二项式定理10种题型的解法

合集下载

高三复习:二项式定理 知识点、题型方法归纳

高三复习:二项式定理 知识点、题型方法归纳

绵阳市开元中学高2014级高三复习《二项式定理》 知识点、题型与方法归纳制卷:王小凤 学生姓名:___________一.知识梳理1.二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *)这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n 的二项展开式. 其中的系数C r n (r =0,1,…,n )叫二项式系数. 式中的C r n a n -r b r 叫二项展开式的通项,用T r +1表示,即通项T r +1=C r n an -r b r . 2.二项展开式形式上的特点 (1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n .3.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等.即r n rn n C C -=(2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2n nC 取得最大值;当n 是奇数时,中间两项1122n n nnCC-+=取得最大值.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n;C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 一个防范运用二项式定理一定要牢记通项T r +1=C r n an -r b r ,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 一个定理二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项式定理.因此二项式定理是排列组合知识的发展和延续. 两种应用(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.(2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质(1)对称性;(2)增减性;(3)各项二项式系数的和;二.题型示例【题型一】求()n x y +展开特定项例1:(1+3x )n (其中n ∈N *且n ≥6)的展开式中x 5与x 6的系数相等,则n =( )A.6B.7C.8D.9解:由条件得C 5n 35=C 6n 36,∴n !5!(n -5)!=n !6!(n -6)!×3,∴3(n -5)=6,n =7.故选B.例2:(2014·大纲)⎝ ⎛⎭⎪⎫xy-y x 8的展开式中x 2y 2的系数为________.(用数字作答)解:⎝ ⎛⎭⎪⎫x y -y x 8展开式的通项公式为T r +1=C r 8⎝ ⎛⎭⎪⎫x y 8-r ⎝⎛⎭⎪⎫-y x r =()33842281r r r r C x y ---, 令8-32r =2,解得r =4,此时32r -4=2,所以展开式中x 2y 2的系数为(-1)4C 48=70.故填70.【题型二】求()()m n a b x y +++展开特定项例1:在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) A .74B .121C .-74D .-121解析 展开式中含x 3项的系数为C 35(-1)3+C 36(-1)3+C 37(-1)3+C 38(-1)3=-121.【题型三】求()()m n a b x y +⋅+展开特定项例1:(2013·全国课标卷Ⅱ)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A.-4 B.-3 C.-2 D.-1解:(1+ax )(1+x )5的展开式中x 2项为C 25x 2+ax ·C 15x =10x 2+5ax 2=(10+5a )x 2.∵x 2的系数为5, ∴10+5a =5,a =-1.故选D.例2:(2014·浙江卷)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( ) A .45B .60C .120D .210解析 在(1+x )6的展开式中,x m 的系数为C m 6,在(1+y )4的展开式中,y n 的系数为C n4,故f (m ,n )=C m 6·C n 4.从而f (3,0)=C 36=20,f (2,1)=C 26·C 14=60,f (1,2)=C 16·C 24=36,f (0,3)=C 34=4,所以f (3,0)+f (2,1)+f (1,2)+f (0,3)=120,故选C.例3:已知数列{}n a 是等差数列,且6710a a +=,则在1212()()()x a x a x a ---的展开式中,11x 的系数为_______.解:11x 的系数为121267()6()60a a a a a -+++=-+=-。

二项式定理应用常见类型及其解题方法

二项式定理应用常见类型及其解题方法

二项式定理应用常见类型及其解题方法一、知识点回顾: 1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r rn C a b -叫做二项式展开式的通项。

用1r n r rr n T C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意准确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,按降幂排列。

b 的指数从0逐项减到n ,按升幂排列。

各项的次数和等于n .④系数:注意准确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数,包含符号)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈令1,,a b x ==-0122(1)(1)()n r rn n nn n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,···1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。

二项式定理的常见题型及解法特全版

二项式定理的常见题型及解法特全版

Cxy
3 7
4
4
,和第 5 项
C
二、通项公式的应用
1 .确定二项式中的有关元素
例 4.已知 (
a x 9 9 ) 的展开式中 x 3 的系数为 ,常数 a 的值为 x 2 4
r 3 r 9
解: Tr 1 令
r 9 a x C ( ) 9r ( ) r C9r (1) r 2 2 a 9r x 2 x 2
9 令 18 3x 9, 则 r 3 ,从而可以得到 x 的系数为:
C
3 9
1 21 21 ( ) 3 , 填 2 2 2
(备用题) : (05 年山东卷)已知 (3x
1
3
x
2
) n , n N 的展开式中各项系数和为 128,则展
开式中
1 的系数是( x3

1 的展开式中没有 常数项, 且 2≤n≤8, n N* , .. 3 x
n
分析:本小题主要考查二项式定理中求特定项问题。依题 ( x
1 n ) 对 n N * , 2 剟n 3 x
8 中,
只有 n 5 时,其展开式既不出现常数项,也不会出现与 x 、 x 2 乘积为常数的项。故填 5。 (备用题) (05 年湖北卷) (
C
1
5
11
(1) 5 462
(2) 一般的系数最大或最小问题 例 12.求 ( x
2 x
4
) 8 展开式中系数最大的项;
解:记第 r 项系数为 Tr ,设第 k 项系数最大,则有
Tk Tk 1 Tk Tk 1
又 Tr
C
r 1 8
.2 r 1 ,那么有

二项式定理各种题型解题技巧

二项式定理各种题型解题技巧

二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C a b -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()nr rn nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()nr r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈ 5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0nn n C C =, (1)k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=, 变形式1221rnn n n n n C C C C +++++=-。

③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn n n n n n C C C C C -+-++-=-=,从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=④奇数项的系数和与偶数项的系数和:⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2nnC 取得最大值。

二项式定理题型及解题方法

二项式定理题型及解题方法

二项式定理题型及解题方法摘要:1.二项式定理的概念及意义2.二项式定理的基本形式3.二项式定理的应用场景4.解题方法的步骤与技巧5.典型例题分析正文:一、二项式定理的概念及意义二项式定理是数学中一个重要的定理,它揭示了二项式展开式的规律。

二项式定理的基本形式如下:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 + ...+ C(n, n)b^n其中,a、b为实数或复数,n为自然数,C(n, k)表示组合数,即从n个元素中取k个元素的组合数。

二、二项式定理的基本形式我们已经了解了二项式定理的基本形式,接下来看看如何利用这个定理解决问题。

三、二项式定理的应用场景1.求解二项式展开式的特定项或特定项的系数。

2.求解极限问题,如当a、b趋于0时,(a + b)^n的极限值。

3.求解不等式问题,如求(a + b)^n > 1的解集。

4.求解恒成立问题,如证明(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + ...+ C(n, n)b^n。

四、解题方法的步骤与技巧1.确定问题类型,判断是否适用于二项式定理。

2.根据问题,选取合适的二项式定理形式。

3.利用组合数公式计算特定项或特定项的系数。

4.化简式子,求解问题。

五、典型例题分析例题1:求(2x - 1)^5的展开式中,x^2的系数。

解:根据二项式定理,展开式为:(2x - 1)^5 = C(5, 0)(2x)^5 - C(5, 1)(2x)^4 + C(5, 2)(2x)^3 - C(5, 3)(2x)^2 + C(5, 4)(2x)^1 - C(5, 5)展开式中,x^2的系数为-C(5, 3) * 2^2 = -40。

例题2:求极限:当x趋于0时,(1 + x)^(1/x)的极限值。

解:根据二项式定理,(1 + x)^(1/x) = (1 + x)^(x/x) = (1 + x)^(1/x) * (1 - 1/x + 1/x^2 - 1/x^3 + ...)当x趋于0时,(1 + x)^(1/x)趋于e(自然对数的底),即极限值为e。

二项式定理各种题型解题技巧知识讲解

二项式定理各种题型解题技巧知识讲解

二项式定理1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C a b -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n nn n n n n C C C C C ++++++=L L , 变形式1221r n nn n n n C C C C +++++=-L L 。

二项式定理主要题型总结

二项式定理主要题型总结

二项式定理主要题型总结 专题一题型一:二项式定理的逆用;例:12321666 .n n n n n n C C C C -+⋅+⋅++⋅=L解:012233(16)6666n n nn n n n n C C C C C +=+⋅+⋅+⋅++⋅L 与已知的有一些差距,123211221666(666)6n n nn n n n n n n n C C C C C C C -∴+⋅+⋅++⋅=⋅+⋅++⋅L L 0122111(6661)[(16)1](71)666n n n n n n n n C C C C =+⋅+⋅++⋅-=+-=-L练:1231393 .n nn n n n C C C C -++++=L 解:设1231393n nn n n n n S C C C C -=++++L ,则122330122333333333331(13)1n n n nn n n n n n n n n n n S C C C C C C C C C =++++=+++++-=+-L L (13)14133n n n S +--∴==题型二:利用通项公式求n x 的系数;例:在二项式n的展开式中倒数第3项的系数为45,求含有3x 的项的系数? 解:由条件知245n nC -=,即245n C =,2900n n ∴--=,解得9()10n n =-=舍去或,由2102110343411010()()r r rrrr r T C x x C x--+--+==,由题意1023,643r r r --+==解得, 则含有3x 的项是第7项6336110210T C x x +==,系数为210。

练:求291()2x x-展开式中9x 的系数? 解:291821831999111()()()()222r r r r r r r rr r r T C x C x x C x x ----+=-=-=-,令1839r -=,则3r =故9x 的系数为339121()22C -=-。

二项式定理各种题型解题技巧

二项式定理各种题型解题技巧
解:由条件知 ,即 , ,解得 ,由
,由题意 ,
则含有 的项是第 项 ,系数为 。
练:求 展开式中 的系数
解: ,令 ,则
故 的系数为 。
题型三:利用通项公式求常数项;
例:求二项式 的展开式中的常数项
解: ,令 ,得 ,所以
练:求二项式 的展开式中的常数项
解: ,令 ,得 ,所以
练:若 的二项展开式中第 项为常数项,则
⑥系数的最大项:求 展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别
为 ,设第 项系数最大,应有 ,从而解出 来。
6.二项式定理的十一种考题的解法:
题型一:二项式定理的逆用;
例:
解: 与已知的有一些差距,
练:
解:设 ,则
题型二:利用通项公式求 的系数;
例:在二项式 的展开式中倒数第 项的系数为 ,求含有 的项的系数
解:因为二项式的幂指数 是奇数,所以中间两项( )的二项式系数相等,且同时取得最大值,从而有 的系数最小, 系数最大。
例:若展开式前三项的二项式系数和等于 ,求 的展开式中系数最大的项
解:由 解出 ,假设 项最大,
,化简得到 ,又 , ,展开式中系数最大的项为 ,有
练:在 的展开式中系数最大的项是多少
练:在 的展开式中,二项式系数最大的项是多少
解:二项式的幂指数是偶数 ,则中间一项的二项式系数最大,即 ,也就是第 项。
练:在 的展开式中,只有第 项的二项式最大,则展开式中的常数项是多少
解:只有第 项的二项式最大,则 ,即 ,所以展开式中常数项为第七项等于
例:写出在 的展开式中,系数最大的项系数最小的项
二项式定理各种题型解题技巧
二项式定理
1.二项式定理:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项式定理十种题型及解法1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n rr n C a b -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。

③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn n n n n n C C C C C -+-++-=-=,从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=④奇数项的系数和与偶数项的系数和:0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nnn n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----令则①令则024135(1)(1),()2(1)(1),()2n nn n nn a a a a a a a a a a a a ----++-++++=+---+++=②①②得奇数项的系数和①②得偶数项的系数和⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。

如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n nC-,12n nC+同时取得最大值。

⑥系数的最大项:求()na bx +展开式中最大的项,一般采用待定系数法。

设展开式中各项系数分别为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来。

6.二项式定理的十一种考题的解法: 题型一:二项式定理的逆用;例:12321666 .n n n n n n C C C C -+⋅+⋅++⋅=解:012233(16)6666n nn n n n n n C C C C C +=+⋅+⋅+⋅++⋅与已知的有一些差距,123211221666(666)6nn n n n n n n n n n C C C C C C C -∴+⋅+⋅++⋅=⋅+⋅++⋅ 0122111(6661)[(16)1](71)666nn n n n n n n C C C C =+⋅+⋅++⋅-=+-=-练:1231393 .n nn n n n C C C C -++++=解:设1231393n nn n n n n S C C C C -=++++,则122330122333333333331(13)1n n n nn n n n n n n n n n n S C CC C C C CC C =++++=+++++-=+-(13)14133n n n S +--∴==题型二:利用通项公式求n x 的系数; 例:在二项式n的展开式中倒数第3项的系数为45,求含有3x 的项的系数? 解:由条件知245n nC -=,即245n C =,2900n n ∴--=,解得9()10n n =-=舍去或,由2102110343411010()()r r r rrr r T C x x C x--+--+==,由题意1023,643r r r --+==解得, 则含有3x 的项是第7项6336110210T C x x +==,系数为210。

练:求291()2x x-展开式中9x 的系数? 解:291821831999111()()()()222rr r r r r r r r r r T C x C x x C x x ----+=-=-=-,令1839r -=,则3r =故9x 的系数为339121()22C -=-。

题型三:利用通项公式求常数项; 例:求二项式210(x 的展开式中的常数项? 解:5202102110101()()2r rrrr r r T C x C x --+==,令52002r -=,得8r =,所以88910145()2256T C ==练:求二项式61(2)2x x-的展开式中的常数项? 解:666216611(2)(1)()(1)2()22r r r r r r r r rr T C x C xx ---+=-=-,令620r -=,得3r =,所以3346(1)20T C =-=-练:若21()n x x+的二项展开式中第5项为常数项,则____.n =解:4244421251()()n n n n T C x C xx--==,令2120n -=,得6n =. 题型四:利用通项公式,再讨论而确定有理数项;例:求二项式9展开式中的有理项?解:12719362199()()(1)r r rrrr r T C x x C x--+=-=-,令276rZ -∈,(09r ≤≤)得39r r ==或, 所以当3r =时,2746r -=,334449(1)84T C x x =-=-, 当9r =时,2736r -=,3933109(1)T C x x =-=-。

题型五:奇数项的二项式系数和=偶数项的二项式系数和;例:若n 展开式中偶数项系数和为256-,求n .解:设n 展开式中各项系数依次设为01,,,n a a a ⋅⋅⋅1x =-令,则有010,n a a a ++⋅⋅⋅=①,1x =令,则有0123(1)2,n n n a a a a a -+-+⋅⋅⋅+-=②将①-②得:1352()2,n a a a +++⋅⋅⋅=-11352,n a a a -∴+++⋅⋅⋅=-有题意得,1822562n --=-=-,9n ∴=。

练:若n的展开式中,所有的奇数项的系数和为1024,求它的中间项。

解:0242132112r r n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=,121024n -∴=,解得11n =所以中间两个项分别为6,7n n ==,565451462nT C x -+==⋅,611561462T x -+=⋅题型六:最大系数,最大项;例:已知1(2)2n x +,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?解:46522,21980,n n n C C C n n +=∴-+=解出714n n ==或,当7n =时,展开式中二项式系数最大的项是45T T 和34347135()2,22T C ∴==的系数,434571()270,2T C ==的系数当14n =时,展开式中二项式系数最大的项是8T ,7778141C ()234322T ∴==的系数。

练:在2()na b +的展开式中,二项式系数最大的项是多少?解:二项式的幂指数是偶数2n ,则中间一项的二项式系数最大,即2112nn T T ++=,也就是第1n +项。

练:在(2nx的展开式中,只有第5项的二项式最大,则展开式中的常数项是多少? 解:只有第5项的二项式最大,则152n+=,即8n =,所以展开式中常数项为第七项等于6281()72C =例:写出在7()a b -的展开式中,系数最大的项?系数最小的项?解:因为二项式的幂指数7是奇数,所以中间两项(4,5第项)的二项式系数相等,且同时取得最大值,从而有34347T C a b =-的系数最小,43457T C a b =系数最大。

例:若展开式前三项的二项式系数和等于79,求1(2)2n x +的展开式中系数最大的项?解:由01279,n n n C C C ++=解出12n =,假设1r T +项最大,12121211(2)()(14)22x x +=+1111212111212124444r r r r r r r rr r r r A A C C A A C C --+++++⎧≥≥⎧⎪∴=⎨⎨≥≥⎪⎩⎩,化简得到9.410.4r ≤≤,又012r ≤≤,10r ∴=,展开式中系数最大的项为11T ,有121010101011121()4168962T C x x ==练:在10(12)x +的展开式中系数最大的项是多少? 解:假设1r T +项最大,1102rr r r T C x +=⋅111010111121010222(11)12(10)22,r r r r r r r r r r r r C C A A r r A A r r C C --+++++⎧≥≥-≥⎧⎧⎪∴=⎨⎨⎨≥+≥-≥⎩⎪⎩⎩解得,化简得到6.37.3k ≤≤,又010r ≤≤,7r ∴=,展开式中系数最大的项为7777810215360.T C x x == 题型七:含有三项变两项;例:求当25(32)x x ++的展开式中x 的一次项的系数?解法①:2525(32)[(2)3]x x x x ++=++,2515(2)(3)r r r r T C x x -+=+,当且仅当1r =时,1r T +的展开式中才有x 的一次项,此时124125(2)3r T T C x x +==+,所以x 得一次项为1445423C C x 它的系数为1445423240C C =。

相关文档
最新文档