高考物理动量守恒定律的应用技巧(很有用)及练习题

合集下载

高中物理动量守恒定律解题技巧及练习题(含答案)

高中物理动量守恒定律解题技巧及练习题(含答案)

高中物理动量守恒定律解题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。

已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。

(1)求导体棒刚进入凹槽时的速度大小;(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;(3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。

【答案】(1) 210/v m s = (2)25J (3)9W 4P = 【解析】 【详解】解:(1)根据机械能守恒定律,可得:212mgh mv = 解得导体棒刚进入凹槽时的速度大小:210/v m s =(2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+=(3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得:2212111()22mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+回路电功率:2E P R=联立解得:94P W =2.如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m =0.1kg .P 2的右端固定一轻质弹簧,物体P 置于P 1的最右端,质量为M =0.2kg 且可看作质点.P 1与P 以共同速度v 0=4m/s 向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回(弹簧始终在弹性限度内).平板P 1的长度L =1m ,P 与P 1之间的动摩擦因数为μ=0.2,P 2上表面光滑.求:(1)P 1、P 2刚碰完时的共同速度v 1; (2)此过程中弹簧的最大弹性势能E p .(3)通过计算判断最终P 能否从P 1上滑下,并求出P 的最终速度v 2. 【答案】(1)v 1=2m/s (2)E P =0.2J (3)v 2=3m/s 【解析】 【分析】 【详解】(1)P 1、P 2碰撞过程,由动量守恒定律 01m 2v mv = 解得012/2v v m s ==,方向水平向右 ; (2)对P 1、P 2、P 系统,由动量守恒定律 1022(2)mv Mv m M v '+=+ 解得2033/4v v m s ='=,方向水平向右, 此过程中弹簧的最大弹性势能222102111•2+Mv 2m )0.2222P E mv M v J =-='+(; (3)对P 1、P 2、P 系统,由动量守恒定律 103222mv Mv mv Mv +=- 由能量守恒定律得2222103211112+Mv 2mv +Mg 2222mv Mv L ⋅=⋅+μ 解得P 的最终速度23/0v m s =>,即P 能从P 1上滑下,P 的最终速度23/v m s =3.光滑水平面上质量为1kg 的小球A ,以2.0m/s 的速度与同向运动的速度为1.0m/s 、质量为2kg 的大小相同的小球B 发生正碰,碰撞后小球B 以1.5m/s 的速度运动.求:(1)碰后A 球的速度大小;(2)碰撞过程中A 、B 系统损失的机械能. 【答案】 1.0/A v m s '=,0.25E J =损【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度. (2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A 的初速度方向为正,由动量守恒定律得: m A v A +m B v B =m A v′A +m B v′B 代入数据解:v′A =1.0m/s②碰撞过程中A 、B 系统损失的机械能量为:代入数据解得:E 损=0.25J答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为0.25J .【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以正确解题,应用动量守恒定律解题时要注意正方向的选择.4.在日常生活中,我们经常看到物体与物体间发生反复的多次碰撞.如图所示,一块表面水平的木板静止放在光滑的水平地面上,它的右端与墙之间的距离L =0.08 m .现有一小物块以初速度v 0=2 m/s 从左端滑上木板,已知木板和小物块的质量均为1 kg ,小物块与木板之间的动摩擦因数μ=0.1,木板足够长使得在以后的运动过程中小物块始终不与墙接触,木板与墙碰后木板以原速率反弹,碰撞时间极短可忽略,取重力加速度g =10 m/s 2.求:(1)木板第一次与墙碰撞时的速度大小;(2)从小物块滑上木板到二者达到共同速度时,木板与墙碰撞的总次数和所用的总时间; (3)小物块和木板达到共同速度时,木板右端与墙之间的距离. 【答案】(1)0.4 s 0.4 m/s (2)1.8 s. (3)0.06 m 【解析】试题分析:(1)物块滑上木板后,在摩擦力作用下,木板从静止开始做匀加速运动,设木板加速度为a ,经历时间T 后与墙第一次碰撞,碰撞时的速度为1v则mg ma μ=,解得21/a g m s μ==①212L at =②,1v at =③ 联立①②③解得0.4t s =,10.4/v m s =④(2)在物块与木板两者达到共同速度前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的匀减速直线运动,因而木板与墙相碰后将返回至初态,所用时间也为T .设在物块与木板两者达到共同速度v 前木板共经历n 次碰撞,则有:()02v v nT t a a t =-+∆=∆⑤式中△t 是碰撞n 次后木板从起始位置至达到共同速度时所需要的时间.由于最终两个物体一起以相同的速度匀速前进,故⑤式可改写为022v v nTa =-⑥ 由于木板的速率只能处于0到1v 之间,故有()01022v nTa v ≤-≤⑦ 求解上式得1.5 2.5n ≤≤ 由于n 是整数,故有n=2⑧由①⑤⑧得:0.2t s ∆=⑨;0.2/v m s =⑩从开始到物块与木板两者达到共同速度所用的时间为:4 1.8t T t s =+∆=(11) 即从物块滑上木板到两者达到共同速度时,木板与墙共发生三次碰撞,所用的时间为1.8s .(3)物块与木板达到共同速度时,木板与墙之间的距离为212s L a t =-∆(12) 联立①与(12)式,并代入数据得0.06s m = 即达到共同速度时木板右端与墙之间的距离为0.06m . 考点:考查了牛顿第二定律,运动学公式【名师点睛】本题中开始小木块受到向后的摩擦力,做匀减速运动,长木板受到向前的摩擦力做匀加速运动;当长木板反弹后,小木块继续匀减速前进,长木板匀减速向左运动,一直回到原来位置才静止;之后长木板再次向右加速运动,小木块还是匀减速运动;长木板运动具有重复性,由于木板长度可保证物块在运动过程中不与墙接触,故直到两者速度相同,一起与墙壁碰撞后反弹;之后长木板向左减速,小木块向右减速,两者速度一起减为零.5.如图所示,固定的光滑圆弧面与质量为6kg 的小车C 的上表面平滑相接,在圆弧面上有一个质量为2kg 的滑块A ,在小车C 的左端有一个质量为2kg 的滑块B ,滑块A 与B 均可看做质点.现使滑块A 从距小车的上表面高h =1.25m 处由静止下滑,与B 碰撞后瞬间粘合在一起共同运动,最终没有从小车C 上滑出.已知滑块A 、B 与小车C 的动摩擦因数均为μ=0.5,小车C 与水平地面的摩擦忽略不计,取g =10m/s 2. 求: (1)滑块A 与B 弹性碰撞后瞬间的共同速度的大小; (2)小车C 上表面的最短长度.【答案】(1) v =2.5m/s (2) L =0.375m 【解析】【试题分析】(1)根据机械能守恒求解块A 滑到圆弧末端时的速度大小,由动量守恒定律求解滑块A 与B 碰撞后瞬间的共同速度的大小;(2)根据系统的能量守恒求解小车C 上表面的最短长度.(1)设滑块A 滑到圆弧末端时的速度大小为1v ,由机械能守恒定律有:2A A 11m gh m v 2= 代入数据解得12gh 5m/s v ==.设A 、B 碰后瞬间的共同速度为2v ,滑块A 与B 碰撞瞬间与小车C 无关,滑块A 与B 组成的系统动量守恒, ()12A A B m v m m v =+ 代入数据解得2 2.5m/s v =.(2)设小车C 的最短长度为L ,滑块A 与B 最终没有从小车C 上滑出,三者最终速度相同设为3v ,根据动量守恒定律有:()()A B 2A B C 3m m v m m m v +=++ 根据能量守恒定律有:()()()222311gL=22A B A B A B C m m m m v m m m v μ++-++ 联立以上两代入数据解得0.375m L =【点睛】本题要求我们要熟练掌握机械能守恒、能量守恒和动量守恒的条件和公式,正确把握每个过程的物理规律是关键.6.如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H 的光滑水平桌面上.现有一滑块A 从光滑曲面上离桌面h 高处由静止开始滑下,与滑块B 发生碰撞并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知,2,3A B C m m m m m m ===,求:(1)滑块A 与滑块B 碰撞结束瞬间的速度v ; (2)被压缩弹簧的最大弹性势能E Pmax ; (3)滑块C 落地点与桌面边缘的水平距离 s. 【答案】(1)111233v v gh ==(2)6mgh (323Hh 【解析】 【详解】解:(1)滑块A 从光滑曲面上h 高处由静止开始滑下的过程,机械能守恒,设其滑到底面的速度为1v ,由机械能守恒定律有:2112=A A m gh m v解之得:12v gh =滑块A 与B 碰撞的过程,A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为v ,由动量守恒定律有:()1A A B m v m m v =+ 解之得:111233v v gh == (2)滑块A 、B 发生碰撞后与滑块C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块A 、B 、C 速度相等,设为速度2v 由动量守恒定律有: ()12A A B C m v m m m v =++ 由机械能守恒定律有: ()22max 21()2A A CB B P m v m m m m E v -++=+ 解得被压缩弹簧的最大弹性势能:max 16P E mgh =(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块A 、B 的速度为3v ,滑块C 的速度为4v ,分别由动量守恒定律和机械能守恒定律有:()()34A B A B C m m v m m v m v +=++()()22234111222A B A B C m m v m m v m v +=++ 解之得:30=v ,4123v gh =滑块C 从桌面边缘飞出后做平抛运动:4 s v t =212H gt =解之得滑块C 落地点与桌面边缘的水平距离:23s Hh =7.如图所示,内壁粗糙、半径R =0.4 m 的四分之一圆弧轨道AB 在最低点B 与光滑水平轨道BC 相切。

高考物理动量守恒定律的技巧及练习题及练习题(含答案)

高考物理动量守恒定律的技巧及练习题及练习题(含答案)

高考物理动量守恒定律的技巧及练习题及练习题(含答案)一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求:(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =014P E mgx =0(2043)v gx =+【解析】试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°=12mv 12 解得:103v gx =又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…②联立①②得:21011322v v gx ==(2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P +12•2mv 22=0+2mg•x 0sin30° 解得:E P =2mg•x 0sin30°−12•2mv 22=mgx 0−34mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,物块A 恰能通过圆弧轨道的最高点C 点时,重力提供向心力,得:2c v mg m R=所以:0c v gR gx == C 点相对于O 点的高度: h=2x 0sin30°+R+Rcos30°=(43)+x 0…⑤ 物块从O 到C 的过程中机械能守恒,得:12mv o 2=mgh+12mv c 2…⑥ 联立④⑤⑥得:0(53)o v gx +=…⑦ 设A 与B 碰撞后共同的速度为v B ,碰撞前A 的速度为v A ,滑块从P 到B 的过程中机械能守恒,得:12mv 2+mg (3x 0sin30°)=12mv A 2…⑧ A 与B 碰撞的过程中动量守恒.得:mv A =2mv B …⑨ A 与B 碰撞结束后从B 到O 的过程中机械能守恒,得:12•2mv B 2+E P =12•2mv o 2+2mg•x 0sin30°…⑩ 由于A 与B 不粘连,到达O 点时,滑块B 开始受到弹簧的拉力,A 与B 分离. 联立⑦⑧⑨⑩解得:033v gx =考点:动量守恒定律;能量守恒定律【名师点睛】分析清楚物体运动过程、抓住碰撞时弹簧的压缩量与A 、B 到达P 点时弹簧的伸长量相等,弹簧势能相等是关键,应用机械能守恒定律、动量守恒定律即可正确解题.3.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。

高中物理动量守恒定律解题技巧(超强)及练习题(含答案)及解析

高中物理动量守恒定律解题技巧(超强)及练习题(含答案)及解析

高中物理动量守恒定律解题技巧(超强)及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.牛顿的《自然哲学的数学原理》中记载,A、B两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B对A的速度,接近速度是指碰撞前A对B的速度.若上述过程是质量为2m的玻璃球A以速度v0碰撞质量为m 的静止玻璃球B,且为对心碰撞,求碰撞后A、B的速度大小.【答案】v0v0【解析】设A、B球碰撞后速度分别为v1和v2由动量守恒定律得2mv0=2mv1+mv2且由题意知=解得v1=v0,v2=v0视频3.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极端的时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。

高中物理动量守恒定律解题技巧分析及练习题(含答案)含解析

高中物理动量守恒定律解题技巧分析及练习题(含答案)含解析

高中物理动量守恒定律解题技巧分析及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.冰球运动员甲的质量为80.0kg 。

当他以5.0m/s 的速度向前运动时,与另一质量为100kg 、速度为3.0m/s 的迎面而来的运动员乙相撞。

碰后甲恰好静止。

假设碰撞时间极短,求:(1)碰后乙的速度的大小; (2)碰撞中总动能的损失。

【答案】(1)1.0m/s (2)1400J 【解析】试题分析:(1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V′,规定甲的运动方向为正方向,由动量守恒定律有:mv-MV=MV′…① 代入数据解得:V′=1.0m/s…②(2)设碰撞过程中总机械能的损失为△E ,应有:mv 2+MV 2=MV′2+△E…③ 联立②③式,代入数据得:△E=1400J 考点:动量守恒定律;能量守恒定律2.[物理─选修3-5] (1)天然放射性元素23994Pu 经过次α衰变和 次β衰变,最后变成铅的同位素 。

(填入铅的三种同位素20682Pb 、20782Pb 、20882Pb 中的一种)(2)某同学利用如图所示的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为1∶2.当两摆均处于自由静止状态时,其侧面刚好接触.向右上方拉动B 球使其摆线伸直并与竖直方向成45°角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成30°.若本实验允许的最大误差为±4%,此实验是否成功地验证了动量守恒定律?【答案】(1)8,4,20782Pb ;(2)211P P P ≤4% 【解析】 【详解】(1)设发生了x 次α衰变和y 次β衰变, 根据质量数和电荷数守恒可知,2x -y +82=94, 239=207+4x ;由数学知识可知,x =8,y =4.若是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是20782Pb(2)设摆球A 、B 的质量分别为A m 、B m ,摆长为l ,B 球的初始高度为h 1,碰撞前B 球的速度为v B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得1(1cos 45)h l =-︒①2112B B B m v mgh =② 设碰撞前、后两摆球的总动量的大小分别为P 1、P 2.有P 1=m B v B ③联立①②③式得12(1cos45)B P m gl =-︒ ④ 同理可得2()2(1cos30)A B P m m gl =+-︒ ⑤联立④⑤式得211cos301cos 45A B BP m m P m +-︒=-︒ ⑥ 代入已知条件得221 1.03P P⎛⎫= ⎪⎝⎭⑦ 由此可以推出211P P P -≤4% ⑧ 所以,此实验在规定的范围内验证了动量守恒定律.3.一轻质弹簧一端连着静止的物体B ,放在光滑的水平面上,静止的物体A 被水平速度为v 0的子弹射中并且嵌入其中,随后一起向右运动压缩弹簧,已知物体A 的质量是物体B 的质量的34,子弹的质量是物体B 的质量的14,求:(1)物体A 被击中后的速度大小; (2)弹簧压缩到最短时B 的速度大小。

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,质量分别为m 1和m 2的两个小球在光滑水平面上分别以速度v 1、v 2同向运动,并发生对心碰撞,碰后m 2被右侧墙壁原速弹回,又与m 1碰撞,再一次碰撞后两球都静止.求第一次碰后m 1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m 2速度的大小分别为和,由动量守恒定律得:(4分) 两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得2.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)【答案】25m/s【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:()20120M v M m M v +=++共,解得5m /s v =共以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得25m /s v =考点:考查了动量守恒定律的应用【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解3.28.如图所示,质量为m a=2kg的木块A静止在光滑水平面上。

一质量为m b= lkg的木块B以初速度v0=l0m/s沿水平方向向右运动,与A碰撞后都向右运动。

木块A与挡板碰撞后立即反弹(设木块A与挡板碰撞过程无机械能损失)。

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案)一、高考物理精讲专题动量守恒定律的应用1.竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ;(3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量.【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。

0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量,由圆方程可知S 1m 2 代入数据可得:v 0 4m/s(2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 21 2 1 2 12由机械能守恒可得 m a v 0m a v 1 (m b m c )v 222 2解得 V 1 0, V 2 4m/ sA E阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求小球c运动到Q点时,小球b恰好运动到P点,由动能定理1 2 1 2 m c gR qER ㊁血 mjv ㊁血 mjv ?代入数据可得v 2m/ s⑶由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为 从c 球运动到Q 点到减速到零的过程列能量守恒可得:1 2(m b m c )v qERsin 22.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 '点,绳子刚好被拉直且偏离竖直方向的角度0 =60.小明从A 点由静止往下摆,达到 O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m ,浮漂圆心与 C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径 R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量 m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:_*』吩(1) 轻绳能承受最大拉力不得小于多少? (2) 小明跳离平板车时的速度在什么范围?(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ?【答案】(1) 1200N (2) 4m/s Wv< 5m/s( 3) 480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒规律计算即可. 【详解】解(I)从A 到B .由功能关系可得1 2 mgL(1 cos ) mv ①2代人数据求得v=4 m/s ②m b gR(1cos ) m c gRsin 解得sin0637因此小球c 电势能的增加量: E p qER(1 sin ) 3.2J2在最低点B处,T mg mv③联立①②解得,轻绳能承受最大拉力不得小于T=1200N(2) 小明离开滑板后可认为做平抛运动1 2竖直位移y gt1 2 3④2离C点水平位移最小位移x R v min t⑤离C点水平位移最大为X R V min t⑥联立④⑤⑥解得小明跳离滑板时的速度 4 m/s Wvw 5 m/s(3) 小明落上滑板时,动量守恒mv (m m0)V| ⑦代人数据求得V i=3 m/s⑧离开滑板时,动量守恒(m m0)v| mv C m o V2⑨将⑧代人⑨得V2=-3 m/s由功能关系可得1 2 1 2 1 2 W ( — mv C m0v2) m m0 v1⑩.2 2 2解得W=480 J3. 某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、B C置于水平导轨上, B C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度V0=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起•碰撞时间极短,滑块C脱离弹簧后滑上倾角0 =37的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C与传送带之间的动摩擦因数卩=0.8重力加速度g=10m/s2, sin37=0.6, cos37°0.8.1滑块A、B碰撞时损失的机械能;2滑块C在传送带上因摩擦产生的热量Q;3若每次实验开始时滑块A的初速度V。

高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。

车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。

【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。

(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角θ=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t =0时,导体棒位于顶角O 处;导体棒的质量为m =4kg ;OM 、ON 接触处O 点的接触电阻为R =0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求:(1)t =2s 时流过导体棒的电流强度的大小; (2)在1~2s 时间内导体棒所受安培力的冲量大小;(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)8A (2)8N s ⋅(3)32639F x =+【解析】 【分析】 【详解】(1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为4V E =由欧姆定律得24A 8A 0.5E I R === (2)由图2可知,1(T m)x B =⋅ 由图3可知,E 与时间成正比,有E =2t (V )4EI t R== 因θ=53°,可知任意t 时刻回路中导体棒有效切割长度43x L = 又由F BIL =安所以163F t 安=即安培力跟时间成正比所以在1~2s 时间内导体棒所受安培力的平均值163233N 8N2F +==故8N s I F t =∆=⋅安(3)因为43vE BLv Bx ==⋅所以1.5(m/s)v t =可知导体棒的运动时匀加速直线运动,加速度21.5m/s a =又212x at =,联立解得 32639F x =+【名师点睛】本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系,要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式.3.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。

高中物理动量守恒定律的应用技巧(很有用)及练习题含解析

高中物理动量守恒定律的应用技巧(很有用)及练习题含解析

高中物理动量守恒定律的应用技巧(很有用)及练习题含解析一、高考物理精讲专题动量守恒定律的应用1.如图所示质量为m的物块A在光滑的水平面上以一定的速度向右滑行,质量为2m的圆弧体静止在光滑水平面上,光滑圆弧面最低点与水平面相切,圆弧的半径为R,圆弧所对的圆心角θ=53°,物块滑上圆弧体后,刚好能滑到圆弧体的最高点,重力加速度为g。

求(1)物块在水平面上滑行的速度大小;(2)若将圆弧体锁定,物块仍以原来的速度向右滑行并滑上圆弧体,则物块从圆弧面上滑出后上升到最高点的速度大小及最高点离地面的高度。

【答案】(1)06 5v gR=(2)232 55v gR =66125 h R =【解析】【分析】(1)A、B组成的系统在水平方向动量守恒,应用动量守恒定律与机械能守恒定律可以求出物块A的速度。

(2)圆弧体固定,物块上滑过程机械能守恒,应用机械能守恒定律可以求出到达圆弧体上端时的速度,离开圆弧体后物块做斜上抛运动,应用运动的合成与分解可以求出到达最高点的速度,应用机械能守恒定律可以求出上升的最大高度。

【详解】(1)物块与圆弧体组成的系统在水平方向动量守恒,物块到达最高点时两者速度相等,以向右为正方向,由动量守恒定律得:mv0=(m+2m)v,由机械能守恒定律得:12m v02=12(m+2m)v2+mgR(1−cosθ),解得:06 5v gR =(2)对物块,由机械能守恒定律得:12m v02=12m v12+mgR(1−cosθ),解得:12 5v gR=物块从圆弧最高点抛出后,在水平方向做匀速直线运动,竖直方向做竖直上抛运动,物块到达最高点时,物块的速度:v2=v1cosθ=3255gR,由机械能守恒定律得:12m v02=mgh+12m v22,解得:h=66125R ; 【点睛】本题考查了动量守恒定律与机械能守恒定律的应用,分析清楚物体运动过程是解题的前提,应用动量守恒定律、机械能守恒定律即可解题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理动量守恒定律的应用技巧(很有用)及练习题一、高考物理精讲专题动量守恒定律的应用1.足够长的水平传送带右侧有一段与传送带上表面相切的14光滑圆弧轨道,质量为M =2kg 的小木盒从离圆弧底端h =0.8m 处由静止释放,滑上传送带后作减速运动,1s 后恰好与传送带保持共速。

传送带始终以速度大小v 逆时针运行,木盒与传送带之间的动摩擦因数为μ=0.2,木盒与传送带保持相对静止后,先后相隔T =5s ,以v 0=10m/s 的速度在传送带左端向右推出两个完全相同的光滑小球,小球的质量m =1kg .第1个球与木盒相遇后,球立即进入盒中并与盒保持相对静止,第2个球出发后历时△t =0.5s 与木盒相遇。

取g =10m/s 2,求:(1)传送带运动的速度大小v ,以及木盒与第一个小球相碰后瞬间两者共同运动速度大小v 1;(2)第1个球出发后经过多长时间与木盒相遇;(3)从木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量。

【答案】(1)v =2m/s ;v 1=2m/s (2)t 0=1s (3)24J Q = 【解析】 【详解】(1)设木盒下滑到弧面底端速度为v ',对木盒从弧面下滑的过程由动能定理得212Mgh Mv =' 依题意,木箱滑上传送带后做减速运动,由运动学公式有:v v at ='-' 对箱在带上由牛顿第二定律有:Mg Ma μ= 代入数据联立解得传送带的速度v =2m/s 设第1个球与木盒相遇,根据动量守恒定律得()01mv Mv m M v -=+代入数据,解得v 1=2m/s(2)设第1个球与木盒的相遇点离传送带左端的距离为s ,第1个球经过t 0与木盒相遇,则00s t v =设第1个球进入木盒后两者共同运动的加速度为a ,根据牛顿第二定律有()()m M g m M a μ+=+得:22m/s a g μ==设木盒减速运动的时间为t 1,加速到与传送带相同的速度的时间为t 2,则12v t t a∆===1s 故木盒在2s 内的位移为零 依题意:03s v t vt =∆+其中t 3为木盒回到与1球碰撞点后再随带运动的时间,则对1球和2球有0123t t t t T t +++=+∆代入数据解得:s =10m , t 0=1s(3)自木盒与第1个球相遇至与第2个球相遇的这一过程中,传送带的位移为x ,木盒的位移为x 1,则:()09m x v T t t =+∆-=()11205m x v T t t t t =+∆---=故木盒相对与传送带的位移为14m x x x ∆=-=则木盒与传送带间的摩擦而产生的热量为·24J Q M m g x μ=+∆=()2.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在O 点,绳子刚好被拉直且偏离竖直方向的角度θ=60°.小明从A 点由静止往下摆,达到O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运动.到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂上.绳长L=1.6m ,浮漂圆心与C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:(1)轻绳能承受最大拉力不得小于多少? (2)小明跳离平板车时的速度在什么范围?(3)若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功? 【答案】(1)1200N (2)4m/s≤v c ≤5m/s (3)480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围(3)由动量守恒和能量守恒规律计算即可. 【详解】解(l)从A 到B .由功能关系可得21(1cos )2mgL mv θ-=① 代人数据求得v=4 m/s② 在最低点B 处,2mv T mg L-=③ 联立①②解得,轻绳能承受最大拉力不得小于T=1200N (2)小明离开滑板后可认为做平抛运动 竖直位移212y gt =④ 离C 点水平位移最小位移min x R v t -= ⑤ 离C 点水平位移最大为min x R v t +=⑥ 联立④⑤⑥解得小明跳离滑板时的速度4 m/s≤v c ≤5 m/s (3)小明落上滑板时,动量守恒01()mv m m v =+⑦代人数据求得v 1=3 m/s⑧ 离开滑板时,动量守恒0102()C m m v mv m v +=+⑨将⑧代人⑨得 V 2=-3 m/s 由功能关系可得()2220201111()222C W mv m v m m v =+-+⑩.解得W=480 J3.如图(a)所示,轻质弹簧左端固定在墙上,自由状态时右端在C 点,C 点左侧地面光滑、右侧粗糙.用可视为质点的质量为m =1kg 的物体A 将弹簧压缩至O 点并锁定.以O 点为原点建立坐标轴.现用水平向右的拉力F 作用于物体A ,同时解除弹簧锁定,使物体A 做匀加速直线运动,拉力F 随位移x 变化的关系如图(b)所示,运动到0.225m 处时,撤去拉力F .(1)求物体A 与粗糙地面间的动摩擦因数以及向右运动至最右端的位置D 点的坐标;(2)若在D点给物体A一向左的初速度,物体A恰好能将弹簧压缩至O点,求物体A到C 点时的速度;(3)质量为M=3kg的物体B在D点与静止的物体A发生弹性正碰,碰后物体A向左运动并恰能压缩弹簧到O点,求物体B与A碰撞前的瞬时速度.【答案】(1)0.45m;(2)m/s;(3)m/s【解析】【分析】【详解】(1)由于物体A做匀加速直线运动,结合图像,可知:从O到C点的过程中:在C点,、解得:在C点右侧:、解得:从O到C点,物体匀加速,则:解得:从C到D的过程中,由动能定理得:其中解得:D点坐标:(2) 物体A将弹簧由C点压缩至O点的过程,由动能定理得:物体从O到C,由动能定理得:其中联立解得:(3)设B碰前速度为v0,碰后速度为v1;碰后A的速度为v2,则:物体A从D到C过程中,由动能定理:联立解得:、4.如图所示,AB是半径R=0.80m的光滑1/4圆弧轨道,半径OB竖直,光滑水平地面上紧靠B点静置一质量M=3.0kg的小车,其上表面与B点等高。

现将一质量m=1.0kg的小滑块从A点由静止释放,经B点滑上小车,最后与小车达到共同速度。

已知滑块与小车之间的动摩擦因数μ=0.40。

重力加速度g取10m/s2。

求:(1)滑块刚滑至B点时,圆弧对滑块的支持力大;(2)滑块与小车最后的共同速度;(3)为使滑块不从小车上滑下,小车至少多长。

【答案】(1)(2)(3)【解析】【分析】根据“滑块从光滑圆弧滑下,滑上小车最后达到共同速度”可知,本题考查物体做多过程的运动问题,根据曲线运动优先选择动能定理求速度,板块模型优先选用动量守恒定律求速度,能量守恒定律求摩擦生热列式计算.【详解】(1)滑块由A至B,由机械能守恒定律得:经B点时,由牛顿第二定律得:联立解得:(2)滑块滑上小车后,对滑块与小车组成的系统,由动量守恒定律得:解得共同速度:(3)滑块滑上小车后,对滑块与小车组成的系统,由能量守恒定律得:联立可得:,即小车至少长1.5m【点睛】本题综合力学的三个观点解决运动问题,涉及瞬时力和运动的关系时考虑牛顿第二定律和运动学公式;涉及变力、曲线、位移考虑动能定理;涉及内力作用的系统选择动量守恒定律;摩擦生热涉及相对位移考虑能量守恒定律.5.如图所示,一颗质量为m的子弹水平打中悬挂在O点的质量为M的木块,绳子长L.子弹嵌在木块中一起上升,恰好能够到达最高点,这时被P处的刀片割断绳子(无能量损失).求:(1)子弹木块飞出后落在了与圆心等高平台上的A点,A到O点的距离是多少?(2)在最低点处,子弹打中木块后瞬间,它们的速度有多大?(3)子弹打中木块前的初速度是多少?【答案】(1)2L (2)5gL (3)()5M m gL+【解析】 【分析】 【详解】(1)木块恰好能够到达最高点,则()()22v M m g M m L+=+木块过最高点后做平抛运动,则有:212L gt = A 到O 点的距离为:2OA x v t = 联立可得:2OA x L =(2)从最低点到最高点根据动能定理可得:()()()222111222M m g L M m v M m v -+⋅=+-+ 解得:15v gL =(3)根据动量守恒可得:()01mv M m v =+ 解得:()05M m gLv +=6.如图所示,在沙堆表面放置一长方形木块A ,其上面再放一个质量为m 的爆竹B ,木块的质量为M .当爆竹爆炸时,因反冲作用使木块陷入沙中深度h ,而木块所受的平均阻力为f 。

若爆竹的火药质量以及空气阻力可忽略不计,重力加速度g 。

求: (1)爆竹爆炸瞬间木块获得的速度; (2)爆竹能上升的最大高度。

【答案】(1()2f Mg hM-2)()2f Mg Mh m g - 【解析】 【详解】(1)对木块,由动能定理得:2102Mgh fh Mv -=-, 解得:()2f Mg hv M-=;(2)爆竹爆炸过程系统动量守恒,由动量守恒定律得:0Mv mv -'=爆竹做竖直上抛运动,上升的最大高度:22v H g'=解得:()2fMg MhH m g-=7.如图所示,一质量为3m 、厚度h=0.05m 的木板C ,静放在粗糙水平地面上。

在木板C 上静放一质量为2m 的弹性小物块B :B 所处位置的右侧光滑,长L 1=0.22m ;左侧粗糙,长L 2=0.32m ;B 与其左侧的动摩擦因数μ1=0.9:竖直固定、半径R=0.45m 的光滑14圆弧轨道,其最低点与木板C 右端等高相切。

现有一质量为m 的弹性小物块A ,从轨道最高点由静止下滑。

已知C 与地面间动摩擦因数μ2=0.25,小物块A 、B 可看为质点,重力加速度g 取10m/s 2。

试求:(1)A 刚滑上C 时的速度大小; (2)A 、B 碰后瞬间的速度大小;(3)试分析判断,小物块A 是否会滑离木板C ;如果会,试求小物块A 落地瞬间与木板C 右端的水平距离。

【答案】(1)3m/s (2)v1=-1m/s ,v2=2m/s (3)会,0.108m 【解析】 【详解】(1)对物体A ,由动能定理有2012mgR mv = 解得02gR=3m/s v =(2)弹性小物块A 和B 碰撞,设向左为正方向,动量守恒定律有0122mv mv mv =+又能量守恒定律2220121112222mv mv mv =+ 解得v 1=-1m/s ,v 2=2m/s(3)由于小物块B 向左运动进入C 的粗糙区域,则C 不会向右运动,而小物块A 运动方向向右,C 上表面右边光滑,故A 将会从C 右边飞出在A 未飞出C 时,对B 有1122mg ma μ⋅= 得2119m/s a g μ==对C 有1222-63u mg u mg ma ⋅⋅= 得a 2=1m/s 2 设经过t 1时间BC 共速,此时A 还未从C 飞出21121-v v a t a t ==共 得t 1=0.2s ;=0.2m/s v 共A 的位移大小111x v t = 得1=0.2m xB 的位移2221111-2x v t a t = 可得:x 2=0.22m C 的位移232112x a t =可得x 3=0.02m 由于x 1+x 3=0.22=L 1,故此时A 刚好从C 的右端飞出; x 2-x 3=0.2<L 2,故共速时B 没有从C 左端飞出 设BC 共速时可以相对静止一起减速对BC 有2355u mg ma ⋅= 解得232 2.5m/s a u g ==对B :3122f ma u mg =<⋅ ,故BC 将相对静止一起减速 设BC 一起减速到0的时刻为t 3,位移为X BC ,则:330-v a t =共 32BC v X t =共得3=0.08s =0.008m BC t X ,对A :飞出后做平抛运动:2212h gt =得20.1t s == 12=0.1m A X v t = 由t 2>t 3可知,BC 停下后A 才落地故A 落地瞬间与木板C 右端得水平距离=0.108m BC A X X X =+V8.如图甲所示,光滑曲面轨道固定在竖直平面内,下端出口处在水平方向上.一平板车静止在光滑水平地面上,右端紧靠曲面轨道,平板车上表面恰好与曲面轨道下端相平.一质量为m=0.1kg 的小物块从曲面轨道上某点由静止释放,初始位置距曲面下端高度h=0.8m .物块经曲面轨道下滑后滑上平板车,最终没有脱离平板车.平板车开始运动后的速度图象如图乙所示,重力加速度g=10m/s 2.(1)根据图乙写出平板车在加速过程中速度v 与时间t 的关系式. (2)求平板车的质量M .(3)求物块与平板车间的动摩擦因数μ和在车上滑动过程中产生的内能Q . 【答案】(1)2v t = ;(2)0.3kg ;(3)0.6;0.6J 【解析】 【详解】解:(1)由图象知平板车的加速度:2Δ2m/s Δva t== 平板车在加速过程中v 与t 的关系式为:2v t = (2)物块沿曲面下滑过程,机械能守恒,则有:2012mgh mv = 解得:04m/s v =物块滑上车之后最终没有脱离平板车,动量守恒,则有:0()t mv m M v =+ 由图象知物块与平板车最后的共同速度:1m/s t v = 代入数据解得平板车的质量:30.3kg M m ==(3)平板车在加速过程中,由牛顿第二定律可得: mg Ma =μ 由图象知平板车的加速度:22m/s a =代入数据解得物块与平板车间的动摩擦因数:0.6μ= 根据能量守恒可得在车上滑动过程中产生的内能:22011()0.6J 22t Q mv m M v =-+=9.如图所示,绝缘轨道MNPQ 位于同一竖直面内,其中MN 段是长度为L 的水平轨道,PQ 段为足够长的光滑竖直轨道,NP 段为光滑的四分之一圆弧,圆心为O ,直线NN′右侧有方向水平向左的电场(图中未画出),电场强度E =3mgq,在包含圆弧轨道NP 的ONO′P 区域内有方向垂直纸面向外、磁感应强度为B 的匀强磁场(边界处无磁场).轨道MN 最左端M 点处静止一质量为m 、电荷量为q 的带负电的物块A ,一质量为3m 为物块C 从左侧的光滑轨道上以速度v 0撞向物块A .A 、C 之间只发生一次弹性碰撞,且最终刚好挨在一起停在轨道MN 上,A 、C 均可视为质点,且与轨道MN 的动摩擦因数相同,重力加速度为g .A 在运动过程中所带电荷量保持不变且始终没有脱离轨道.A 第一次到达N 点时,对轨道的压力为2mg .求:(1)碰撞后A 、C 的速度大小;(2)A 、C 与水平轨道MN 的动摩擦因数μ; (3)A 对轨道NP 的最大压力的大小.【答案】(1)032A v v =;012C v v =(2)2058v gL(3)053mg qv B【解析】 【分析】(1)A 、C 发生弹性碰撞,满足动量守恒和动能守恒,列式联立求解碰后A 、C 的速度; (2)A 在NN′右侧运动过程中,电场力和重力做功之和为0.根据动能定理列式求解A 、C 与水平轨道MN 的动摩擦因数;(3)将重力和电场力进行等效合成,找到A 对轨道NP 有最大压力的位置,根据动能定理求解此位置的速度,根据牛顿第二定律求解最大压力. 【详解】(1)A 、C 发生弹性碰撞后的速度分别为v A 、v C ,则有: 3mv 0=mv A +3mv C ①2032mv =2A2mv +2C 32mv ② 联立①②解得:032A v v =③ 012C v v =④ (2)设A 、C 最后静止时与M 点的距离为l 1,A 在NN′右侧运动过程中,电场力和重力做功之和为0.有μmg (2L -l 1)=2A2mv ⑤μ∙3mgl 1=2C32mv ⑥联立解得③④⑤⑥μ2058v gL=⑦ (3)设A 在N点的速度为N v ,A 从M 到N 的过程中,由动能定理得22N A 1122mgL mv mv μ-=-⑧ 设圆弧NP 的半径为a 因为A 在N点时对轨道的压力为2mg ,22N v mg mg m a-=⑨ A 在NN′右侧受到的电场力F =qE =3mg ⑩重力和电场力的合力大小为F 合=2mg ,方向与OP 夹角为30θ=︒.过O 点沿合力方向作直线与圆弧相交于K点,当A 经P 点返回N 点的过程中到达K 点时,达到最大速度Av ',此时A 对轨道的压力最大.A 从M 点到K 点过程中,由动能定理可得:()22A A 11cos301sin3022qEa mgL mga mv mv μ︒---'-︒=⑪ 返回K 点时:F N -F 合-2A A v qv B m a '='⑫ 由③⑦⑧⑨⑩⑪⑫得:F N 053mg qv B =+由牛顿第三定律得A 对轨道NP 的最大压力为:N053F mg qv B +'=10.北京2022年冬奥运会和冬残奥运开闭幕式计划在北京市区举行,国家游泳中心“水立方”又将迎来新的使命,在这里将进行冰壶的比赛项目。

相关文档
最新文档