa 2的系数是C .3ab 2的系数是3a D .xy 2的系数是 5.(2014•鄄城县)下列说法中正确的是()A .x 的系数是0B .24与42不是同类项 C .y 的次数是0 D .23xyz 是三次单项式 6.(2015.庐江县)4πx 2y 49的系数与次数分别为( )A.49,7 B. 49π,6 C.4π,4 D . 49π,47.(2015•岳阳)单项式﹣x 2y 3的次数是 . 8.(2015•桂林)单项式7a 3b 2的次数是 . 9.(2015•临沂)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第2015个单项式是( )A .2015x2015B .4029x2014C .4029x2015D .4031x201510.(2013•淮安)观察一列单项式:1x ,3x 2,5x 2,7x ,9x 2,11x 2,…,则第2013个单项式是 4025x 2. 11.(2015•牡丹江)一列单项式:﹣x 2,3x 3,﹣5x 4,7x 5,…,按此规律排列,则第7个单项式为 . 12.(2014•青海)一组按照规律排列的式子:,…,其中第8个式子是 ,第n 个式子是 .(n 为正整数) 9.(2014•北海)下列式子按一定规律排列:,,,,…,则第2014个式子是 .二、多项式1.(2014•佛山)多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )2.(2013年佛山市)多项式的次数及最高次项的系数分别是( ) A.3,-3 B.2,-3 C.5,-3 D.2,33.(2015.日照)x2y3−3xy3−2的次数和项数分别为()A.5,3B.5,2C.2,3D.3,34.(2011广东湛江)多项式2x2-3x+5是_____次_____项式.5.(2013•济宁)如果整式x n﹣2﹣5x+2是关于x的三次三项式,那么n等于()A.3 B.4 C.5 D.6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《基本概念与运算法则》测试题
一、填空题(每空1分,共22分)
1.数学思想归纳为三方面的内容,可以用六个字表达:(抽象)、(推理)、(模型)。

2.数量关系的本质是(多与少)。

3.认识自然数的方法有两种方法:(对应的方法)和(定义的方法)。

4.解方程的基本原则是利用(等式)的性质。

5.在小学阶段的数学教学中,至少需要考虑两个模型:一个是(总量)模型,一个是(路程)模型。

6.数学中的直观主要包含三种:(代数直观)、(几何直观)和(统计直观)。

7.现代数学的三个特征:研究对象的(符号化)、论证逻辑的(公理化)、证明过程的(形式化)。

8.(只能被1和自己整除)的自然数叫做素数(质数)。

9.数学课程标准中的“四基”指的是:(基础知识)、(基本技能)、(基本思想)、(基本活动经验)。

10.(光速)是绝对的,(时间)是相对的,这就是狭义相对论。

二、选择题(每题1分,共15分)
1.必然事件的概率为( B)。

A、P=0
B、P=1
C、0≦P≦1
2.理解数位的核心是理解(C)。

A、数位
B、数的运算
C、十进制计数法
3.数感与(B )是相对。

A、数量
B、抽象
C、具体
4.“三段论”不包括哪一项(C)。

A、大前提
B、小前提
C、推理
5.(B)是用数学的语言“说”数学、“说”现实世界。

A、发现问题
B、提出问题
C、解决问题
6.(A)是用数学的眼睛“看”数学、“看”现实世界。

A、发现问题
B、提出问题
C、解决问题
7.(C)是最对称的,因而是最和谐的。

A、长方形
B、正方形
C、圆
8.统计学研究的基础是(A )。

A、数据
B、背景
C、统计
9.推断统计的重要手段是(B )。

A、平均数
B、估计
C、随机性
10.数据分析不包括(C)。

A、描述统计
B、推断统计
C、随机性
11.下列选项中不是现代数学的三个特征(C)。

A、研究对象的符号化
B、证明过程的形式化
C、论证运算的运算化
12.数学的目的是(B)。

A、研究对象的存在性
B、研究对象之间的关系
C、数是如何存在的
13.解方程的基本原则是利用(C )。

B、运算定律 B、四则运算法则
C、等式性质
14.空间观念的本质是(A )。

A、空间想象力
B、动手操作的能力
C、等式性质
15.数学命题的核心是(A)。

B、把关系概念应用于对象概念 B、论证这些研究对象之间的关系
C、研究对象的符号化
三、判断题(每题1分,共5分)
1、条形统计图,扇形统计图和折线统计图共性是,可以直观的表述数据。

(√)
2、空间观念的本质是空间想象力。

(×)
3、面积是对一维空间图形的度量。

(×)
4、长度是对二维空间图形的度量。

(×)
5、体积是对三维空间图形的度量。

(√)
四、简答题(每题7分,共28分)
1、如何理解分数的本质在于真分数?
分数的本质在于真分数,即分数的分子小于分母,这样的分数有两个现实背景:一个是表达整体与等分的关系,一个是表达两个数量之间整数的比例关系,后者称为整比例关系。

2、什么是符号意识?
符号意识是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。

建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重
要形式。

3、如何理解平移、旋转、轴对称?
平移:参照物是一条射线。

称图形上的所有点与射线的距离保持不变,沿射线的方向移动相同的距离的运动为平移。

旋转:参照物是一条射线。

称图形上的所有点到射线原点距离保持不变,相对射线移动了相同的角度的运动为旋转。

轴对称:参照物是一条直线。

称图形翻转到直线的另一侧,对应点到直线距离相等、对应点连线与直线垂直的运动为轴对称。

它们都是刚体运动,就是运动之后保持任意两点间直线距离不变。

什么是概率?如何得到概率?
概率是指随机事件发生可能性的大小,在一般情况下,这个可能性的大小是未知的。

至少有两种方法可以得到未知的概率:一种方法就是估计的方法;还有一种方法就是不借助数据而直接根据背景定义概率,定义的概率实质上就是对随机事件发生可能性大小的一种度量,这个度量是人们在理想状态下制定出来的。

五、论述题(30)
平移、旋转、轴对称在小学课程标准中是如何要求的?(理由充分即可)
第一学段:结合实例感受平移、旋转、轴对称现象。

能辨认简单图形平移后的图形。

通过观察、操作,初步认识轴对称图形。

第二学段:通过观察、操作等活动,进一步认识轴对称图形及其对称轴,能在方格纸上画出轴对称图形的对称轴;能在方格纸上补全一个简单的轴对称图形。

通过观察、操作等,在方格纸上认识图形的平移与旋转,能在方格纸上按水平或垂直方向将简单图形平移,会在方格纸上将简单图形旋转90度。

能利用方格纸按一定比例将简单图形放大或缩小。

能从平移、旋转和轴对称的角度欣赏生活中的图案,并运用它们在方格纸上设计简单的图案。

2、请你结合实际教学活动,谈一下你对“平均数”的理解?(理由充分即可)
课标要求:(第二学段)体会平均数的作用,能计算平均数,能用自己的语言解释其实际意义。

能解释统计结果,根据结果作出简单的判断和预测,并能进行交流。

算数意义上的平均数是比较容易理解的,平均数=总量÷份数,这仅仅是除法的一种形式,这种形式来源于乘法模型:总价=单价×份数,其中的单价就是平均数。

虽然从运算形式上看,算数意义上的平均数与统计意义上的平均数是一致的,但前者属于描述统计,后者属推断统计,差异就在于是否考虑了随机性,所以统计意义上的平均数的教学,必须考虑到抽样和样本的随机性,把每个数据都看成样本,是通过抽样得到的,其核心在于:每次抽样是独立进行的,每次抽样过程在本质上是一样的。

在实际教学活动中,可以设计估计投篮命中率的活动,先让学生通过样本感悟随机性,再通过样本感悟平均数。

相关文档
最新文档