《超进化物语》量子巨龙怎么打 超进

《超进化物语》量子巨龙怎么打 超进
《超进化物语》量子巨龙怎么打 超进

《超进化物语》量子巨龙怎么打超进化物语量子巨龙打法攻

量子巨龙是超进化物语中一个非常强大的BOSS,玩家如果在游戏中遇到它,没有做到足够的准备是很难打败量子巨龙的,这里小编就跟大家介绍一下量子巨龙的打法攻略,一起来看看吧。

一、BOSS分析

怪兽属性:输出、远程

技能:

量子波动——每攻击3次触发量子波动,对所有敌人造成攻击力*150%的伤害。

技能评价:全屏伤害,对后排的威胁极大,每攻击3次就能触发的条件也比较简单,很强势!但是量子巨龙本身不是很肉,毕竟是个远程输出,不要让它放出技能就很好打。

二、打法分析

打这种远程输出,技能封印是关键,40级解锁神兽麒麟的玩家可以算好攻击频率,用神灵技来封印量子巨龙,其后利用己方后排打出第二轮封印,形成控制链,依靠爆发带走。

如果没有到40级,就只能从长计议了,首先,控制链不足,你的封印只有一轮,比如依靠轮

脉或者影杀。其次,重点转移要到伤害减免和属性削弱方面。伤害减免,利用铁甲龙、月夕(远古)的减伤来削减量子巨龙的伤害量,而咒刃(灵族)则是削弱其攻击力(咒刃记得肉一点,持久、嗜血纹章最好装上)。

在打量子巨龙的时候不但要注意技巧还需要有一定的装备和实力,所以做好准备才是最重

要的。

更多相关资讯攻略请关注:超进化物语专题

量子阱原理及应用

光子学原理课程期末论文 ——量子阱原理及其应用 信息科学与技术学院 08电子信息工程 杨晗 23120082203807

题目:量子阱原理及其应用 作者:杨晗 23120082203807 摘要:随着半导体量子阱材料的发展,量子阱器件广泛应用于各种领域.本文主 要介绍量子阱的基本特征,重点从量子阱材料、量子阱激光器、量子阱LED、等方面介绍量子阱理论在光电器件方面的发展及其应用。 关键词:量子阱量子约束激光器 量子阱是指由2种不同的半导体材料相间排列形成的、具有明显量子限制效应的电子或空穴的势阱。量子阱的最基本特征是,由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱,简单来说,就是由多个势阱构成的量子阱结构为多量子阱,简称为MQW(Multiple Quantum Well),而由一个势阱构成的量子阱结构为单量子阱,简称为SQW(Single Quantum Well)。 一量子阱最基本特征 由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱。如果势垒层很薄,相邻阱之间的耦合很强,原来在各量子阱中分立的能级将扩展成能带(微带),能带的宽度和位置与势阱的深度、宽度及势垒的厚度有关,这样的多层结构称为超晶格。有超晶格特点的结构有时称为耦合的多量子阱。量子肼中的电子态、声子态 和其他元激发过程以及它们之间 的相互作用,与三维体状材料中的 情况有很大差别。在具有二维自由 度的量子阱中,电子和空穴的态密 度与能量的关系为台阶形状。而不 是象三维体材料那样的抛物线形 状[1]。 图1半导体超晶格的层状结构,白圈和灰圈代 表两种材料的原子

半导体超晶格

半导体超晶格 材料的制造、设计是以固体能带结构的量子力学理论为基础的,也 就是说,人为地改变晶体的周期势,做出具有新功能的人工超晶格 结构材料。半导体超晶格材料具有一般半导体材料不能实现的许 多新现象,可以说是超薄膜晶体制备技术,量子物理和材料设计理 论相结合而出现的第三种类的半导体材料。利用这种材料,不仅可 以显著提高场效应晶体管和半导体激光器等的性能,也可以制备 至今还没有的功能更优异的新器件和发现更多的新物理现象,使 半导体器件的设计和制造由原来的“杂质工程”发展到“能带工 程”。因此,半导体超晶格是属于高科技范畴的新型功能材料。 电子亲和势是指元素的气态原子得到一个电子时放出的能量,叫做电子亲和势。(曾用名:电子亲和能EA)单位是kJ/mol或eV。电子亲和势的常用符号恰好同热力学惯用符号相反。热力学上把放出能量取为负值,例如,氟原子F(g)+e→F-(g),△H=-322kJ/mol。而氟的电子亲和势(EA)被定义为322kJ/mol。为此,有人建议元素的电子亲和势是指从它的气态阴离子分离出一个电子所吸收的能量。于是,氟离子F-(g)-e→F(g),△H=322kJ/mol。两者所用符号就趋于统一。可以认为,原子的电子亲和势在数值上跟它的阴离子的电离能相同。根据电子亲和势数据可以判断原子得失电子的难易。非金属元素一般具有较大的电子亲合势,它比金属元素容易得到电子。电子亲和势由实验测定,但目前还不能精确地测得大多数元素的电子亲和势。元素的电子亲和势变化的一般规律是:在同一周期中,随着原子序数的增大,元素的电子亲和势一般趋于增大,即原子结合电子的倾向增强,或它的阴离子失去电子的能力减弱。在同一族中,元素的电子亲合势没有明显的变化规律。当元素原子的电子排布呈现稳定的s2、p3、p6构型时,EA值趋于减小,甚至ⅡA族和零族元素的EA都是负值,这表明它们结合电子十分困难。在常见氧化物和硫化物中含有-2价阴离子。从O-(g)或S-(g)结合第二个电子而变成O2-(g)或S2-(g)时,要受到明显的斥力,所以这类变化是吸热的。即O-(g)+e→O2-(g),△H=780kJ/mol;S-(g)+e→S2-(g),△H=590kJ/mol。这些能量能从形成氧化物或硫化物晶体时放出的晶格能得到补偿。 电子亲和势与原子失去电子需消耗一定的能量正好相反,电子亲和势是指原子获得电子所放出的能量。 元素的一个气态原子在基态时获得一个电子成为气态的负一价离子所放出的能量,称为该元素的第一电子亲和势(First electron affinity)。与此类推,也可得到第二、第三电子亲和 势。第一电子亲和势用符号“E”表示,单位为kJ·mol·L,如: Cl(g) +e → Cl(g)E= +348.7 kJ·mol·L 大多数元素的第一电子亲和势都是正值(放出能量),也有的元素为负值(吸收能量)。这说明这种元素的原子获得电子成为负离子时比较困难,如: O(g) +e → O(g)E= +141 kJ·mol·L O(g) +e → O(g)E= -780 kJ·mol·L 这是因为,负离子获得电子是一个强制过程,很困难须消耗很大能量。

卷积神经网络在量子态表达中的应用

卷积神经网络在量子态表达中的应用 传统求解量子力学的方法是通过二阶偏微分方程得出波函数的 具体形式,进而计算得出微观粒子的性质。波函数利用正交基展开, 正交基的数量即希尔伯特空间维度的计算量会呈指数增加,这使得关 于波函数的求解变得困难。随着人工智能和图形处理器GPU的蓬勃发展,机器学习方法在各个领域都开始崭露头角。因此,探索机器学习技术在量子力学问题求解中的应用是一个新颖而有意义的问题。卷积神经网络(Convolution neural network,CNN)属于监督学习,需要大量 的精确解来训练CNN模型。由于简谐振子、氢原子的势函数与能量本征值之间存在一一对应的解析解,本课题以简谐振子和氢原子为例, 研究机器学习在量子态表述中的应用。简谐振子和氢原子的势函数在二维平面上的投影是一幅幅平面图像,解析解作为标签评估CNN预测 能量本征值的准确性。可以将多个谐振子和氢原子的势函数二维图像和标签作为输入训练CNN模型,利用CNN以处理图像的方式得到谐振 子势函数与基态能量本征值间的映射关系,以及氢原子势函数与基态、第一激发态及第二激发态能量本征值间的映射关系。训练好的CNN模型可以预测不同谐振子的基态能量,不同氢原子的基态、第一激发态 及第二激发态能量而不必求Schrodinger方程。为此,在MATLAB上分别构建了四个224×224的样本图像数据集。在TensorFlow深度学习平台上对VGG网络模型进行了改进。利用改进后的18层Bright VGG 网络模型对数据样本进行训练,建立二维势函数与能量本征值之间的 映射。本课题搭建的Bright VGG网络模型对不同谐振子的基态预测

量子阱半导体激光器

量子阱半导体激光器 :本文主要叙述了量子阱半导体激光器发展背景、基本理论、主要应用与发展现状。一、发展背景 1962年后期,美国研制成功GaAs同质结半导体激光器,第一代半导体激光器产生。但 这一代激光器只能在液氮温度下脉冲工作,无实用价值。直到1967年人们使用液相外延的方法制成了单异质结激光器,实现了在室温下脉冲工作的半导体激光器。1970年,贝尔实验室有一举实现了双异质结构的在室温下连续工作的半导体激光器。至此之后,半导体激光 器得到了突飞猛进的发展。半导体激光器具有许多突出的优点:转换效率高、覆盖波段范围 广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。其发展速度之快、 应用范围之广、潜力之大是其它激光器所无法比拟的。但是,由于应用的需要,半导体激光 器的性能有待进一步提高。 80年代,量子阱结构的出现使半导体激光器出现了大的飞跃。量子阱结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。当超薄有源层材料 后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电 子和空穴沿垂直阱壁方向的运动出现量子化特点。从而使半导体能带出现了与块状半导体完

全不同的形状与结构。在此基础上,根据需要,通过改变超薄层的应变量使能带结构发生变 化,发展起来了应变量子阱结构。这种所谓“能带工程”赋予半导体激光器以新的生命力, 其器件性能出现大的飞跃。具有量子阱结构的量子阱半导体激光器与双异质结半导体激光器 (DH)相比,具有阈值电流密度低、量子效应好、温度特性好、输出功率大、动态特性好、 寿命长、激射波长可以更短等等优点。目前,量子阱已成为人们公认的半导体激光器发展的 根本动力。 其发展历程大概为:1976年,人们用GaInAsP/InP实现了长波长激光器。对于激光腔 结构,Kogelnik和Shank提出了分布反馈结构,它能以单片形式形成谐振腔。Nakamura用实验证明了用光泵浦的GaAs材料形成的分布反馈激光器(DBR)。Suematsu提出了用于光通信的动态单模激光概念,并用整体激光器验证了这种想法。1977年,人们提出了所谓的面 发射激光器,并于1979年做出了第一个器件。目前,垂直腔面发射激光器(VECSEL)已用于千兆位以太网的高速网络。自从Nakamura实现了GaInN/GaN蓝光激光器,可见光半导体激 光器在光盘系统中得到了广泛应用,如CD播放器、DVD系统和高密度光存储器。1994年,一种具有全新机理的波长可变、可调谐的量子级联激光器研制成功,且最近,在此又基础上

半导体超晶格能带结构2

本科生毕业论文(设计)册 学院汇华学院 专业物理学 班级2007级 学生侯敏娟 指导教师李玉现

河北师范大学本科毕业论文(设计)任务书 编号: 论文(设计)题目:半导体超晶格的隧穿特性 学院:专业:物理学班级: 学生姓名:学号: 2 指导教师:职称: 1、论文(设计)研究目标及主要任务 研究目标:提高学生个人的调研能力,锻炼语言组织能力,培养对物理学的研究兴趣,了解物理学的发展进程,在实践中达到物理思想的熏陶。 主要任务:简单介绍半导体的概念、分类、应用,重点解释半导体的隧道效应(势垒贯穿),提高对其的认识和了解,明白怎样总结出其微观粒子的波动性及传播过程,激发研究热情并加快其研究进度。 2、论文(设计)的主要内容 早在19世纪三十年代,英国巴拉迪首先发现了半导体之后,半导体行业就开始不断发展,本文首先介绍了半导体是如何被发现的并且有怎样的意义,随着研究的深入,人们发现了半导体的物理结构,随后提出了超晶格概念,超晶格概念的提出使得量子物理的研究量级从埃扩大到纳米,这一现象的发现为量子物理的进程做出了伟大的贡献,随后发现隧道效应,本文主要就隧道效应的推导过程作了详细的计算,并计算出透射系数,透射系数随着势垒的加宽或电压的增大而迅速减小,得出结论:宏观条件下观察不到隧道效应。 3、论文(设计)的基础条件及研究路线 基础条件:已经搜集了大量的相关材料,学习了其中与论文题目相关的内容并加以理解。认真整理材料和个人的学习体会,对论文相关内容有了统筹的把握。 研究路线:需在原有材料基础上进行总结归纳,介绍其研究方法并适时加入自己的观点和看法,对有关原理进行必要理论分析,并揭示其研究应用前景,突出研究半导体重要意义。 4、主要参考文献 1、周世勋.量子力学教程[M],北京:高等教育出版社,2009:34-44 2、杨福家.原子物理学[M],高等教育出版社,2000:106-110. 3、黄昆.固体物理学[M],高等教育出版社,2001:325-351. 5 指导教师:年月日 教研室主任:年月日

量子阱半导体激光器简述

上海大学2016~2017 学年秋季学期研究生课程考试 (论文) 课程名称:半导体材料(Semiconductor Materials) 课程编号:101101911 论文题目: 量子阱及量子阱半导体激光器简述 研究生姓名: 陈卓学号: 16722180 论文评语: (选题文献综述实验方案结论合理性撰写规范性不足之处) 任课教师: 张兆春评阅日期: 课程考核成绩

量子阱及量子阱半导体激光器简述 陈卓 (上海大学材料科学与工程学院电子信息材料系,上海200444) 摘要: 本文接续课堂所讲的半导体激光二极管进行展开。对量子阱结构及其特性以及量子阱激光器的结构特点进行阐释。最后列举了近些年对量子阱激光器的相关研究,包括阱层设计优化、外部环境的影响(粒子辐射)、电子阻挡层的设计、生长工艺优化等。 关键词:量子阱量子尺寸效应量子阱激光器工艺优化

一、引言 半导体激光器自从1962年诞生以来,就以其优越的性能得到了极为广泛的应用[1],它具有许多突出的优点:转换效率高、覆盖波段范围广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。随着新材料新结构的不断涌现和制造工艺水平的不断提高,其各方面的性能也进一步得到改善,应用范围也不在再局限于信息传输和信息存储,而是逐渐渗透到材料加工、精密测量、军事、医学和生物等领域,正在迅速占领过去由气体和固体激光器所占据的市场。 20世纪70年代的双异质结激光器、80年代的量子阱激光器和90年代出现的应变量子阱激光器是半导体激光器发展过程中的三个里程碑。[2]制作量子阱结构需要用超薄层的薄膜生长技术,如分子外延术(MBE)、金属有机化合物化学气相淀积(MOCVD)、化学束外延(CBE)和原子束外延等。[3]我国早在1974年就开始设计和制造分子束外延(MBE)设备,而直到1986年才成功的制造出多量子阱激光器,在1992年中科院半导体所(ISCAS)使用国产的MBE设备制成的GRIN-SCH InGaAs/GaAs应变多量子阱激光器室温下阈值电流为1.55mA,连续输出功率大于30mW,输出波长为1026nm。[4] 量子阱特别是应变量子阱材料的引入减少了载流子的一个自由度,改变了K 空间的能带结构,极大的提高了半导体激光器的性能,使垂直腔表面发射激光器成为现实,使近几年取得突破的GaN蓝绿光激光器成为新的研究热点和新的经济增长点,并将使半导体激光器成为光子集成(PIC)和光电子集成(OEIC)的核心器件。 减少载流子一个自由度的量子阱已经使半导体激光器受益匪浅,再减少一个自由度的所谓量子线(QL)以及在三维都使电子受限的所谓量子点(QD)将会使半导体激光器的性能发生更大的改善,这已经受到了许多科学家的关注,成为半导体材料的前沿课题。 二、量子阱的结构与特性 1、态密度、量子尺寸效应与能带 量子阱由交替生长两种半导体材料薄层组成的半导体超晶格产生。超晶格结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。当超薄有源层材料后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电子和空穴沿垂直阱壁方向的运动出现量子化特点。从而使半导体能带出现了与块状半导体完全不同的形状与结构。1970年首次在GaAs半导体上制成了超晶格结构。江崎(Esaki)等人把超晶格分为两类:成分超晶格和掺杂超晶格。理想超晶格的空间结构及两种材料的能带分布分别如图1和图2。

8.3 异质结量子阱及超晶格结构

第八讲 8.3半导体异质结量子阱及超晶格结构

量子阱:能够对电子(空穴)的运动产生某种约束,使其能量量子化的势场。如量子力学中的一维方势阱、有限势阱。 量子阱中的电子在垂直异质结界面方向上其能量是量子化的,而在与异质结界面平行的二维平面内作自由电子运动。因此,把量子阱中的电子称为二维电子气(2DEG)。 (a)双异质结单量子阱 (a) i-GaAs n-Al X Ga3-X As 2--DEG E2 E F E1 △E C (b)调制掺杂异质结界面量子阱 E GA E GB

(一)双异质结间的单量子阱结构 双异质结结构: Al x Ga 1-x As/GaAs /Al x Ga 1-x As,要求GaAs层足够薄。 1、导带量子阱中的电子能态 设势阱的宽度为l ,取垂直于界面的方向为z 轴,势阱中间点为原点,求解薛定谔方程,可得到如下结论:

(一)双异质结间的单量子阱结构 (1)势阱中电子沿 z 轴方向运动受限,在平行于结面的运动是自由的,形成了二维电子气; (2)势阱中电子态的能值分裂为一些分立能级E1,E2…,E i…,对应于电子的束缚态,如图3所示; 图3 双异质结单量子阱中的能级分布

(3)E z<ΔE c 时,电子的波函数在势阱内为 z 的正弦或余弦函数,如图 4 所示;(4)不管 ΔE c 值的大小,至少有一个解存在; (5)势阱深度 ΔE c 越大,阱内的束缚态越多; (6)势阱中的状态密度变为台阶状分布,如图 5 所示。 图 4 束缚态能级与波函数图 5 电子态密度分布

2、价带量子阱中的空穴能态 在Al x Ga1-x As/GaAs/Al x Ga1-x As 双异质结量子阱中,空穴处于价带量子阱中,也在与结面平行的面内形成二维空穴气。 势阱中空穴态的能值分裂为一些分立能级,形成空穴的束缚态能级。由于轻、重空穴有效质量的不同,形成轻重空穴能级混合交叉的分立束缚态能级。 如图 6 所示。

量子阱半导体激光器

量子阱半导体激光器的原理及应用 刘欣卓(06009406) (东南大学电子科学与工程学院南京 210096) 光电调制器偏置控制电路主要补偿了激光调制器的温漂效应,同时兼顾了激光器输出功率的变化。链路采用的激光器带有反馈PD,输出对应的电压信号。该信号经过放大后直接作为控制系统的输入,将两者的电压相减控制稳定后再放大。反馈光信号经过光电转换和滤波放大两个环节。最后一节采用低通滤波器排除射频信号的影响。放大环节有两个作用。其一:补偿采样过程中1%的比例;其二:通过微调放大倍数实现可调的偏置。偏 置控制主要是一个比例积分环节,输出作为调制器的偏置。 关键词:光电调制器;模拟偏置法;误差 High-speed Optical Modulator Bias Control LIU XinZhuo 2) (06009406) (1)Department of Electronic Engineering, Southeast University, Nanjing, 210096 Abstract: The optical modulator bias control circuit compensates for the drift of the laser modulator effect. It also takes into account the changes in the laser output power. Link uses the laser with feedback PD and the output corresponds to voltage signal. The signal after amplification is acted as the input of the control system. After the two voltage signals reduction and stability, the output may be amplified. The feedback optical signal includes photoelectric conversion and filtering amplification. The last part of circuit excludes the influence of the RF signal through a low pass filter. We know that enlarge areas have two roles. First: it can compensate for sampling ratio of 1%of the process; Second: it can realize adjustable bias by fine-tune magnification. The bias control is a proportional integral part of the output of the modulator bias. Abstract: Specific charge of electron; magnetic focusing; magnetic control tube; Zeeman effects; error 作者的个人学术信息: 刘欣卓,1991年,女,南京市。大学本科,电 子科学与工程学院。liuxinzhuo@https://www.360docs.net/doc/169133683.html,. 1.量子阱半导体激光器的发展历程 1.1激光器研制的现状 随着光子技术的发展,光子器件及其集成技术在各领域的应用前景越来越广阔,尤其在一些数据处理速率要求极高的领域,光子器件正逐步取代电子器件。可以预见,不久的将来,光子器件及光子集成线路在各行业所占的比重将不亚于目前集成电路在各领域的地位及作用。而激光器作为光子器件的核心之一,对其新型结构的研制更是早就提上了日程,并取得了一定的进展。 为了研制出阈值电流低、量子效率高、工作于室温环境、短波长、长寿命和光束质量好等要求的半导体激光器, 研究人员致力于寻找新工作原理、新材料、新结构以及各种新的技术。在此,半导体激光器(LD),特别是量子阱半导体激光器(QWLD)正逐步作为光通信和光互连中的重要光源。 1. 2半导体激光器 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,较常规激光器而言,产生激光的具体过程比较特殊。 半导体激光器工作物质的种类有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)

量子阱半导体激光器的的基本原理及其应用

量子阱半导体激光器的的基本原理及其应用 无研01 王增美(025310) 摘要:本文主要阐述了量子阱及应变量子阱材料的能带结构,以及能态密度和载流子有效质量的变化对激光器阈值电流等参数的影响,简要说明了量子阱激光器中对光场的波导限制。最后对量子阱半导体激光器的应用作了简要的介绍,其中重点是GaN 蓝绿光激光器的发展和应用。 引言 半导体激光器自从1962年诞生以来,就以其优越的性能得到了极为广泛的应用,随着新材料新结构的不断涌现和制造工艺水平的不断提高,其各方面的性能也不断得到改善,应用范围也不在再局限于信息传输和信息存储,而是逐渐渗透到材料加工、精密测量、军事、医学和生物等领域,正在迅速占领过去由气体和固体激光器所占据的市场。 20世纪70年代的双异质结激光器、80年代的量子阱激光器和90年代出现的应变量子阱激光器是半导体激光器发展过程中的三个里程碑。制作量子阱结构需要用超薄层的薄膜生长技术,如分子外延术(MBE )、金属有机化合物化学气相淀积(MOCVD )、化学束外延(CBE )和原子束外延等。我国早在1974年就开始设计和制造分子束外延(MBE )设备,而直到1986年才成功的制造出多量子阱激光器,在1992年中科院半导体所(ISCAS )使用国产的MBE 设备制成的GRIN-SCH InGaAs/GaAs 应变多量子阱激光器室温下阈值电流为1.55mA ,连续输出功率大于30mW ,输出波长为1026nm [4]。 量子阱特别是应变量子阱材料的引入减少了载流子的一个自由度,改变了K 空间的能带结构,极大的提高了半导体激光器的性能,使垂直腔表面发射激光器成为现实,使近几年取得突破的GaN 蓝绿光激光器成为新的研究热点和新的经济增长点,并将使半导体激光器成为光子集成(PIC )和光电子集成(OEIC )的核心器件。 减少载流子一个自由度的量子阱已经使半导体激光器受益匪浅,再减少一个自由度的所谓量子线(QL )以及在三维都使电子受限的所谓量子点(QD )将会使半导体激光器的性能发生更大的改善,这已经受到了许多科学家的关注,成为半导体材料的前沿课题。 量子阱和应变量子阱半导体激光器的基本原理 1、半导体超晶格 半导体超晶格是指由交替生长两种半导体材料薄层组成的一维周期性结构,薄层的厚度与半导体中电子的德布罗意波长(约为10nm )或电子平均自由程(约为50nm )有相同量级。这种思想是在1968年Bell 实验室的江崎(Esaki )和朱肇祥首先提出的,并于1970年首次在GaAs 半导体上制成了超晶格结构。江崎等人把超晶格分为两类:成分超晶格和掺杂超晶格。理想超晶格的空间结构及两种材料的能带分布分别如图1和图2: 2、 量子阱及量子阱材料的能带结构 图1

量子阱半导体激光器的模拟研究分析

量子阱半导体激光器的模拟研究分析 孙涛章双玉陈小霞熊廷文文晋吾刘波吴国阳朱善林郭旭 ( 华中科技大学电子科学与技术系003班武汉430074 ) Simulation of Single Quantum Well Laser Diode Sun Tao Zhang Shuang-yu Chen Xiao-xia Xiong Ting-wen Wen Jing-wu Liu Bo Wu Guo-yang Zhu Shan-lin Guo Xu (Dept of Electronics of Science & Technology, Hua Zhong Univ. of Science & Technology, Wuhan 430074, P.R.China ) Abstract: The principle of single quantum well laser diode(SQW-LD)was reviewed.Discussion was given on the functionality of the gate-way state(quasi-2 dimensional state)which was introduced to describe the transportation of carriers and photons between the separated confinement heterostructure (SCH) and the quantum well.A relative complete set of the equations was presented through a equivalent circuit model .By means of simulink,which is a functional module of Matlab,a mathematical model for digital analysis of SQW-LD was proposed.The Model i s easy to use.It provides with the advantages of short computation time,real-time supervision and control,convenience for parameter modification.It was used to simulate the opto-electronic behaviors of SQW-LD,such as carrier/photon establishment under step drive current,optical power-drive current relationship,and frequency response to small signal modulation.The results are in good agreement with the reported data.The model can be used for the purpose of device technique improvement and for automatic design and performance simulation of optical fiber networks. Key words: Super lattice Quantum well Single quantum well laser diode (SQW-LD) rate equation Simulation

量子阱红外探测器(QWIP)调研报告

量子阱红外探测器(QWIP)调研报告 信息战略中心(2007.07.12) 引言 (2) 1、量子阱红外探测器的原理 (3) 1.1量子阱红外探测器基本原理简介 (3) 1.2QWIP的几种跃迁模式 (4) 1.3量子阱结构的选择 (6) 1.4QWIP的材料选择 (7) 1.5入射光的耦合 (9) 1.6QWIP的性能参数 (11) 1.7 量子阱周期数对器件性能的影响[9] (12) 1.8QWIP的抗辐射机理与方法 (13) 参考文献: (17) 2、量子阱红外探测器的制备方法 (19) 2.1直接混杂法制备红外探测器焦平面阵列像元 (19) 3、量子阱红外探测器的国内外主要应用 (22) 3.1红外探测器分类 (22) 3.2红外探测器发展历程 (23) 3.3红外探测器基本性能参数 (23) 3.4各种焦平面阵列(FPA S)的性能比较 (25) 3.5红外成像系统的完整结构 (26) 3.5.1 焦平面结构 (27) 3.5.2 读出电路 (27) 3.6QWIP探测器实例分析 (29) 3.7QWIP的应用领域及前景分析 (31) 参考文献: (33)

引言 半导体量子阱(Qw)、超晶格(SL)材料是当今材料科学研究的前沿课题,被比喻为实验中的建筑学,即以原子为最小砌块的微观建筑学。它所产生的人工晶体,其性质可人为改变控制,它比通常意义上的晶体材料具有巨大的优越性和发展前景。它的一个极有前途、极为重要的应用领域是新型红外探测器,即第三代红外焦平面量子阱探测器。量子阱新材料是发展新型红外探测器的先导。 红外焦平面探测器是从单元和线阵基础上发展起来的第三代红外探测器,它标志着热像技术已从“光机扫描”跃进到“凝视”这个高台阶,从而使热像系统的灵敏度、可靠性、功能容量及实时性等都获得无以伦比的瞩目进步。众所周知,探测器是决定红外系统属性的主要矛盾,基于红外焦平面探测器的问世,它与信号读出处理电路一体化的成功,以及长寿命闭环斯特林致冷器的实用化,使红外焦平面探测器在以下重要领域得到重要应用或正在考虑其应用: ①空间制导武器。如用焦平面探测器导引头拦截卫星; ②红外预警卫星及机载红外预警系统; ③巡航导弹、地地导弹、空地导弹、防空导弹、海防导弹及反舰导弹的红外制导系统的基本组成; ④地基(包括舰艇平台)红外制导站及红外搜索,跟踪系统; ⑤小型导弹制导及夜间瞄准; ④坦克、飞机、舰艇等运载工具的夜间观测、目标瞄准、自动跟踪等。 红外焦平面探测器早期实用的是Pbs,现在的重点是碲镉汞,Si:Pt及半导体量子阱焦平面探测器。其中半导体量子阱焦平面探测器,在五年内接近走完了碲镉汞(MCT)探测器30年的历程,现在虽然在探测度指标上还不如MCT,但经过进一步的攀登,这种完全靠科学家、计算机的,由MBE或MOCND技术制造的新一代焦平面器件可能成为现代国防的复眼。无疑,今后哪个国家能抢占这个高地,这将在各国国防力量的对比方面产生重要的影响。

量子阱的应用

3 量子阱器件的应用 3 . 1 量子阱红外探测器 量子阱红外探测器(QWIP)是20世纪90年代収展起来的高新技术。与其他红外技术相比,QWIP具有响应速度快、探测率与HgCdTe探测器相近、探测波长可通过量子阱参数加以调节等优点。而且,利用MBE 和MOCVD等先迚工艺可生长出高品质、大面积和均匀的量子阱材料, 容易做出大面积的探测器阵列。正因为如此,量子阱光探测器,尤其是红外探测器受到了广泛关注。QWIP是利用掺杂量子阱的导带中形成的子带间跃迁, 幵将从基态激収到第一激収态的电子通过电场作用 形成光电流这一物理过程,实现对红外辐射的探测。通过调节阱宽、垒宽以及AlGaAs中Al组分含量等参数, 使量子阱子带输运的激収态 被设计在阱内(束缚态) 、阱外(连续态)或者在势垒的边缘或者稍低于势垒顶(准束缚态),以便满足不同的探测需要,获得最优化的探测灵敏度。 因此,量子阱结构设计又称为“能带工程”是QWIP最关键的一步。另外,由于探测器只吸收辐射垂直与阱层面的分量,因此光耦合也是QWIP的重要组成部分。基于QWIP焦平面阵列研制出的成像系统, 已经被广泛地应用于军事、工业、消防等领域,其小型化、便捷化的特点受到了人们的青睐。 (1)军事方面,QWIP在武器精确制导、战场监视与侦察、搜索和自动跟踪、探测地雷等方面都有广泛的应用。(2)工业方面,QWIP可要用于各种设备的故障检测和产品的质量检测。例如高压输电线路故障的检测十分困难, 可以利用量子阱红外探测器阵列制成的红外相机,从直升 机上对故障収生的位置迚行准确定位。产品的无损探伤及质量鉴定可以借助 QWIP,这主要是指金属、非金属材料及其加工部件。另外,在金属焊接部件的质量鉴定方面,无需对样品迚行解剖和取样,就可以方便地查出

量子阱原理及应用

光子学原理课程期末论文——量子阱原理及其应用 信息科学与技术学院 08电子信息工程 杨晗 23120082203807

题目:量子阱原理及其应用 作者:杨晗23120082203807 摘要:随着半导体量子阱材料的发展,量子阱器件广泛应用于各种领域.本文主要 介绍量子阱的基本特征,重点从量子阱材料、量子阱激光器、量子阱LED、等方面介绍量子阱理论在光电器件方面的发展及其应用。 关键词:量子阱量子约束激光器 量子阱是指由2种不同的半导体材料相间排列形成的、具有明显量子限制效应的电子或空穴的势阱。量子阱的最基本特征是,由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱,简单来说,就是由多个势阱构成的量子阱结构为多量子阱,简称为MQW(Multiple Quantum Well),而由一个势阱构成的量子阱结构为单量子阱,简称为SQW(Single Quantum Well)。 一量子阱最基本特征 由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱。如果势垒层很薄,相邻阱之间的耦合很强,原来在各量子阱中分立的能级将扩展成能带(微带),能带的宽度和位置与势阱的深度、宽度及势垒的厚度有关,这样的多层结构称为超晶格。有超晶格特点的结构有时称为耦合的多量子阱。量子肼中的电子态、声子态 和其他元激发过程以及它们之间 的相互作用,与三维体状材料中的 情况有很大差别。在具有二维自由 度的量子阱中,电子和空穴的态密 度与能量的关系为台阶形状。而不 是象三维体材料那样的抛物线形 状[1]。 图1半导体超晶格的层状结构,白圈和灰圈代 表两种材料的原子

关于量子阱器件的发展及其应用

关于量子阱器件的发展及其应用 1引言 量子阱件,即指采用量子阱材作为有源区的光电器件,材料生长一般是采用MOCVD外廷技术。这种器件的特就在于它的量子阱有源区具有准维特性和量子尺寸应。二维电子空穴的态密度是阶状分布,量子尺寸效应决定了子空穴不再连续分布而是集占据着量子化第一子能级,益谱半宽大为降低、且价带上轻重穴的简并被解除,价带间的吸降低。 2量子阱器件基本原理 2.1量子基本原理[1] 半导体超晶格是指由替生长两种半导体材料薄层组成的维周期性结构.以GaAs/AlAs半导体晶格的结构为例:半绝缘GaAs衬底沿[001]方向外延生500nm左右的GaAs薄层,而交替生厚度为几埃至几百埃的AlAs薄层。这两者共同构成了一多层薄膜结构。GaAs的晶格常数为0.56351nm,AlAs的晶格常数为0.56622nm。由于AlAs的禁带宽度比GaAs的大,AlAs层中的电子和空穴将进入两的GaAs层,“落入”GaAs材料的导带底,只要GaAs层不是太薄,电将被约束在导带底部,且被阱壁不断反射。换句话说,于GaAs的禁带宽度小于AlAs 的禁带宽度,只要GaAs层厚度小量子尺度,那么就如同一口阱在“引”着载流子,无处在其中的载流子的运动径怎样,都必须越一个势垒,由于GaAs层厚度为量子尺,我们将这种势阱称为量子. 当GaAs和AlAs沿Z向交替生长时,图2描了超晶格多层薄膜结构

与应的的周期势场。其中a表示AlAs薄层厚度,b表示薄层厚度。如果势垒宽度较大,使得两个相邻阱中的电子波函数互不重叠,么就此形成的量子阱是相互独立的,这就是多量子。多量子阱的光学性与单量子阱的相同,而强度是单量子阱的线性迭加。另方面,如果两个相邻的量子阱间距近,那么其中的电子态将发耦合,能级将分裂带,并称之为子能带而两个相邻的子能带 之间又存在能隙,为子能隙。通过人为控这些子能隙的宽度与子能带,使得半导体微结构现出多种多样的宏观性。 2.2量子阱器件[2] 量子阱器件基本结构是两块N型GaAs附于两端,而中间有一个层,这个薄层的结构由AlGaAs-GaAs-AlGaAs的复合形式组成,。 在未加偏压时,各个区的势能与中间的GaAs对应区域形成了一个势阱,故称为量子。电子的运动路径是从左边N型区入右边的N型区,中间必须通过AlGaAs层进入量子阱,后再穿透另一层AlGaAs。 量子阱器件虽是新近研制成功的器件,但已在很领域获得了应用,而且着制作水平的提高,它将获得更加广泛的应用3量子阱器件的用3.1量阱红外探测器[3] 量子阱红外测器20世纪90年代展起来的高新技术与其他红外技术相,QBE和MOCVD等先进工艺可生长出高品质大面积和均匀的量子阱材料,容易做出大面积的探测器列。正因为如此,子阱光探测器,尤其是红外探器受到了广泛关注。 QOCVD或MBE等复杂工艺,从而可能使衔部位晶体质量欠佳和器

量子阱

西南交通大学 固体物理课程技术报告 量子阱半导体激光器的介绍及应用 年级: 2009级 学号: 09041124 姓名: 李慧 专业: 通信与信息系统 老师: 潘炜教授

摘要:本文从光子技术的发展入手,首先了介绍了半导体激光器的研究现状及前景,并阐述什么是半导体激光器和量子阱。讲述了半导体激光器的工作原理及优缺点,以及量子阱在半导体中应用——量子阱半导体激光器。 关键词:半导体激光器,量子阱,InGaAs 一、引言 随着光子技术的发展,光子器件及其集成技术的应用领域及前景越来越广阔。在要求极高数据处理速率的一些应用领域,光子器件正逐步取代电子器件得到有效的应用。可以预见,不久的将来光子器件及光子集成线路的重要性不亚于集成电路在当今的地位及作用。近几年来, 半导体激光器, 特别是量子阱激光器和量子点激光器发展迅猛,为了得到阈值电流低、量子效率高、室温工作、短波长、长寿命和光束质量好等高性能的半导体激光器, 研究人员致力于寻找新工作原理、新材料、新结构以及各种新的技术[1]。半导体激光器(LD) 特别是量子阱半导体激光器(QWLD) 是光通信和光互连中重要的光源[3]。 为了获得更高的功率,方法之一就是使用宽波导结构,与传统的窄波导结构相比,宽波导结构有很多优势。宽波导结构可以增加横摸宽度,从而导致在一个大的范围内光强有效分布,减少了端面强度,因此输出功率更大[2]。 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。超宽带激光器可在6-8微米红外波长范围产生1.3瓦的峰值能量。未来,我们可以根据诸如光纤应用等具体应用的特定需求量身定制激光器。 二、半导体激光器的原理及优缺点 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件: (1)增益条件:建立起激射媒质(有源区)内载流子的反转分布。在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注人必要的载流子来实现,将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。 (2)要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜。对F-p腔(法布里一拍罗腔)半导体激光器可以很方便地利用晶体的与P-n结平面相垂直的自然解理面构成F-P腔。 (3)为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场。这就必须要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件。当激光器达到阀值,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出。可见在

AlInGaN量子阱垒层材料的优化

第28卷 第6期2007年6月 半 导 体 学 报 C HIN ES E J OU RNAL O F S EM ICON D U C TO RS Vol.28 No.6 J une ,2007 3武汉市科技攻关计划资助项目(批准号:20061002036) 通信作者.Email :wenf 2004@https://www.360docs.net/doc/169133683.html, 2006212207收到,2006212229定稿 Ζ2007中国电子学会 Al In G a N 量子阱垒层材料的优化 3 文 锋1, 刘德明1 黄黎蓉2 (1华中科技大学光电子科学与工程学院,武汉 430074) (2华中科技大学武汉光电国家实验室,武汉 430074) 摘要:采用k ?p 方法理论,考虑了极化电场和自由载流子重新分布等因素,通过薛定谔方程和泊松方程自洽求解 得到In GaN/AlIn GaN ,In GaN/GaN ,In GaN/In GaN ,In GaN/Al GaN 量子阱导带和价带的能带结构,并由此计算了不同量子阱结构的自发发射谱.分析对比发现AlIn GaN 材料特有的自发极化和压电极化效应在阱垒界面处形成的极化电荷对量子阱发光特性有重要的影响.以AlIn GaN 为垒,优化其中各元素的组分可以减小极化电场的影响,提高量子阱自发发射谱强度.同时,综合考虑了极化电荷和势垒高度的影响,提出了具体的优化方法,并给予了物理解释. 关键词:AlIn GaN ;极化电场;自发发射谱;垒材料PACC :7280E;7110C ;7115J 中图分类号:TN 304123 文献标识码:A 文章编号:025324177(2007)0620893205 1 引言 L ED (light e mitti ng diode )具有节能、环保等 诸多优点,是公认的可以替代白炽灯的新一代照明光源[1,2].目前白光L ED 的发光效率已超过50lm/W ,如应用于日常照明仍需提高其发光效率.白光L ED 大多是由蓝光L ED 芯片涂敷YA G 荧光粉得到,而目前蓝光L ED 芯片的效率并不高,因此提高白光L ED 的效率关键是提高蓝光L ED 芯片的效率. III 族氮化物较大的自发极化常数和压电极化常数导致的内建自发极化电场和压电极化电场,是影响蓝光L ED 内量子效率的重要原因[3].通常的蓝光量子阱L ED 采用I n GaN 为阱层材料,GaN 为垒层材料[4].I n GaN/GaN 晶格失配较大,内建压电极化电场也较大.而AlI n GaN 是一种四元化合物,通过调整其中各元素的组分,可获得晶格常数与任意x 的I n x Ga 1-x N 匹配的量子阱.以AlI n GaN 为垒,可以减小压电极化电场,提高量子阱发光强度. Zha ng 的实验[5] 已经证明,I n GaN/AlI n GaN 蓝光L ED 的光致发光强度高于I n GaN/GaN 和I n GaN/Al GaN 蓝光L ED ,但是他们并没有从理论上研究垒层材料影响量子阱发光特性的具体原因,也没有对垒AlI n GaN 中各元素的组分进行优化.因此,理论上迫切需要研究以下两方面:(1)AlI n GaN 垒材 料对量子阱的发光特性有何影响;(2)如何优化 AlI n GaN 中各元素的组分,提高量子阱的发光强度.作者首先选择了阱层材料相同但垒层材料不同的4种量子阱结构I n GaN/AlI n GaN ,I n GaN/GaN ,I n GaN/I n GaN 和I n GaN/Al GaN 作为研究对象,计算对比了不同量子阱结构的内建势能分布、电子空穴波函数和自发发射谱,确定了极化电场大小对自发发射谱强度的重要影响.导带和价带能带结构分别由抛物带模型和RS P 模型求得,计算过程中考虑了极化电场和载流子重新分布的影响,通过薛定谔方程和泊松方程联立自洽求解.继而又从极化电场的形成原理出发,综合考虑垒材料变化所引起的应变、势垒势能的变化对自发发射谱的影响,得到了优化AlI n GaN 垒材料中各元素组分以提高量子阱发光强度的途径. 2 物理模型 导带和价带的能带结构需要通过求解薛定谔方程获得.k ?p 方法理论是将薛定谔方程在k 空间某一特定的点展开,忽略远离这一点的与k 相关的微扰项,从而获得简化的哈密顿矩阵.因此k ?p 方法理论可以很好地描述布里渊区中心附近的能带结构,是研究直接带隙材料半导体发光特性的行之有效的理论.本文采用k ?p 方法理论对薛定谔方程进行求解.

相关文档
最新文档