复合函数定义域的常见求法
关于复合函数定义域的求解方法

关于复合函数定义域的求解方法复合函数是由两个或多个函数组合而成的新函数,其定义为:f(g(x)),其中g(x)是内层函数,f(x)是外层函数。
定义域是指函数能够接受的数值范围。
换而言之,对于给定的函数,定义域是使其有意义的输入值的集合。
要确定复合函数的定义域,需要考虑两个方面:内层函数和外层函数。
首先,我们需要确定内层函数的定义域,然后根据内层函数的结果来确定外层函数的定义域。
内层函数的定义域确定方法如下:1.若内层函数是一个常数函数,定义域为实数集合,即:(-∞,∞)。
2.若内层函数是一个多项式函数,其定义域为所有实数集合,即:(-∞,∞)。
3.若内层函数是一个分式函数,需要注意分母不能为零。
因此,需要将分母不等于零的解集作为内层函数的定义域。
4.若内层函数是一个平方根函数,需要考虑平方根中的值不能为负数,因此需要将平方根中的表达式大于等于零的解集作为内层函数的定义域。
确定内层函数的定义域后,我们需要将内层函数的结果作为外层函数的输入来确定外层函数的定义域。
具体方法如下:1.若外层函数是一个常数函数,定义域与内层函数的定义域相同。
2.若外层函数是一个多项式函数,其定义域与内层函数的定义域相同。
3.若外层函数是一个分式函数,需要将分母不等于零的解集作为外层函数的定义域。
4.若外层函数是一个平方根函数,需要将平方根中的表达式大于等于零的解集作为外层函数的定义域。
需要注意的是,在求解复合函数的定义域时,需要保证两个函数都有定义,并且内层函数的结果必须属于外层函数的定义域。
举个例子来说明复合函数的定义域的求解方法:考虑函数f(x)=√(3-2x)+1和g(x)=x^2-4x+3,我们需要确定复合函数f(g(x))的定义域。
首先,我们需要确定g(x)=x^2-4x+3的定义域。
由于这是一个多项式函数,其定义域为所有实数集合,即:(-∞,∞)。
接下来,我们将g(x)的结果带入f(x)中来确定复合函数f(g(x))的定义域。
几种复合函数定义域的求法

几种复合函数定义域的求法配凑法是指先将关于变量x的表达式凑成整体的g(x),再将g(x)替换为x,得到f(x)。
例如,对于2f(x-2)=x+2,可以将x-2凑成整体,得到2f(g(x))=x+2,其中g(x)=x-2,然后将g(x)替换为x,得到2f(x)=x+2,最终得到f(x)=(x+2)/2.换元法是指先设g(x)=t,解出x(用t表示x),然后将x (关于t的式子)代入f[g(x)]中消去x,得到f(t),最后将t替换为x得到f(x)。
这种代换遵循同一函数的原则。
例如,对于f(x+1)=2x,可以设g(x)=x+1,得到f(g(x))=2(x-1),然后将g(x)替换为x,得到f(x+1)=2x,最终得到f(x)=2(x-1)。
复合函数的定义是:若y=f(u),且u=g(x),且g(x)的值域与f(u)的定义域有交集,则y=f[g(x)]是x的复合函数。
即将一个函数中的自变量替换成另一个函数得到的新函数。
例如,对于f(x)=3x+5和g(x)=x+1,复合函数f(g(x))即将f(x)中的x替换成g(x),得到f(g(x))=3(x+1)+5=3x+8.函数f(x)和函数f(x+5)的定义域不相同,因为定义域是求x的取值范围,而x和x+5所属的范围相同,导致它们定义域的范围不同。
复合函数的定义域是复合函数y=f[g(x)]中x的取值范围。
x称为直接变量,u称为中间变量,u的取值范围即为g(x)的值域。
f(g(x))与g(f(x))表示不同的复合函数。
设函数f(x)=2x+3,g(x)=3x-5,求f(g(x))和g(f(x))的复合函数的定义域。
对于f(g(x)),先求出g(x)的值域,即-5<x<inf,然后将其代入f(x)中得到f(g(x))=6x-7,因此f(g(x))的定义域为-5/6<x<inf。
对于g(f(x)),先求出f(x)的值域,即-inf<y<inf,然后将其代入g(x)中得到g(f(x))=6x+4,因此g(f(x))的定义域为-inf<x<inf。
求复合函数的定义域

求复合函数的定义域一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、例题剖析:(1)、已知f x ()的定义域,求[]f g x ()的定义域思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。
例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。
解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1)又f 对lnx 作用,作用范围不变,所以01<<ln x解得x e ∈()1,,故函数f x (ln )的定义域为(1,e )例2. 若函数f x x ()=+11,则函数[]f f x ()的定义域为______________。
解析:先求f 的作用范围,由f x x ()=+11,知x ≠-1 即f 的作用范围为{}x R x ∈≠-|1,又f 对f(x)作用所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足x f x ≠-≠-⎧⎨⎩11() 即x x ≠-+≠-⎧⎨⎪⎩⎪1111,解得x x ≠-≠-12且 故函数[]f f x ()的定义域为{}x R x x ∈≠-≠-|12且(2)、已知[]f g x ()的定义域,求f x ()的定义域思路:设[]f g x ()的定义域为D ,即x D ∈,由此得g x E ()∈,所以f 的作用范围为E ,又f 对x 作用,作用范围不变,所以x E E ∈,为f x ()的定义域。
例3. 已知f x ()32-的定义域为[]x ∈-12,,则函数f x ()的定义域为_________。
几种复合函数定义域的求法

配凑法就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换成x 而得)(x f 。
f(x -1x )=x 2+1x 2,函数f(x)的解析式换元法就是先设t x g =)(,从中解出x (即用t 表示x ),再把x (关于t 的式子)直接代入)]([x g f 中消去x 得到)(t f ,最后把)(t f 中的t 直接换成x 即得)(x f ,这种代换遵循了同一函数的原则。
f(x +1)=x 2+x,函数f(x)的解析式:复合函数的定义域复合函数的定义一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数.例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x ,22(())3()53(1)538f g x g x x x =+=++=+问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。
)说明: ⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。
⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。
⑶))((x g f 与))((x f g 表示不同的复合函数。
设函数53)(,32)(-=+=x x g x x f ,求))(()),((x f g x g f复合函数的定义域求法.已知)(x f 的定义域,求复合函数()][x g f 的定义域由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。
8种求定义域的方法

8种求定义域的方法在数学领域中,关于定义域的求解方法有许多种。
下面将介绍其中的八种方法。
方法一:根据函数公式求取定义域。
对于一些简单的函数,可以通过函数的公式直接求取定义域。
例如对于一个分式函数,如f(x)=1/(x-2),由于分母不能为0,所以定义域为{x,x≠2}。
方法二:分析函数的基本性质。
有些函数拥有特定的性质,根据这些性质可以求得函数的定义域。
例如对于多项式函数,常数函数和指数函数,它们都定义在实数域上,因此定义域为实数集。
方法三:考虑函数中的根。
对于包含根的函数,定义域不能使这些根使得函数的值出现未定义的情况。
例如对于开方函数f(x)=√(x-3),由于根号下的值不能为负,所以定义域为{x,x≥3}。
方法四:考虑函数的分段定义。
对于分段定义的函数,需要分别考虑每个分段的定义域。
例如对于函数f(x)=,x,分段定义为{x当x>=0时;-x当x<0时},因此定义域为实数集。
方法五:考虑函数的限制条件。
有时函数在定义域上有一些限制条件。
例如对于对数函数f(x) =ln(x),由于对数函数只对正数有定义,所以定义域为{x , x > 0}。
方法六:考虑函数的参数限制。
对于含有参数的函数,需要考虑参数的限制条件。
例如对于双曲正弦函数f(x) = sinh(x),由于双曲正弦函数对所有实数都有定义,所以定义域为实数集。
方法七:考虑函数的复合性质。
对于复合函数,需要分析组成函数的定义域。
例如对于函数f(g(x)),需要保证g(x)的定义域是f(x)的定义域。
例如对于函数f(g(x)) = 1/x,如果g(x) = sin(x) + 2,由于sin(x)的定义域为实数集,所以g(x)的定义域与f(x)的定义域保持一致。
方法八:考虑函数的图像。
对于一些函数,通过画出函数的图像可以直观地确定定义域。
例如对于一个二次函数f(x)=x^2+1,通过函数的图像我们可以看到函数的定义域为实数集。
复合函数定义域三种形式解法

复合函数定义域三种形式解法当我们考虑复合函数的定义域时,需要注意两个关键点:第一个是每个函数的定义域,第二个是每个函数的结果是否符合另一个函数的定义域要求。
在解决复合函数定义域时,有三种常见的形式:两个函数的定义域都为实数集,两个函数的定义域为整数集和有限集。
一、两个函数的定义域都为实数集实数集是一个包含了所有实数的集合,通常用符号R表示。
当两个函数的定义域都为实数集时,我们可以直接计算出复合函数的定义域。
例如,考虑函数f(x)=√x和g(x)=x^2、它们的定义域都为实数集。
首先,我们需要找到复合函数(f∘g)(x)=f(g(x))的定义域。
根据复合函数的定义,我们需要先计算出g(x)的结果,然后再将结果作为f(x)的输入。
由于g(x)=x^2,它的定义域是实数集R。
然后,将g(x)的输出作为f(x)的输入进行计算。
因为f(x)=√x,它的定义域也是实数集R。
所以,函数(f∘g)(x)=f(g(x))的定义域是实数集R。
二、两个函数的定义域为整数集整数集是由所有整数组成的集合,通常用符号Z表示。
当两个函数的定义域都为整数集时,我们需要检查复合函数的结果是否为整数。
例如,考虑函数f(x)=2x和g(x)=x+3、它们的定义域都为整数集。
按照复合函数的定义,我们计算出复合函数(f∘g)(x)=f(g(x))的定义域。
首先,我们需要计算出g(x)的结果,然后再将结果作为f(x)的输入。
由于g(x)=x+3,它的定义域为整数集Z。
然后,我们计算出g(x)的输出是整数。
接下来,将g(x)的输出作为f(x)的输入进行计算。
因为f(x)=2x,它的输入必须是整数才能保证输出也是整数。
所以,函数(f∘g)(x)=f(g(x))的定义域是整数集Z。
三、两个函数的定义域为有限集有限集是一个只包含有限个元素的集合。
当两个函数的定义域都是有限集时,我们可以直接列举出复合函数的定义域。
例如,考虑函数f(x)=x+1和g(x)=2x。
求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法函数的定义域和值域是数学中的重要概念,它们描述了函数的输入和输出的范围。
在不同的数学领域和实际应用中,求解函数的定义域和值域有不同的方法和技巧。
函数的定义域是指函数中自变量的取值范围。
换句话说,定义域是使函数有意义的输入值的集合。
下面介绍一些常用方法来求解函数的定义域:1.分式函数:分式函数的定义域通常要求分母不等于零,因此我们需要找到分母为零的点,并将其排除。
求解分母为零的方程,得到函数的定义域。
2.平方根函数:平方根函数的定义域要求根号内的值大于等于零。
因此,需要将根号内的表达式>=0,并求解方程,得到函数的定义域。
3.指数函数和对数函数:指数函数的定义域通常为全体实数,而对数函数的定义域要求基数和真数都大于零。
因此,对于指数函数,不存在特定的求解方法;而对于对数函数,需要使基数和真数大于零,并求解相应的方程。
4.复合函数:复合函数的定义域由内层函数和外层函数的定义域共同确定。
首先求解内层函数的定义域,将其结果作为外层函数的自变量的定义域。
注意需要将两个函数的定义域进行交集运算,得到复合函数的定义域。
5.根式函数:根式函数的定义域需要满足根号内的表达式大于等于零。
求解根号内的方程,得到函数的定义域。
函数的值域是函数在定义域内所有可能的输出值的集合。
下面介绍一些常用方法来求解函数的值域:1.分析法:通过分析函数的特点、性质和图像,推断出函数的值域。
例如,通过观察函数的单调性、奇偶性、对称性、极值等特点,可以确定函数的值域的范围。
2.等式法:通过解方程求函数的值域。
将函数的表达式等于一个未知数,解方程得到未知数的取值范围,即为函数的值域。
3.代数运算法:通过对函数进行代数运算,得到函数的值域。
例如,对于一次函数,通过对其进行线性变换和平移,可以推导出函数的值域的范围。
4.图像法:通过绘制函数的图像,观察函数的上下界,以及是否存在水平渐近线和垂直渐近线,可以推断出函数的值域。
复合函数(知识点总结、例题分类讲解)

复合函数的定义域和解析式以及单调性【复合函数相关知识】1、复合函数的定义如果y 是u 的函数,u 又是x 的函数,即()y f u =,()u g x =,那么y 关于x 的 函数(())y f g x =叫做函数()y f u =(外函数)和()u g x =(内函数)的复合函数,其中u 是中间变量,自变量为x 函数值为y 。
例如:函数212x y += 是由2u y =和21u x =+ 复合而成立。
说明:⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。
⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。
⑶))((x g f 与))((x f g 表示不同的复合函数。
2.求有关复合函数的定义域① 已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域的方法:已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域。
实际上是已知中间变量的u 的取值范围,即)(b a u ,∈,)()(b a x g ,∈。
通过解不等式b x g a <<)(求得x 的范围,即为))((x g f 的定义域。
② 已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域的方法:若已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域。
实际上是已知直接变量x 的取值范围,即)(b a x ,∈。
先利用b x a <<求得)(x g 的范围,则)(x g 的范围即是)(x f 的定义域。
3.求有关复合函数的解析式①已知)(x f 求复合函数)]([x g f 的解析式,直接把)(x f 中的x 换成)(x g 即可。
②已知)]([x g f 求)(x f 的常用方法有:配凑法和换元法。
配凑法:就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换 成x 而得)(x f 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合函数定义域的常见求法
一、复合函数的概念
假如y 是u 的函数,而u 是x 的函数,即y = f ( u ), u = g ( x ) ,那么y 关于x 的函数y = f [g ( x ) ]叫做函数f 与 g 的复合函数,u 叫做中间变量。
注意:复合函数并不是一类新的函数,它只是反映某些函数在结构方面的某种特点,因此,依照复合函数结构,将它折成几个简单的函数时,应从外到里一层一层地拆,注意不要漏层。
另外,在研究有关复合函数的咨询题时,要注意复合函数的存在条件,即当且仅当g ( x )的值域与f ( u )的定义域的交集非空时,它们的复合函数才有意义,否那么如此的复合函数不存在。
例:f ( x + 1 ) = (x + 1)2 能够拆成y = f ( u ) = u 2 , u = g ( x ) , g ( x ) = x + 1 ,即能够看成f ( u ) = u 2 与g ( x ) = x + 1 两个函数复合而成。
二、求复合函数的定义域:
〔1〕假设f(x)的定义域为a ≤ x ≤ b,那么f [ g ( x ) ] 中的a ≤ g ( x ) ≤ b ,从中解得x 的范畴,即为f [g ( x )]的定义域。
例1、y = f ( x ) 的定义域为[ 0 , 1 ],求f ( 2x + 1 )的定义域。
答案: [-1/2 ,0 ]
例2、f ( x )的定义域为〔0,1〕,求f ( x 2)的定义域。
答案: [-1 ,1]
〔2〕假设f [ g ( x ) ]的定义域为〔m , n 〕那么由m < x < n 确定出g ( x )的范畴即为f ( x )的定义域。
例3、函数f ( 2x + 1 )的定义域为〔0,1〕,求f ( x ) 的定义域。
答案: [ 1 ,3]
〔3〕由f [ g ( x ) ] 的定义域,求得f ( x )的定义域后,再求f [ h ( x ) ]的定义域。
例4、f ( x + 1 )的定义域为[-2 ,3],求f ( 2x 2 – 2 ) 的定义域。
答案:[-√3/2 ,-√3]∪[√3/2 ,√3]
三、求复合函数的解析式。
关于复合函数的解析式的求法,尽管种类专门多,在那个地点重点介绍配凑法和换元法,详细内容请参阅«教学周刊»第6期。
〔1〕配凑法
假设f [ g ( x ) ] = F ( x )是关于x 的函数,能够把F ( x )表示g ( x )的复合函数形式,然后用x 替换g ( x ),即可得到f ( x )的解析式。
例5、f (x x
x x x 21)122++=+,求f ( x )的解析式。
答案:f(x)= x 2
例6、f ( x + 331)1x
x x +=,求f ( x )的解析式。
答案:f(x)= x 3-2x-1
〔2〕换元法
假设f [ g ( x ) ]的表达式,能够令g ( x ) = t ,从中解出x 再将x 代入f [ g ( x ) ]的表达式中,如此
f [
g ( x ) ]就表示成关于t 的函数,即得函数f ( x )的解析式。
例7、x
x x x f 212)1(+=+ 〔 x > 0 〕求f ( x )的解析式。
答案: 2 / (x-3)
例8、用换元法看看例5,例6能否适用。
答案:f(x)= x 2 f(x)= x 3-2x-1
二、关于f ( x )函数中,利用条件,求某些专门函数值。
关于这类咨询题的解决,一定要看清条件,按照所要解决的咨询题,利用条件,关键在于能否找到条件与所求的联系。
这类咨询题没有现成的方法,它所考查的是同学们的发散思维。
例9、函数f ( x )满足f ( ab ) = f ( a ) + f ( b ),且f ( 2 ) = p, f ( 3 ) = q,那么f ( 36 ) = ?
[分析]该题要求的是f ( 36 ),而条件中给我们f ( ab ) = ……,自然会想到,36能拆成什么的乘积了。
一、复合函数的概念
假如y 是u 的函数,而u 是x 的函数,即y = f ( u ), u = g ( x ) ,那么y 关于x 的函数y = f [g ( x ) ]叫做函数f 与 g 的复合函数,u 叫做中间变量。
注意:复合函数并不是一类新的函数,它只是反映某些函数在结构方面的某种特点,因此,依照复合函数结构,将它折成几个简单的函数时,应从外到里一层一层地拆,注意不要漏层。
另外,在研究有关复合函数的咨询题时,要注意复合函数的存在条件,即当且仅当g ( x )的值域与f ( u )的定义域的交集非空时,它们的复合函数才有意义,否那么如此的复合函数不存在。
例:f ( x + 1 ) = (x + 1)2
能够拆成y = f ( u ) = u 2 , u = g ( x ) , g ( x ) = x + 1 ,即能够看成f ( u ) = u 2 与g ( x ) = x + 1 两个函数复合而成。
二、求复合函数的定义域:
〔1〕假设f(x)的定义域为a ≤ x ≤ b,那么f [ g ( x ) ] 中的a ≤ g ( x ) ≤ b ,从中解得x 的范畴,即为f [g ( x )]的定义域。
例1、y = f ( x ) 的定义域为[ 0 , 1 ],求f ( 2x + 1 )的定义域。
例2、f ( x )的定义域为〔0,1〕,求f ( x 2)的定义域。
〔2〕假设f [ g ( x ) ]的定义域为〔m , n 〕那么由m < x < n 确定出g ( x )的范畴即为f ( x )的定义域。
C.[H]和A TP D.184条、0条
例3、函数f ( 2x + 1 )的定义域为〔0,1〕,求f ( x ) 的定义域。
〔3〕由f [ g ( x ) ] 的定义域,求得f ( x )的定义域后,再求f [ h ( x ) ]的定义域。
例4、f ( x + 1 )的定义域为[-2 ,3],求f ( 2x 2 – 2 ) 的定义域。
三、求复合函数的解析式。
关于复合函数的解析式的求法,尽管种类专门多,在那个地点重点介绍配凑法和换元法,详细内容请参阅«教学周刊»第6期。
〔1〕配凑法
假设f [ g ( x ) ] = F ( x )是关于x 的函数,能够把F ( x )表示g ( x )的复合函数形式,然后用x 替换g ( x ),即可得到f ( x )的解析式。
例5、f (x x x x x 11)12
2++=+,求f ( x )的解析式。
例6、f ( x + 331)1x
x x +=,求f ( x )的解析式。
〔2〕换元法
假设f [ g ( x ) ]的表达式,能够令g ( x ) = t ,从中解出x 再将x 代入f [ g ( x ) ]的表达式中,如此f [ g ( x ) ]就表示成关于t 的函数,即得函数f ( x )的解析式。
例7、x
x x x f 212)1(+=+ 〔 x > 0 〕求f ( x )的解析式。
例8、用换元法看看例5,例6能否适用。
二、关于f ( x )函数中,利用条件,求某些专门函数值。
关于这类咨询题的解决,一定要看清条件,按照所要解决的咨询题,利用条件,关键在于能否找到条件与所求的联系。
这类咨询题没有现成的方法,它所考查的是同学们的发散思维。
例9、函数f ( x )满足f ( ab ) = f ( a ) + f ( b ),且f ( 2 ) = p, f ( 3 ) = q,那么f ( 36 ) = ?
[分析]该题要求的是f ( 36 ),而条件中给我们f ( ab ) = ……,自然会想到,36能拆成什么的乘积了。
例10、f ( x ) = 221x x ,那么f ( 1 ) + f ( 2) + f (21) + f ( 3 ) + f( 31 ) + f ( 4 ) + f (4
1)
例11、假设上题要求: f ( 1 ) + f ( 2 ) + f (
21) + …… + f ( n ) + f (n 1) + …… + f ( 2003 ) + f (20031)。