格与布尔代数试题

合集下载

离散数学答案 第十章 格和布尔代数

离散数学答案 第十章 格和布尔代数

第十章格和布尔代数习题10.1 1.解 ⑴不是,因为L 中的元素对{2,3}没有最小上界;⑵是,因为L={1,2,3,4,6,9,12,18,36}任何一对元素a ,b ,都有最小上界和最大下界;⑶是,与⑵同理;⑷不是,因为L 中的元素对{6,7}没有最小上界不存在最小上界。

2.证明 ⑴因为,a ≤b,所以,a ∨b=b ;又因为,b ≤c,所以,b ∧c=b 。

故a ∨b=b ∧c ;⑵因为,a ≤b ≤c,所以,a ∧b=a,b ∧c=b,而a ∨b=b ,因此,(a ∧b )∨(b ∧c )=b ;又a ∨b=b,b ∨c=c,而b ∧c=b, 因此,(a ∨b )∧(b ∨c )=b 。

即(a ∧b)∨(b ∧c)=(a ∨b)∧(b ∨c)。

习题10.21.解 由图1知:<S 1,≤>不是<L,≤>的子格,这是因为,e ∨f=g ∉S 1;<S 2,≤>不是<L,≤>的子格, ∵e ∧f=c ∉S 2;<S 3,≤>是<L,≤>的子格.2.解 S 24的包含5个元素的子格有如下的8个:S 1={1,3,6,12,24}, S 2={1,2,6,12,24}, S 3={1,2,4,12,24}, S 4={1,2,4,8,24},S 5={1,2,3,6,12}, S 6={1,2,4,6,12}, S 7={2,4,6,12,24}, S 7={2,4,8,12,24}.3.证明 因为,一条线上的任何两个元素都有(偏序)关系,所以,都有最大下界和最小上界,故它是格,又因为它是<L ,∨,∧>的子集,即是<L ,∨,∧>的子代数,故是子格。

4.证明 由(10-4)有,a ∧b ≤a ,由已知a ≤c ,由偏序关系的传递性有,a ∧b ≤c ;同理 a ∧b ≤d 。

由(10-5)和以上两式有,a ∧b ≤c ∧d .5.证明 因为由(10-4)有,a ∧b ≤a ,因此,(a ∧b )∨(c ∧d )≤a ∨(c ∧d ) ①由分配不等式有,a ∨(c ∧d )≤(a ∨c )∧(a ∨d ) ②再由由(10-4)有,(a ∨c )∧(a ∨d ) ≤a ∨c ③由偏序关系的传递性和①②③则有,(a ∧b )∨(c ∧d )≤a ∨c同理 (a ∧b )∨(c ∧d )≤b ∨d因此有, (a ∧b )∨(c ∧d )≤(a ∨c ) ∧(b ∨d )。

离散数学第6章 格与布尔代数

离散数学第6章 格与布尔代数
设c是a∧b 的任一下界,即c ≤ a,c ≤ b 则 c∧a=c, c∧b=c c∧(a∧b)=(c∧a)∧b=c∧b=c ∴c ≤ a∧b 故 a∧b是a和b的最大下界
6-1 格的概念
5)下面证明 a∧b=aa∨b=b 若a∧b=a 则 a∨b=(a∧b)∨b=b 反之,若a∨b=b 则 a∧b=a∧(a∨b)=a
b用a∨b代替(∵两式中b是相互独立的) ∴a∨(a∧(a∨b))=a 即 a∨a=a. (2)格的等价定理:〈A,∨,∧〉代数系统,∨.∧满足交换性, 结合性,吸收性,则A上存在偏序关系≤,使〈A,≤〉是一个格
从格可引出代数系统〈A,∨,∧〉; 而从满足三个条件的〈A,∨,∧〉也可导出格〈A,≤〉 证明见书:(格中⑻⑼⑾三个性质很重要,决定了格)
(11) 要证 a≤a∨(a∧b) 第一式显然成立
a∨(a∧b)≤a
a≤a
a∧b≤a
∴a∨(a∧b) ≤a
∴a=a∨(a∧b)
6-1 格的概念
6、格的等价原理:格〈A,≤〉 (1)引理6-1.1:〈A,∨,∧〉代数系统,若∨, ∧满足吸收性,
则∨, ∧满足幂等性 证:a,b∈A. a∨(a∧b)=a a∧(a∨b)=a.
第六章 格与布尔代数
格论是近代数学的一个重要分支,由它所引出的布尔 代数在计算机科学中有很多直接应用。
格的概念 分配格 有补格 布尔代数 布尔表达式
6-1 格的概念
1、回忆偏序集〈A,≤〉,≤偏序关系:满足自反性,反对称性, 传递性。有限集合上的偏序集可用哈斯图来表示:
COV (A) {a,c, b,c, c, d, d,e, d, f }
∧也易求得 ∴ A,∨,∧〉是格〈A,|〉 诱导的代数系统
6-1 格的概念

山东大学离散数学题库及答案(计本)

山东大学离散数学题库及答案(计本)

《离散数学》题库答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q →P (2)⌝Q=>P →Q (3)P=>P →Q (4)⌝P ∧(P ∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P ∧Q)→(Q →⌝R) (2)P →(Q →Q) (3)(P ∧Q)→P (4)P →(P ∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P ∧Q (2) P ∧Q=>P (3) P ∧Q=>P ∨Q(4)P ∧(P →Q)=>Q (5) ⌝(P →Q)=>P (6) ⌝P ∧(P ∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y ,x))∧ ∃z C(y ,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1) 北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1) 是,T (2) 是,F (3) 不是(4) 是,T (5) 不是 (6) 不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是()。

答:所有人都不是大学生,有些人不会死7、设P :我生病,Q :我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1) P Q →⌝ (2) Q P ⌝→ (3) Q P ⌝↔ (4)Q P →⌝8、设个体域为整数集,则下列公式的意义是( )。

(1) ∀x ∃y(x+y=0) (2) ∃y ∀x(x+y=0)答:(1)对任一整数x 存在整数 y 满足x+y=0(2)存在整数y 对任一整数x 满足x+y=09、设全体域D 是正整数集合,确定下列命题的真值:(1) ∀x ∃y (xy=y) ( ) (2) ∃x ∀y(x+y=y) ( )(3) ∃x ∀y(x+y=x) ( ) (4) ∀x ∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x 是奇数,Q(x):x 是偶数,谓词公式 ∃x(P(x)∨Q(x))在哪个个体域中为真?() (1) 自然数 (2) 实数 (3) 复数 (4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是( )。

09-格与布尔代数-8.2

09-格与布尔代数-8.2

第三节 子布尔代数、积布尔代数、布尔代数同态
定义:给定布尔代数<B, , *, ’ , 0, 1>,≠T B
2015年6月6日星期六
若T对 、* 和 ’ 是封闭的,且:0, 1 T
称<T, , *, ’ , 0, 1>是<B, , *, ’ , 0, 1>的子布尔代 数 显然:<{0, 1}, , *, ’ , 0, 1>和<B, , *, ’ , 0, 1> 都是<B, , *, ’ , 0, 1>的(平凡)子布尔代数
则:<f(B),∨,∧, , f(0), f(1)>是布尔代数 (证明参见教材P170 —— 利用布尔代数的定义证明)
布尔代数同态
结论:
2015年6月6日星期六
若 f 是从布尔代数<B, , *, ’ , 0, 1>到格<S,∨,∧>的 格同态映射,且f是满射的,
则:<S,∨,∧>是布尔代数
并且可以用基本公式来定义布尔代数
布尔代数的定义 从这4个定律,可以推出所有布尔代数的公式
有兴趣的同学可以参阅 R. L. 古德斯坦因 著的
对于a, b B , 有 定义:设<B, , *, ’ >是一个代数结构,其中:
2015年6月6日星期六
和 * 是B上的二元运算,’ 是B上的一元运算,且 0, 1 B
例9.15:设Bn是由0和1形成的n元组集合,且
2015年6月6日星期六
a = <a1, a2, …, an>,b = <b1, b2, …, bn> 0n = <0, 0, …, 0> , 1n = <1, 1, …, 1> 对任意 a, b Bn,定义: a b = < a1∨b1, a2∨b2 , …, an∨bn > a * b = < a1∧b1, a2∧b2 , …, an∧bn > a’ = < a1, a2, …, an> < Bn,∨,∧, , F, T>是布尔代数(开关代数)

离散数学第五章格与布尔代数2

离散数学第五章格与布尔代数2
离散数学
§2.布尔代数
•布尔代数的定义 •布尔代数的性质 •布尔代数中的宏运算 •有限布尔代数的原子表示 •布尔函数与布尔表达式 •布尔环与布尔代数
2021/5/22
1
离散数学
§2. 布尔代数
定义1.布尔代数(Boolean algebra) 有补的分配格(B,≼, , , , 0, 1) 称为布尔代数。
(S, ,, , , 0, 1) 是布尔代数
这里:S={0,1},00, 01, 11,其运算表如下:
2021/5/22
3
x
离散数学
x y xy 00 0 01 0 10 0
11 1
xy 0 1 1
1
xx
01 10
表2
通过变元代换,显见表2与表1是完全相同的。即,令
h:S 2X , h (0)= , h (1)= X (这里:X={a})
16
离散数学
[证].布尔代数中的对偶原理实质上来源于两个二元运 算 和 所具有的结合律、交换律、幂等律、吸收律、 分配律的对称性,半序关系≼和其逆关系≽的对称性; 最小元0和最大元1的对称性;以及任何元素x与其补元 x的对称性。
注:•布尔代数(B, ≽ , , , ,1 , 0)称为原布尔代数 (B , ≼ , , , , 0 , 1)的对偶布尔代数。实际上,它们互为对偶;
P Q = (P1 Q1, P2 Q2, , Pn Qn)
P = (P1 , P2 , , Pn) 即n元命题代数的序关系、运算、最小元和最大元的定 义都归结为一元命题代数(ℙ, ≼ , , , , F, T) 。
仿例5我们易证:
(ℙn, ≼ , , , , F, T)≅ (2X, ,, , , , X ) 这里:X={a1, a2, , an},即 n元命题代数与n元集合代数是同构的。

(优选)第篇格与布尔代数

(优选)第篇格与布尔代数

第2式证明由对偶原理从上式直接可得。
定理15-1.6 设<A, >是一个格,那么,对于任意的 a,bA, 都有:
ab(a∧b)=a(a∨b)=b
ab(a∧b)证明思路:
(1)先证 ab (a∧b)=a
由ab和a a ,根据定理15-1.2得 a a∧b
又根据a∧b的定义, 有
a∧b a
由二元关系的反对称性得 :
(优选)第篇格与布尔代数
通常用a∨b 表示{a,b}的上确界,用a∧b 表示{a, b}的下确界,∨和∧分别称为保联(join)和保交(meet) 运算。由于对任何a,b,a∨b及a∧b都是A 中确定 的成员,因此 ∨,∧均为A上的运算。
例3 设S={a,b} , (S) ={, {a},{b},{a,b}} 由格< (S), >诱导的代数系统为< (S),∨,∧> 。 其中∨为集合的并运算和∧为集合的交运算。
a∧b = a
(2) 再证 (a∧b)=a ab
设a∧b=a,则a =a∧bb ,这就证明了
(a∧b)=a ab
综合(1)和(2)得: ab(a∧b)
定理15-1.7 设<A, >是一个格,那么,对于任意的
a,b,cA, 都有: aca∨(b∧c) (a∨b)∧c
证明思路: (1)先证 ac a∨(b∧c) (a∨b)∧c 根据定理15-1.6有 ac (a∨c)=c 根据定理15-1.5有a∨(b∧c)(a∨b)∧(a∨c)
可以证明,若<A,>是格,则<A,R>也是格。 称R是的逆关系。记为。
格对偶原理可以叙述为:设P是对任意格都真的命题, 如果在命题P中把换成 ,∨换成∧,∧换成∨,就

地六章-格和布尔代数(1)

地六章-格和布尔代数(1)

定义6.7 集合 L 中的偏序关系 R 与其逆关系 R1,称为互 相对偶的两个关系。 对任意 x, y∈L,xR1y yRx。 6.1.1 节例 6.4 中的 关系即为蕴涵关系 的逆关系。 因此,对任意 P, Q∈S, (P Q) (Q P)
【例6.7】设 n 是一个正整数,Sn 是 n 的所有因数的集合, 两个正整数的最大公因数 ,最小公倍数 可看作是 Sn 上两个代数运算,于是,(Sn, , ) 是一个格。
定理6.1 关于格的两种定义(以对应一个代数格;任意一个代 数格也都可以对应一个偏序格。
定义中没有要求 , 运算满足等幂律,实际上由 , 满足吸收律即可推出它们一定满足等幂律。任取 L 中元素
a,由 , 满足吸收律知
a(aa)=a
a(aa)=a

aa=a(a(aa))
aa=a(a(aa))
又由 , 满足吸收律知,上面两式的等式右端都等于 a。
因此,
aa=a
aa=a
即定义 6.3 中的 , 运算亦满足等幂律。
【例6.4】设 S 是所有的命题集合,定义 “” 关系如下: A B 当且仅当 B 蕴涵 A
则 (S, ) 是一个格。对 A, B∈S, sup{A, B}=A∧B∈S inf{A, B}=A∨B∈S
定义6.2 若格 L 的一个子集 M≠Ф 对于运算 和 封闭, 则 M 称作子格。
例如:a 是格 L 的一个固定元素,则使 X≥a(或 X≤a) 的 L 中元素 X 的集合,显然是一个子格。若 a≥b,则使 a≥X≥b 的 L 中元素 X 的集合是一个子格,这样的子格 叫作一个闭区间(商),记作 M(a,b)。
例如,S6={1, 2, 3, 6}, S24={1, 2, 3, 4, 6, 8, 12, 24}。

6.3格与布尔代数

6.3格与布尔代数

格的性质(续)
6)、保序性:如果b≤c,那么a∧b≤a∧c a ∨ b≤a∨c 7)、分配不等式: •
a∨(b∧c)≤(a∨b)∧(a∨c); a∧(b∨c)≥(a∧b)∨(a∧c); 8)、模不等式: a≤b a∨(b∧c) ≤b∧(a∨c)
下一页
证明: (a∨b)∨c=a∨(b∨c)
先证: (a∨b)∨c ≤ a∨(b∨c) ∵ a ≤ a∨(b∨c) b ≤ b∨c ≤a∨(b∨c) ∴a∨b≤ a∨(b∨c) 又:c ≤ a∨(b∨c) 从而, (a∨b)∨c ≤ a∨(b∨c) 同理有 a∨(b∨c) ≤(a∨b)∨c , 由偏序的反传递性知,(a∨b)∨c=a∨(b∨c)
5的补元是2和3。
例:在<S24,|> 中
24 12 6 4 2 1 S24 8
最大元为24,最小元为1, 1和24互为补元, 3和8互为补元,
3
2,4,6,12均不存在补元。
例:
1 在如上图有界格中0和1互为补 a b c d 元而 a,b,c,d的补元均有三个, 譬如,a的补元是b,c,d。 0 1 a c 0 b 在下图中的有界格中,0和1互 为补元, 但a,b,c均不存在补元。
返回
代数格
定义10:设L是一个非空集合,∧,∨是L中的两 个二元运算,两个运算还满足a,b,c∈L (1)交换律 (2)结合律 a∧b=b∧a,a∨b=b∨a; (a∧b)∧c= a∧(b∧c), (a∨b)∨c=a∨ (b∨c); (3)吸收律 a∧(b∨c)= a, a∨(b∧c)= a
例1:
记作(L,≤,1,0)或记(L,∧,0,0,1)
例:(Sn,|)是格,则其是有界格,其中最大元是n,最小元 是1,因x∈Sn,1|x,x|n。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、选择题(每小题2分,共30分)
1、N是自然数集, 是小于等于关系,
则N,是(C)。
(A)有界格
(B)
有补格
(C)分配格(D)
2、在有界格中,若只有一个元素有补元,
有补分配格
则补元(
C)
(A)必唯
(B)
不唯
(C)不一定唯
(D)
可能唯
3、
F面是一些偏序集的哈斯图,判断哪一个为格(
C)
d
c
e
e
e
cDLeabharlann ACBD)
(A)分配格
(B)有补格
(C)布尔格
(D)有界格
6设L,是一条链,其中L
-3,贝U L,(C)
(A)不是格
(B)是有补格
5、只含有有限个元素的格称为有限格,
有限格必是(
7、 设A为一个集合,P(A),为有补格,P(A)中每个元素的补元(A)
(A)存在且唯一(B)不存在
(C)存在但不唯一(D)可能存在
8、设 代 是一个有界格,若它也是有补格,只要满足(B)
(A)每个元素都有一个补元(B)每个元素都至少有一个补元
相关文档
最新文档