LED可控硅调光原理及问题.

合集下载

可控硅调光原理

可控硅调光原理

可控硅调光原理可控硅调光是一种广泛应用于照明系统中的调光技术。

它基于可控硅器件的特性,实现对灯光亮度的精确控制。

本文将介绍可控硅调光的原理以及其在照明系统中的应用。

一、可控硅调光原理可控硅是一种半导体器件,它具有触发、导通和关断三个状态。

在可控硅器件中,当控制电压大于器件的触发电压时,可控硅器件进入导通状态,灯光亮起;当控制电压小于器件的关断电压时,可控硅器件进入关断状态,灯光熄灭。

通过改变控制电压的大小和频率,可以实现对灯光亮度的调节。

在可控硅调光系统中,通常采用脉宽调制(PWM)的方式进行调光控制。

PWM调光是通过改变每个周期内的导通时间比例来控制灯光亮度的。

我们可以通过调整PWM信号的占空比来改变灯光的亮度。

当占空比较大时,灯光亮度较高;当占空比较小时,灯光亮度较低。

二、可控硅调光的应用可控硅调光技术在照明系统中有着广泛的应用。

首先,它可以用于家庭照明系统。

通过使用可控硅调光器件,我们可以根据需要调节灯光的亮度,营造出不同的光线环境。

在晚上,我们可以将灯光调暗,创造出温馨的氛围;在白天,我们可以将灯光调亮,提供足够的照明。

可控硅调光技术还可以应用于商业照明系统中。

比如商场、办公室等场所,可以根据不同的需求,调整灯光的亮度和色温,提供一个舒适、高效的工作环境。

同时,可控硅调光还可以实现节能的效果,通过调节灯光亮度,降低能耗,减少能源浪费。

可控硅调光技术还可以应用于舞台照明系统中。

在演出、表演等活动中,灯光的变化是非常重要的。

通过使用可控硅调光器件,我们可以实现对舞台灯光的精确控制,创造出丰富多样的光影效果,提升演出的艺术效果。

三、总结可控硅调光技术是一种灵活、高效的调光方式,它通过改变可控硅器件的导通时间比例,实现对灯光亮度的精确控制。

可控硅调光技术在照明系统中有着广泛的应用,包括家庭照明、商业照明和舞台照明等领域。

通过合理应用可控硅调光技术,我们可以实现节能减排、提升照明质量的目标。

期望在未来的发展中,可控硅调光技术能够得到更广泛的应用和推广。

基于可控硅调光器的LED驱动电路分析

基于可控硅调光器的LED驱动电路分析

基于可控硅调光器的LED驱动电路分析
引言
常见的调光有双向可控硅调光、后沿调光、ON/OFF 调光、遥控调光等。

可控硅调光器在传统的白炽灯等调光照明应用已久,且不用改变接线,装置成本较低,各品牌可控硅调光器的性能和规格相差不大,但是其直接应用在LED 驱动场合还存在着一系列问题。

1 双向可控硅TRIAC 调光原理
市面上大多数可控硅调光器基本结构如可控硅前沿调光器若直接用于控制普通的LED 驱动器,LED 灯会产生闪烁,更不能实现宽范围的调光控制。

原因归结如下:
(1)可控硅的维持电流问题。

目前市面上的可控硅调光器功率等级不同,维持电流一般是7~75mA(驱动电流则是7~100mA),导通后流过可控硅的电流必须要大于这个值才能继续导通,否则会自行关断。

(2)阻抗匹配问题。

当可控硅导通后,可控硅和驱动电路的阻抗都发生变化,且驱动电路由于有差模滤波电容的存在,呈容性阻抗,与可控硅调光器存在阻抗匹配的问题,因此在设计电路时一般需要使用较小的差模滤波电容。

(3)冲击电流问题。

由于可控硅前沿斩波使得输入电压可能一直处于峰值附近,输入滤波电容将承受大的冲击电流,同时还可能使得可控硅意外截止,导致可控硅不断重启,所以一般需要在驱动器输入端串接电阻来减小冲击。

(4)导通角较小时LED 会出现闪烁。

当可控硅导通角较小时,由于此时
输入电压和电流均较小,导致维持电流不够或者芯片供电Vcc 不够,电路停止工作,使LED 产生闪烁。

2 一种可控硅调光的LED 驱动电源。

5个必知的可控硅调光常见错误

5个必知的可控硅调光常见错误

5个必知的可控硅调光常见错误
与传统的调光技术不同,可控硅调光采用的是相位控制法来进行调压和调光。

该技术在近几年兴起,目前大部分的调光系统都采用可控硅,因此了解此种调光方式的优缺点就变得非常有必要。

本文将为大家介绍可控硅调光存在的那些缺点和问题。

在调光过程中,通常会遇到如下几种问题:
1、调光过程中,随着内部导通角的变化,输入电压正弦波被可控硅破坏了,从而降低了功率因素值(PF),通常PF低于0.5,而且在调光时,随着导通角越小,功率因素值越来越低(1/4亮度时只有0.25)。

2、如上,输入电压正弦波被破坏了,非正弦的波形加大了谐波系数。

3、LED驱动电路中输入非正弦的电压波形会在线路上产生严重的干扰信号(EMI)。

4、调光过程中在低负载时很容易因为维持电流不足而出现不稳定现象,解决措施是必须加上一个泄流电阻。

通常情况下这个泄流电阻至少要消耗1-2瓦的功率,这就降低了恒流源电路的效率。

5、在使用可控硅调光电路对白炽灯调光时,当输入端的LC滤波器与可控硅产生振荡时,由于白炽灯的热惯性,人眼根本看不出这种振荡。

而当可控硅调光电路与LED驱动电路配套使用时,会产生音频噪音和闪烁,这往往是不可接受的。

以上5点就是在可控硅调光过程中容易暴露出来的问题。

可以看到,虽然可控硅能够做到不错的调光效果,但其面对的问题还是较多的,尤其在电压与负载方面的硬伤较多。

因此设计在使用可控硅调光时一定要熟知这些缺点,以便对电路中的错误即使进行检查。

led可控硅调光电源方案

led可控硅调光电源方案

led可控硅调光电源方案随着LED照明技术的迅猛发展和广泛应用,人们对于照明系统的需求也越来越高。

为了满足不同场景下的照明需求,LED可控硅调光电源方案应运而生。

本文将介绍LED可控硅调光电源的原理及其应用。

一、LED可控硅调光电源的原理LED可控硅调光电源是通过控制可控硅器件的导通角度来实现对LED灯光亮度的调节。

可控硅器件是一种电子器件,通过控制其工作角度可以调整电流的大小,从而达到调节LED亮度的目的。

该电源方案设计如下:1.输入电源:输入电源通常为交流220V电源,通过整流电路和滤波电路将交流电转换为直流电。

2.恒流源:为了保证LED的安全工作,可控硅调光电源采用恒流源来控制LED的电流。

恒流源通常由电流控制芯片和电流采样电阻构成,通过反馈控制实现对电流的稳定控制。

3.可控硅器件:可控硅器件是实现调光功能的核心部件。

通过对可控硅的触发角度进行控制,可以调节LED的亮度。

触发角度越小,导通的时间越短,LED的亮度越低;触发角度越大,导通的时间越长,LED的亮度越高。

4.调光控制器:调光控制器是控制可控硅器件的触发角度的主要设备。

通过调节调光控制器的输出信号,可以改变可控硅器件的导通角度,从而实现对LED亮度的调节。

二、LED可控硅调光电源的应用1.室内照明:LED可控硅调光电源广泛应用于室内照明领域。

通过调节LED的亮度,可以满足不同场景下的照明需求。

例如,在会议室中,可以通过调光功能将灯光调到适宜的亮度,使与会人员更加舒适;在影院中,可以通过调光功能调节灯光亮度,为观众提供更好的观影体验。

2.商业照明:商业场所的照明环境对于商品的展示也具有重要影响。

通过LED可控硅调光电源,可以精确调节灯光亮度,使得商品在最佳光照条件下展示,提升商品形象和吸引力。

3.户外照明:户外照明一直是城市规划中的重要组成部分。

通过LED可控硅调光电源,可以根据不同时间段的需求,调节路灯的亮度。

例如,在夜间人流量少的时候,可以将路灯的亮度降低,以节省能源;在需要照明的重要时刻,可以将路灯的亮度增加,提供更好的照明效果。

可控硅调光方案

可控硅调光方案

可控硅调光方案可控硅调光方案是一种常用于灯光调节的技术方案,通过控制可控硅器件的导通角度来实现灯光的亮度调节。

本文将介绍可控硅调光方案的原理、应用以及其在照明系统中的优势。

一、可控硅调光原理可控硅调光方案是基于可控硅器件的特性而设计的。

可控硅器件是一种能够控制交流电流导通角度的半导体器件,通过控制其导通角度来控制负载电流大小,从而实现灯光的亮度调节。

可控硅的导通角度是通过控制器控制的,控制信号一般是脉冲信号,脉冲宽度越长,导通角度越大,负载电流越大,灯光亮度也就越大。

反之,脉冲宽度越短,导通角度越小,负载电流越小,灯光亮度也就越小。

二、可控硅调光方案的应用1. 家庭照明可控硅调光方案广泛应用于家庭照明中。

可控硅调光器可以与智能家居系统连接,通过手机APP或遥控器来调节灯光的亮度,实现灯光的个性化、智能化控制。

例如,在晚上观看电影时,可以将灯光调暗,营造出舒适的观影环境;而在需要较强光源的活动中,如读书、烹饪等,可以将灯光调亮以提供足够的照明。

2. 商业照明可控硅调光方案也在商业照明中得到广泛应用。

商业场所常常需要根据不同的使用需求调节灯光亮度,例如商场、餐厅、办公室等。

可控硅调光方案能够满足这些场所的需求,实现对灯光亮度的精确控制,优化照明效果,提高用户体验。

3.公共照明在公共照明领域,如街道照明、广场照明等,可控硅调光方案也被广泛应用。

通过控制灯光的亮度,可以提高照明效果并降低能耗。

例如,在夜间交通不繁忙时,可以将灯光调暗,节约能源;而在特殊活动或需要更强照明的情况下,可以将灯光调亮,提供更好的照明效果。

三、可控硅调光方案的优势1. 调光范围广可控硅调光方案的调光范围非常广,从完全关闭到最大亮度都可以进行精确控制。

这使得灯光可以适应不同环境和使用需求,提供更加舒适的照明体验。

2. 节能环保可控硅调光方案能够根据实际需求调整灯光亮度,避免了灯光长时间处于高亮度状态而造成的能源浪费。

通过合理调节灯光亮度,可控硅调光方案能够降低能耗,减少对电力资源的消耗,从而实现节能环保的目标。

可控硅led调光原理

可控硅led调光原理

可控硅led调光原理嗨,亲爱的朋友!今天咱们来聊聊可控硅LED调光这个超有趣的事儿。

你知道吗,LED灯现在可流行啦,又亮又节能。

那可控硅在LED调光里就像是个神奇的小魔法师呢。

咱们先得知道啥是可控硅。

可控硅呀,就像是一个特别聪明的小开关,不过这个小开关可不像咱们平常的开关那么简单,它能控制电流通过的多少哦。

那它怎么和LED调光联系起来的呢?LED灯要亮起来是需要电流的,就像人要吃饭才有劲儿干活一样。

可控硅调光的原理呢,就是通过改变电流的大小来让LED灯变亮或者变暗。

想象一下,电流是一群小蚂蚁,可控硅就像是一个指挥小蚂蚁的队长。

当可控硅让很多小蚂蚁(电流)通过的时候,LED灯就会很亮,就像是一群人都在用力干活,事情就干得又快又好,灯就很亮啦。

当可控硅只让少数小蚂蚁(电流)通过的时候,LED灯就暗下来了,就像只有几个人在慢慢干活,事情进展就慢,灯也就暗了。

再来说说具体的过程。

在电路里,可控硅有一个很特别的本事,它可以根据输入的信号来调整自己的导通程度。

这个输入信号就像是指挥官的命令一样。

比如说,当你在调光器上转动旋钮,这个旋钮就会发出不同的信号给可控硅。

如果旋钮转到让电流大的位置,那可控硅就会大开“城门”,让更多的电流冲向LED灯,这时候LED灯就会变得超级亮,就像舞台上的主角,光彩夺目。

要是旋钮转到让电流小的位置呢,可控硅就会把“城门”关小一点,只有一小股电流能过去,LED灯就变得暗暗的,像个害羞的小姑娘躲在角落里。

而且哦,LED灯本身对电流的变化很敏感。

它不像以前的那种老式灯泡,电流大小变化了,它的亮度变化可明显啦。

可控硅就是抓住了LED灯这个特点,巧妙地控制电流,从而实现调光的效果。

这就好比是给LED灯量身定制了一套完美的调光方案呢。

不过呢,这里面也有一些小麻烦。

有时候,可控硅调光可能会遇到一些兼容性的问题。

就像两个人有时候会闹别扭一样。

比如说,有些LED灯的电路设计可能和可控硅调光不太合拍,这时候就可能出现调光不均匀啦,或者是在调光的时候灯闪闪烁烁的,就像小星星调皮地眨眼睛,可这不是我们想要的效果呀。

LED灯调光时闪烁的问题

LED灯调光时闪烁的问题

LED灯调光时闪烁的问题及解决方法LED灯调光时闪烁的问题,一般都是回路电流达不到可控硅的维持电流,达不到维持电流有几个原因:1、可控硅导通后,电路由于不是阻性,由于电容,电感,会存在电流振荡,当电流振荡到低于可控硅维持电流后,就可控硅关断,然后重新触发。

2、可控硅导通后,电流会慢慢下降,当下降到可控硅维持电流前,由于这个时间很短,如果后面电路还来不及工作,同样会重启。

3、当输入电压降低时,回路电流也降低,降低到低于可控硅维持电流后,可控硅关断。

可控硅调光原本是应用于白炽灯的,白炽灯的效率很低,所以要得到响应的亮度时需要的功率大,功率大了就意味着电流大,也就是说电流不会小于SCR的维持电流,SCR不会关断,也就没有闪烁的问题。

另外白炽灯是依靠热发光的,而热量是不能瞬时转走的,所以即使有瞬时的中断,发光也不会突然变化。

但LED就不是这样的,同样的亮度,输入功率很小,也就是电流小,很容易低于维持电流一下。

另外LED的反应很快,一没有电流马上就灭掉,所以也容易使人眼感觉到。

找到了TRIAC对LED灯具调光灯闪的原因。

但如何控制和维持这个电流,这才是根本核心技术。

本人在做这方面的研发时,设计了一种电路,完全解决TRIAC 对LED灯具调光灯闪的问题。

核心的技术就是找到了如何控制和维持这个电流,使之在导通角最小时,保持稳定。

效率87%,PF大于0.95。

适合各种质量的TRIAC.LED室内照明(1W-25W)可控硅TRIACt调光,如球泡灯系列,PAR灯系列,T8 LED 日光灯系列等,在欧美国家大部分都是沿用以前老式的可控硅TRIAC灯座来进行调光。

所以要求LED灯具一定要满足TRIAC调光。

如,欧美的LED球泡灯,大部分客户必须要求能配合老式的可控硅TRIAC灯座来进行调光,以便能直接替换白炽灯。

目前,很多人都遇到了麻烦。

解决不了LED灯具在老式的可控硅TRIAC灯座调光时,灯闪、效率低及PF低等困绕的问题。

可控硅的调光原理

可控硅的调光原理

可控硅的调光原理
可控硅调光原理是利用可控硅这种半导体器件来实现光的调节和控制。

可控硅是一种具有双向可控性的半导体开关,可以实现对电流的控制。

其基本原理是通过激活和关闭可控硅中的三层PN结,从而实现电流的开和关。

可控硅具有一个控制端和两个电源端,一般分别为控制端G、阳极A和阴极K。

当控制端施加一个正脉冲信号时,可控硅
的阻抗减小,电流可以流过可控硅,实现导通状态。

而当控制端施加一个负脉冲信号或者不施加信号时,可控硅的阻抗增大,电流不能流过可控硅,实现关断状态。

在调光过程中,我们通常使用相位控制调光方式。

相位控制调光就是调节交流信号的导通时间,从而改变电路中的平均功率,实现光的调节。

以可控硅为开关的电路,通过控制信号的延迟时间来改变可控硅的导通角度,从而改变电路的导通时间,进而改变灯光的亮度。

在每一个电源周期内,通过改变控制信号延迟时间,可控硅的导通角度也在变化,从而改变灯光的亮度。

当控制信号延迟时间为0时,可控硅的导通角度为0,电路不导通,灯光最暗;
当控制信号延迟时间为π时,可控硅的导通角度为180度,电路导通时间最长,灯光最亮。

通过改变控制信号延迟时间的大小,可以实现灯光的任意亮度调节。

总结起来,可控硅调光原理是利用可控硅的导通角度来控制电路的导通时间,从而实现对灯光的亮度调节。

通过改变控制信
号的延迟时间,可以改变可控硅的导通角度,从而实现灯光的任意亮度调节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LED可控硅调光原理及问题2010年11月10日 17:48 本站整理作者:佚名用户评论(0)关键字:LED(976)可控硅调光(3)1.前言如今,LED照明已成为一项主流技术。

LED手电筒、交通信号灯和车灯比比皆是,各个国家正在推动用LED灯替换以主电源供电的住宅、商业和工业应用中的白炽灯和荧光灯。

换用高能效LED 照明后,实现的能源节省量将会非常惊人。

仅在中国,据政府*估计,如果三分之一的照明市场转向LED产品,他们每年将会节省1亿度的用电量,并可减少2900万吨的二氧化碳排放量。

然而,仍有一个障碍有待克服,那就是调光问题。

白炽灯使用简单、低成本的前沿可控硅调光器就可以很容易地实现调光。

因此,这种调光器随处可见。

固态照明替换灯要想真正获得成功的话,就必须能够使用现有的控制器和线路实现调光。

白炽灯泡就非常适合进行调光。

具有讽刺意味的是,正是它们的低效率和随之产生的高输入电流,才是调光器工作良好的主要因素。

白炽灯泡中灯丝的热惯性还有助于掩盖调光器所产生的任何不稳定或振荡。

在尝试对LED灯进行调光的过程中遇到了大量问题,常常会导致闪烁和其他意想不到的情况。

要想弄清原因,首先有必要了解可控硅调光器的工作原理、LED灯技术以及它们之间的相互关系。

2.可控硅调光的原理图1所示为典型的前沿可控硅调光器,以及它所产生的电压和电流波形。

图1 前沿可控硅调光器电位计R2调整可控硅(TRIAC) 的相位角,当VC2超过DIAC的击穿电压时,可控硅会在每个AC电压前沿导通。

当可控硅电流降到其维持电流(IH)以下时,可控硅关断,且必须等到C2 在下个半周期重新充电后才能再次导通。

灯泡灯丝中的电压和电流与调光信号的相位角密切相关,相位角的变化范围介于0度(接近0度)到180度之间。

用于替换标准白炽灯的LED灯通常包含一个LED阵列,确保提供均匀的光照。

这些LED以串联方式连接在一起。

每个LED的亮度由其电流决定,LED的正向电压降约为3.4 V,通常介于2.8 V 到4.2 V之间。

LED灯串应当由恒流电源提供驱动,必须对电流进行严格控制,以确保相邻LED灯之间具有高匹配度。

LED灯要想实现可调光,其电源必须能够分析可控硅控制器的可变相位角输出,以便对流向LED 的恒流进行单向调整。

在维持调光器正常工作的同时做到这一点非常困难,往往会导致性能不佳。

问题可以表现为启动速度慢,闪烁、光照不均匀,或在调整光亮度时出现闪烁。

此外,还存在元件间不一致以及LED灯发出不需要的音频噪声等问题。

这些负面情况通常是由误触发或过早关断可控硅以及LED电流控制不当等因素共同造成的。

误触发的根本原因是在可控硅导通时出现了电流振荡。

图2以图表形式对该影响进行了说明。

图2 发生在LED灯电源输入级的可控硅电流与电压振荡可控硅导通时,AC市电电压几乎同时施加到LED灯电源的LC输入滤波器。

施加到电感的电压阶跃会导致振荡。

如果调光器电流在振荡期间低于可控硅电流,可控硅将停止导电。

可控硅触发电路充电,然后重新导通调光器。

这种不规则的多次可控硅重启动,可使LED灯产生不需要的音频噪声和闪烁。

设计更为简单的 EMI滤波器有助于降低此类不必要的振荡。

要想实现成功调光,输入EMI滤波器电感和电容还必须尽可能地小。

振荡的最差条件表现为90 度相位角(这时,输入电压达到正弦波峰值,突然施加到LED灯的输入端),并且为高输入电压(这时,调光器的正向电流达到最低水平)。

当需要深度调光(比如相位角接近180度)且为低输入电压时,则会发生过早关断。

要可靠地调低光度,可控硅必须单调导通,并停留在AC电压几乎降至零伏的点上。

对于可控硅来说,维持导通所需的维持电流通常介于8 mA 到40 mA之间。

白炽灯比较容易维持这种电流大小,但对于功耗仅为等效白炽灯10%的LED灯来说,该电流可降低到可控硅维持电流以下,导致可控硅过早关断。

这样就会造成闪烁和/或限制可调光范围。

在设计LED照明电源时还有许多其他问题构成挑战。

能源之星固态照明规范要求商业和工业应用的最小功率因数必须达到0.9,照明产品必须满足效率、输出电流容差和EMI的严格要求,并且4.LED调光实用方案Power Integrations (PI)最近所取得的技术进展为如何解决LED驱动和可控硅的兼容性问题提供了参考范例。

图3是PI开发的可控硅调光的14 W LED驱动器的电路图。

图3 隔离式可控硅调光的高功率因数通用输入14 W LED驱动器的电路图本设计采用了LinkSwitch-PH系列器件LNK406EG (U1)。

LinkSwitch-PH系列LED驱动器IC同时集成了一个725 V功率MOSFET和一个连续导通模式初级侧PWM控制器。

控制器可实现单级主动功率因数校正(PFC)和恒流输出。

LinkSwitch-PH系列器件所采用的初级侧控制技术可提供高精度恒流控制(性能远优于传统的初级侧控制技术),省去了隔离反激式电源中常用的光耦器和辅助电路(即次级侧控制电路),同时控制器中的PFC部分还省去了大容量电解电容。

LinkSwitch-PH系列器件可设置为调光或非调光模式。

对于可控硅相位调光应用,可在参考(REFERENCE)引脚上使用编程电阻(R4)和在电压监测(VOLTAGE MONITOR)引脚上使用4 MΩ (R2+R3)电阻,使输入电压和输出电流之间保持线性关系,从而扩大调光范围。

连续导通模式具有两大优势:降低导通损耗(从而提高效率)和降低EMI特征。

EMI特征降低后,使用较小的输入EMI滤波器即可满足EMI标准。

可省去一个X电容,并省去共模扼流圈或减小其尺寸。

LinkSwitch-PH器件中内置的高压功率MOSFET开关频率抖动功能还可进一步降低滤波要求。

输入EMI滤波器尺寸减小意味着驱动电路的电阻性阻抗随之减小,其重要好处就是能大幅降低输入电流振荡。

由于 LinkSwitch-PH由其内部参考电源供电,因此可进一步增强稳定性。

对于可调光应用,增加主动衰减电路和泄放电路可确保LED灯在极宽的调光范围内稳定工作,且无任何闪烁。

恒流控制允许有±25%的电压摆幅,这样就无需根据正向电压降对LED进行编码,并且±5%的5.结束语这个14 W LED设计实现了与标准前沿可控硅AC调光器兼容、极宽调光范围(1000:1,500 mA:0.5 mA)、高效率(> 85%)和高功率因数(> 0.9)的目标。

它说明与LED灯可控硅调光相关的问题是可以克服的,甚至可以简化驱动器设计,使可调光LED灯更具成本效益,且达到一致和可靠的性能。

ICL8001G可控硅调光LED驱动电路与应用2011-08-30 12:01:02摘要:LED 照明具有发光效率高、节能等一系列优点,目前得到了广泛的应用。

由于LED可控硅调光具有使用方便、便于实现和使用范围广等一系列优点,世界上一些半导体集成电路生产制造公司纷纷推出有关LED可控硅调光控制集成电路。

下面介绍由英飞凌(Infineon)公司新推出的LED 可控硅(TRA IC)调光控制集成电路ICL8001G的工作原理与典型应用。

1 LED照明与LED可控硅(TRAIC)调光控制自从1968年第一批LED 开始进入市场以来,至今已有30多年。

随着新材料的开发和LED生产工艺的改进,LED 趋于高亮度化和全色化。

氮化镓基底的蓝色LED的出现,更是扩展了LED 的应用领域。

LED的发光原理就是将电能转换为光的过程,将电流通过化合物半导体,通过电子与空穴的结合,过剩的能量将以光的形式释出,达到发光的效果。

通过LED的正向电流越大则LED 的发光亮度越高,同时,通过LED发光电流的稳定性将影响LED 的发光稳定性。

因此,在实用中应采用可以提供精确稳定电流的LED驱动恒流源来为LED 供电。

LED 的调光可以进一步提高LED 的节能效果,而LED的可控硅(TRAIC )调光具有易于实现和使用方便等一系列优点,世界上一些大的半导体集成电路生产和制造公司纷纷推出了LED 可控硅(TRAIC )调光控制集成电路,例如:美国国家半导体公司(NS )推出的LM3445、安森美公司(Onsemi )推出的NCL30000、NXP公司推出的SSL2010T 和英飞凌(Infineon)公司推出的ICL8001G 等可控硅(TRAIC )调光控制集成电路,PI公司也推出了基于PI产品的LED可控硅调光解决方案,它们各具特色。

下面介绍英飞凌(In fineon)公司推出的ICL8001G 可控硅(TRAIC )调光控制集成电路的工作原理、特点和典型应用电路。

2 LED可控硅调光控制集成电路ICL8001G的特点ICL8001G是一款工作于准谐振工作模式、用于离线LED照明应用场合的控制集成电路,特别适用于替代白炽灯照明应用的LED可调光应用场合,精密的PWM 控制可确保可靠地用于相位调光控制的初级侧控制电路结构,确保电路功率因数PF值> 98%, 可以显着地改善电路工作效率,使工作效率高达90%。

相对别的电路解决方案,ICL8001G 的LED 供电工作电压范围宽(高达26 V )、功耗低,保护功能齐全,使用ICL8001G构成的LED 可控硅调光控制电路具有性能优和电路简单的特点。

ICL8001G为8引脚PG - DSO- 8封装,外形如图1所示,ICL8001G 的内部工作原理框图如图2所示。

ICL8001G的主要技术特点如下:图1 引脚图(PG - DSO- 8封装)(俯视图)图2 内部工作原理框图1)在整个工作范围内具有高的工作效率和工作稳定性;2)可用于可控硅前沿或后沿的调光控制应用场合;3)用于初级侧的PFC 和精密调光PWM 控制;4)用于VCC引脚外接电容的恒电流预充电控制单元电路;5)内置数控软启动控制功能,折返式控制和逐周期峰值电流控制;6)VCC 过/欠电压锁定输出;7)输出过电压保护的可调节锁定工作模式。

(1)ICL8001G 引脚功能(3)可控硅调光的典型应用电路可控硅调光的电路实现有许多种,可控硅调光的典型应用电路如图4所示,在图4所示电路中,电位器1用于设定内部失调,电位器2用于外部控制,在电位器1和电位器2的共同作用下,阻值变化范围为2. 7Ω到413 kΩ。

图4 可控硅调光的典型应用电路4 采用ICL8001G的LED可控硅可调光典型应用电路下面介绍采用ICL8001G 的LED 可控硅调光典型应用电路评估电路板EVALLED 的特点与具体电路实现。

(1)电路简介ICL8001G 的评估电路板EVAL-LED 演示了ICL8001G控制集成电路在LED 可控硅调光的应用,ICL8001G为单级反激控制集成电路,工作于准谐振、初级侧控制工作模式,集成了APFC 和相控调光控制功能,适用于LED可调光控制的应用场(2)ICL8001G 的评估电路板EVAL-LEDICL8001G的评估电路板EVAL-LED 焊接电路元器件后的PCB 电路板图俯视图和仰视图分别如图5和图6所示。

相关文档
最新文档