圆锥曲线知识点回顾

合集下载

圆锥曲线重点知识点总结

圆锥曲线重点知识点总结

一、椭圆1.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩. 2.椭圆22221(0)x y a b a b +=>>焦半径公式1PF a ex=+,2PF a ex =-,12,F F 分别为左右焦点3.焦点三角形:P 为椭圆22221(0)x y a b a b +=>>上一点,则三角形12PF F 的面积S=212tan ;2PF F b ∠•特别地,若12,PF PF ⊥此三角形面积为2b ;4.在椭圆22221(0)x y a b a b +=>>上存在点P ,使12PF PF ⊥的条件是c ≥b,即椭圆的离心率e 的范围是;5.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b ⇔+>.6.椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y ya b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y a b +=.(3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=. 二、双曲线7.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c =-.8.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b ⇔-<.9.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a b y ±=. (2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).10.双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b -=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y a b -=.(3双曲线22221(0,0)x y a b a b -=>>与直线Ax By C ++=相切的条件是22222A a B b c -=.11.焦点到渐近线的距离等于虚半轴的长度(即b 值)三、抛物线 12.焦点与半径22(0),(,0),;44(0),(),;44a ay ax a x a aay a =≠=-=≠=-抛物线焦点是准线抛物线x 焦点是0,准线y13.焦半径公式抛物线22(0)y px p =>,C 00(,)x y 为抛物线上一点,焦半径02pCF x =+.14.过焦点弦长p x x px p x CD ++=+++=212122.对焦点在y 轴上的抛物线有类似结论。

(完整版)《圆锥曲线》主要知识点

(完整版)《圆锥曲线》主要知识点

圆锥曲线与方程 知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=+,则点P 的轨迹是 2若P 是椭圆:12222=+by a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为3、点与椭圆、直线与椭圆的位置关系(1)点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:①点P 在椭圆上⇔ ;②点P 在椭圆内部⇔ ; ③点P 在椭圆外部⇔ .(2)直线y =kx +m 与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系判断方法:先联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1.消y 得一个一元二次方程是:(3)弦长公式:设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, ∴|AB |=(x 1-x 2)2+(kx 1-kx 2)2=1+k 2·(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2, 或|AB |=⎝⎛⎭⎫1ky 1-1k y 22+(y 1-y 2)2=1+1k 2·(y 1-y 2)2=1+1k2×(y 1+y 2)2-4y 1y 2. 其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.(4)直线l :y =kx +m 与椭圆:()012222>>=+b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 二、双曲线方程. 1、双曲线的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==-,则点P 的轨迹是 2(1)等轴双曲线:双曲线a y x ±=-称为等轴双曲线,其渐近线方程为 ,离心率(2)共渐近线的双曲线系方程:)0(2222≠=-λλby a x 的渐近线方程为如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为 .(3)从双曲线一个焦点到一条渐近线的距离等于 . 3、直线与双曲线的位置关系(1)一般地,设直线l :y =kx +m ……① 双曲线C :x 2a 2-y 2b 2=1(a >0,b >0) ……②把①代入②得关于x 的一元二次方程为 . ①当b 2-a 2k 2=0时,直线l 与双曲线的渐近线 ,直线与双曲线C . ②当b 2-a 2k 2≠0时,Δ>0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ=0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ<0⇒直线与双曲线 公共点,此时称直线与双曲线 . 注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.(2)直线l :y =kx +m 与双曲线:()0,012222>>=-b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 三、抛物线方程. 1、抛物线的定义平面内与一个定点F 和一条定直线l (不经过点F ) 的点的轨迹叫做抛物线.点F 叫做抛物线的 ,直线l 叫做抛物线的 .思考1:平面内与一个定点F 和一条定直线l (l 经过点F ),点的轨迹是 2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2), AB 的中点M (x 0,y 0),相应的准线为l .(1)以AB 为直径的圆必与准线l 的位置关系是 ; (2)|AB |= (焦点弦长用中点M 的坐标表示); (3)若直线AB 的倾斜角为α,则|AB |= (焦点弦长用倾斜角为α表示);如当α=90°时,AB 叫抛物线的通径,是焦点弦中最短的;抛物线的通径等于 . (4)求证A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2= ,y 1·y 2= . 4、直线与抛物线的位置关系1.设直线l :y =kx +m ,抛物线:y 2=2px (p >0),将直线方程与抛物线方程联立整理成 关于x 的一元二次方程为 ,(1)若k =0,直线与抛物线有 个公共点,此时直线 于抛物线的对称轴或与对称轴 . 因此直线与抛物线有一个公共点是直线与抛物线相切的 条件. (2)若k ≠0, 当Δ>0时,直线与抛物线 ,有两个公共点;当Δ=0时,直线与抛物线 ,有一个公共点; 当Δ<0时,直线与抛物线 ,无公共点.2.直线l :y =kx +m 与抛物线:y 2=2px (p >0)的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用p 和x 0,y 0表示)3.抛物线:y 2=2px (p >0,y >0)在点A (x 0,02px )处的切线方程为 ,4.抛物线:x 2=2py (p >0)在点A (x 0,px 220)处的切线方程为 ,。

圆锥曲线基础知识梳理

圆锥曲线基础知识梳理

圆锥曲线知识要点梳理知识点一:圆锥曲线的统一定义椭圆、双曲线、抛物线统称圆锥曲线。

平面内,到一定点的距离与它到一条定直线(不经过定点)的距离之比是常数e的点的轨迹叫做圆锥曲线。

定点叫做焦点,定直线叫做准线、常数叫做离心率。

①e∈(0,1)时轨迹是椭圆;②e=1时轨迹是抛物线;③e∈(1,+∞)时轨迹是双曲线。

知识点二:圆锥曲线的标准方程和几何性质1.椭圆:(1)定义:平面内到两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫椭圆,这两个定点叫焦点.(2)标准方程当焦点在轴上时,椭圆的标准方程:,其中;当焦点在轴上时,椭圆的标准方程:,其中;(3)椭圆的的简单几何性质:范围:,,焦点,顶点、,长轴长=,短轴长=,焦距=,2.双曲线(1)定义:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫双曲线的焦点.(2)标准方程当焦点在轴上时,双曲线的标准方程:,其中;当焦点在轴上时,双曲线的标准方程:,其中.(3)双曲线的简单几何性质范围:,;焦点,顶点,实轴长=,虚轴长=,焦距=;离心率是,准线方程是;渐近线:.3.抛物线(1)定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(2)标准方程四种形式:,,,。

(3)抛物线标准方程的几何性质范围:,,对称性:关于x轴对称顶点:坐标原点离心率:.知识点三:直线和圆锥曲线的位置关系1.直线Ax+By+C=0和椭圆的位置关系:将直线方程代入椭圆后化简为一元二次方程,其判别式为Δ。

(1)若Δ>0,则直线和椭圆相交,有两个交点(或两个公共点);(2)若Δ=0,则直线和椭圆相切,有一个切点(或一个公共点);(3)若Δ<0,则直线和椭圆相离,无公共点.2.直线Ax+By+C=0和双曲线的位置关系:将直线方程代入双曲线方程后化简方程①若为一元一次方程,则直线和双曲线的渐近线平行,直线和双曲线只有一个交点,但不相切不是切点;②若为一元二次方程,则(1)若Δ>0,则直线和双曲线相交,有两个交点(或两个公共点);(2)若Δ=0,则直线和双曲线相切,有一个切点;(3)若Δ<0,则直线和双曲线相离,无公共点.注意:如说直线和双曲线有一个公共点,则要考虑两种情况:一个切点和一个交点3.直线Ax+By+C=0和抛物线y2=2px(p>0)的位置关系:将直线方程代入抛物线方程后化简后方程:①若为一元一次方程,则直线和抛物线的对称轴平行,直线和抛物线有一个交点,但不相切不是切点;②若为一元二次方程,则(1)若Δ>0,则直线和抛物线相交,有两个交点(或两个公共点); (2)若Δ=0,则直线和抛物线相切,有一个切点; (3)若Δ<0,则直线和抛物线相离,无公共点。

最全圆锥曲线知识点总结

最全圆锥曲线知识点总结

最全圆锥曲线知识点总结的定义是指平面内一个动点P到两个定点F1,F2的距离之和等于常数(PF1+PF2=2a>F1F2),那么这个动点P的轨迹就是椭圆。

这两个定点被称为椭圆的焦点,两焦点的距离被称为椭圆的焦距。

注意:如果PF1+PF2=F1F2,则动点P的轨迹是线段F1F2;如果PF1+PF2<F1F2,则动点P的轨迹无图形。

2)对于椭圆,如果焦点在x轴上,那么它的参数方程是x=acosθ,y=bsinθ(其中θ为参数),如果焦点在y轴上,那么它的参数方程是y=acosθ,x=bsinθ。

如果椭圆的标准方程是x2/a2+y2/b2=1(a>b>0),那么它的范围是−a≤x≤a,−b≤y≤b,焦点是两个点(±c,0),对称中心是(0,0),顶点是(±a,0)和(0,±b),长轴长为2a,短轴长为2b,离心率为e=c/a,椭圆即为0<e<1的情况。

3)关于直线与椭圆的位置关系,如果点P(x,y)在椭圆外,那么a2+b2>1;如果点P(x,y)在椭圆上,那么a2+b2=1;如果点P(x,y)在椭圆内,那么a2+b2<1.4)焦点三角形是指椭圆上的一点与两个焦点构成的三角形。

5)弦长公式是指如果直线y=kx+b与圆锥曲线相交于两点A、B,且x1、x2分别为A、B的横坐标,那么AB=√[1+k2(x1−x2)2]。

如果y1、y2分别为A、B的纵坐标,则AB=√[1+k2(y1−y2)2]。

如果弦AB所在直线方程设为x=ky+b,则AB=√[1+k2(y1−y2)2]。

6)圆锥曲线的中点弦问题可以用“韦达定理”或“点差法”求解。

在椭圆中,以P(x,b2x,y)为中点的弦所在直线的斜率k=−a2y。

1.已知椭圆 $m x^2 + n y^2 = 1$ 与直线 $x+y=1$ 相交于$A,B$ 两点,点 $C$ 是 $AB$ 的中点,且 $AB=2\sqrt{2}$,求椭圆的方程,若 $OC$ 的斜率为 $\frac{1}{2}$,求 $m,n$ 的值。

圆锥曲线知识点整理

圆锥曲线知识点整理

圆锥曲线知识点整理圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。

下面我们来详细整理一下圆锥曲线的相关知识点。

一、椭圆1、定义平面内与两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} =1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。

焦点在y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} =1\)(\(a > b > 0\))3、椭圆的性质(1)范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b \leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。

(2)对称性:椭圆关于 x 轴、y 轴和原点对称。

(3)顶点:椭圆有四个顶点,焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。

(4)离心率:椭圆的离心率\(e =\frac{c}{a}\),\(0 < e < 1\),\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。

二、双曲线1、定义平面内与两个定点 F₁、F₂的距离之差的绝对值等于常数(小于|F₁F₂|)的点的轨迹叫做双曲线。

这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。

2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\),其中\(a > 0\),\(b > 0\),\(c^2 = a^2 + b^2\)。

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
一、圆锥曲线的基本概念
1、圆锥曲线:平面内以圆为母线的曲线,又称为圆锥线,是数学上的一类曲线。

2、离心率:圆锥曲线的离心率是有两个参数确定的:它们是焦距a和准线焦距c。

3、双曲线:双曲线是一类特殊的圆锥曲线,a>0, c>0时,它概括了圆锥曲线的一般情况,称为双曲线。

二、圆锥曲线的性质
1、改变离心率可以改变圆锥曲线的形状,当离心率大于1时,曲线呈双曲线,当离心率小于1时,曲线呈凹凸线;
2、圆锥曲线的焦点与顶点之间的距离是两个焦距的和,a+c;
3、圆锥曲线的切线方程的斜率是1/(a+c);
4、圆锥曲线的半矢量的方向是以焦点为圆心,从焦距a出发的方向;
5、圆锥曲线的曲率半径是2a+c;
6、圆锥曲线的弧长是一定积分的表达式,是确定的;
7、圆锥曲线的曲线方程是确定的,但极坐标表示法有两种形式,要根据离心率来确定;
三、圆锥曲线的应用
1、圆锥曲线的应用着重于机械设计领域,如齿轮的设计和制造;
2、圆锥曲线的半径可以用于圆弧的求解和曲线的精度检验;
3、圆锥曲线的弧长可以用于求解同轴运动的轮毂的周长;
4、圆锥曲线的曲线方程可以用于二维图形的绘制;
5、圆锥曲线的曲线方程可以用于求解曲面曲线的面积和表面积;
6、圆锥曲线的曲线方程可以用于求解椭圆锥曲线的主曲线参数,以求解椭球面的曲线参数;
7、圆锥曲线的曲率半径可以用于求解圆的曲率半径参数;
8、圆锥曲线的切线可以用于求解圆弧的切线参数;
9、圆锥曲线的球面可以用于求解曲面的曲率方向;
10、圆锥曲线的曲线可以用于运动学分析和机器学习算法中的运动路径规划。

(完整版)圆锥曲线知识点归纳总结

(完整版)圆锥曲线知识点归纳总结

完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。

三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。

构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。

2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。

椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。

椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。

重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。

抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。

重要公式:抛物线的标准方程为(x^2/4a) = y。

4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。

双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。

双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。

椭圆的应用包括轨道运动、天体力学以及密码学等领域。

抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。

双曲线的应用包括电磁波的传播、双曲线钟的标定等。

6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。

对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。

切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。

焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。

此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。

熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。

圆锥曲线方程知识点总结

圆锥曲线方程知识点总结

圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。

双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。

抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。

二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。

以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。

双曲线和抛物线的参数方程也可以类似地表示。

三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。

以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。

双曲线和抛物线的极坐标方程也可以类似地表示。

四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。

2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线知识点回顾1.椭圆的性质
2.双曲线的性质
3.抛物线中的常用结论
①过抛物线y2=2px的焦点F的弦AB长的最小值为2p
②设A(x1,y),1B(x2,y2)是抛物线y2=2px上的两点,则AB过F的充要条件是y1y2=-p2
③设A,B是抛物线y2=2px上的两点,O为原点,则OA⊥OB的充要条件是
直线AB恒过定点(2p,0)
(4).圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义
与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e表示,当0<e<1时,
是椭圆,当e>1时,是双曲线,当e=1时,是抛物线.
4.直线与圆锥曲线的位置关系:(在这里我们把圆包括进来)
(1).首先会判断直线与圆锥曲线是相交、相切、还是相离的
a.直线与圆:一般用点到直线的距离跟圆的半径相比(几何法),也可以利用方程实根的个数来判断(解析法).
b.直线与椭圆、双曲线、抛物线一般联立方程,判断相交、相切、相离
c.直线与双曲线、抛物线有自己的特殊性
(2).a.求弦所在的直线方程
b.根据其它条件求圆锥曲线方程
(3).已知一点A坐标,一直线与圆锥曲线交于两点P、Q,且中点为A,求P、Q所
在的直线方程
(4).已知一直线方程,某圆锥曲线上存在两点关于直线对称,求某个值的取值范围(或
者是圆锥曲线上否存在两点关于直线对称)
5.二次曲线在高考中的应用
二次曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。

通过以二次曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。

本文关注近年部分省的高考二次曲线问题,给予较深入的剖析,这对形成高三复习的新的教学理念将有着积极的促进作用。

(1).重视二次曲线的标准方程和几何性质与平面向量的巧妙结合。

(2).重视二次曲线的标准方程和几何性质与导数的有机联系。

(3).重视二次曲线性质与数列的有机结合。

(4).重视解析几何与立体几何的有机结合。

6.知识网络
圆锥曲线——椭圆、曲线、直线—定义—标准方程
性质:对称性、焦点、顶点、离率、准线、焦半径等
直线与圆锥曲线的位置关系。

相关文档
最新文档