南昌大学操作系统线程进程同步实验报告

南昌大学操作系统线程进程同步实验报告
南昌大学操作系统线程进程同步实验报告

南昌大学实验报告

---(1)进程/线程同步

学生姓名:学号:专业班级:网络工程131班

实验类型:■验证□综合□设计□创新实验日期:实验成绩:

一、实验目的

本实验讨论临界区问题及其解决方案。首先创建两个共享数据资源的并发线程。在没有同步控制机制的情况下,我们将看到某些异常现象。针对观察到的现象,本实验采用Windows 的信号量机制解决临界区互斥访问。

二、实验内容

2.1 进程/线程并发执行

Windows操作系统支持抢先式调度,这意味着一线程运行一段时间后,操作系统会暂停其运行并启动另一线程。也就是说,进程内的所有线程会以不可预知的步调并发执行。为了制造混乱,我们首先创建两个线程t1和t2。父线程(主线程)定义两个全局变量,比如accnt1和accnt2。每个变量表示一个银行账户,其值表示该账户的存款余额,初始值为0。线程模拟在两个账户之间进行转账的交易。也即,每个线程首先读取两个账户的余额,然后产生一个随机数r,在其中一个账户上减去该数,在另一个账户上加上该数。线程操作的代码框架如下:

counter=0;

do {

tmp1 = accnt1 ;

tmp2 = accnt2 ;

r = rand ( ) ;

accnt1 = tmp1 + r ;

accnt2 = tmp2 ? r ;

counter++;

} while ( accnt1 + accnt2 == 0 ) ;

print ( counter ) ;

两个线程执行相同的代码。只要它们的执行过程不相互交叉,那么两个账户的余额之和将永远是0。但如果发生了交叉,那么某线程就有可能读到新的accnt1值和老的accnt2值,从而导致账户余额数据发生混乱。线程一旦检测到混乱的发生,便终止循环并打印交易的次数(counter)。

请编写出完整的程序代码并运行,然后观察产生混乱需要的时间长短。因为这是我们编写的第一个程序,因此这里我给出了完整的代码,请参考。有能力的同学在参考下面的代码之前,请先自己尝试一下。

#include "stdafx.h"

#include

#include

#include

/**设置两个全局变量, 每个线程都可以访问**/

int accnt1 = 0 ;

int accnt2 = 0 ;

DWORD WINAPI run ( LPVOID p) {

int counter=0; /**循环执行的次数**/

int tmp1,tmp2,r ; /**三个临时变量**/

/** 进入临界区**/

do {

tmp1 = accnt1 ;

tmp2 = accnt2 ;

r = rand ( ) ;

accnt1 = tmp1 + r ;

accnt2 = tmp2 - r ;

counter++;

/**单道运行每次循环后accnt1 + accnt2结果必然为0,

多道运行会失去可再现性,使用得结果不为0 **/

} while ( accnt1 + accnt2 == 0 ) ;

/** 出临界区**/

printf ( "%d\n" , counter ) ;

/** counter表示第几次循环使accnt1 + accnt2结果不为0, 每次运行counter值不同**/

return 0;

}

int _tmain(int argc, _TCHAR* argv[])

{

/** 创建两个线程并发执行run函数**/

CreateThread (NULL,

0 ,

run ,

NULL,

0 ,

NULL) ;

CreateThread (NULL,

0 ,

run ,

NULL,

0 ,

NULL) ;

system("PAUSE") ;

return 0;

}

反复运行该程序。请问,观察到了什么?你能解释这些现象吗?

2.2利用信号量解决生产者与消费者问题

请编译、运行并观察程序的输出,并分析实验结果,写出实验报告。

#include "stdafx.h"

#include

#include

#include

#include

typedef HANDLE Semaphore; // 信号量的Windows原型

#define Wait(S) WaitForSingleObject(S, INFINITE) // 定义Windows下的Wait(P)操作

#define Signal(S) ReleaseSemaphore(S, 1, NULL) // 定义Windows下的Signal(V)操作#define CONSUMER_NUM 2 /* 消费者个数*/

#define PRODUCER_NUM 2 /* 生产者个数*/

#define BUFFER_NUM 4 /* 缓冲区个数*/

struct Buffer

{

int product[BUFFER_NUM]; // 缓冲区

int pin, pout; // 两个指针

} g_buf;

//定义信号量:g_semBuffer 初值为BUFFER_NUM 表示空缓冲区个数

// g_semProduct 初值为0 表求满缓冲区个数

// g_mutex 缓冲区互斥访问信号量

Semaphore g_semBuffer, g_semProduct, g_mutex;

// 消费者线程

DWORD WINAPI Consumer(LPVOID para)

{

// i表示第i个消费者

int i = *(int *)para;

int ptr; // 待消费的内容的指针

printf("消费者-%03d来啦!\n", i);

while (1)

{

printf("消费者-%03d: 我要消费!\n", i);

// 等待产品

Wait(g_semProduct);

// 有产品,先锁住缓冲区g_buf

Wait(g_mutex);

// 记录消费的物品

ptr = g_buf.pout;

// 再移动缓冲区指针

g_buf.pout = (g_buf.pout+1)%BUFFER_NUM;

// 解锁缓冲区让其他消费者或生产者使用g_buf

Signal(g_mutex);

printf("消费者-%03d: 消费buf[%d] 一个产品\n", i, ptr);

// 消费完毕,并释放一个缓冲

Signal(g_semBuffer);

}

return 0;

}

// 生产者线程

DWORD WINAPI Producer(LPVOID para)

{

int i = *(int *)para - CONSUMER_NUM;

int ptr;

printf("生产者-%03d来啦!\n", i);

while (1)

{

printf("生产者-%03d:生产出一个产品\n", i);

// 等待存放空间

Wait(g_semBuffer);

// 有地方,先锁住缓冲区g_buf

Wait(g_mutex);

// 记录消费的物品

ptr = g_buf.pin;

// 再移动缓冲区指针

g_buf.pin = (g_buf.pin+1)%BUFFER_NUM;

// 让其他消费者或生产者使用g_buf

Signal(g_mutex);

printf("生产者-%03d: 搁到buf[%d]\n", i, ptr);

g_buf.product[ptr] = 2015; // 产品为整型值,在这里我们随意赋一个值

// 放好了完毕,释放一个产品

printf("生产者-%03d: buf[%d]放好了!\n", i, ptr);

Signal(g_semProduct);

}

return 0;

}

using namespace System;

int main(array ^args)

{

// 线程技术,前面为消费者线程,后面为生产者线程

HANDLE hThread[CONSUMER_NUM+PRODUCER_NUM]; // 线程计数

//srand(time());

DWORD tid;

int i=0;

// 初始化信号量

g_mutex = CreateSemaphore(NULL, BUFFER_NUM, BUFFER_NUM, _T("mutexOfConsumerAndProducer"));

g_semBuffer = CreateSemaphore(NULL, BUFFER_NUM, BUFFER_NUM, _T("BufferSemaphone"));

g_semProduct = CreateSemaphore(NULL, 0, BUFFER_NUM, _T("ProductSemaphone"));

if ( !g_semBuffer || !g_semProduct || !g_mutex)

{

printf("Create Semaphone Error!\n");

return -1;

}

int totalThreads = CONSUMER_NUM+PRODUCER_NUM;

// 开启消费者线程

printf("请消费者们就位!\n");

for (i=0; i

{

hThread[i] = CreateThread(NULL, 0, Consumer, &i, 0, &tid);

if ( hThread[i] ) WaitForSingleObject(hThread[i], 10);

}

printf("生产者们就位!\n");

for (; i

{

hThread[i] = CreateThread(NULL, 0, Producer, &i, 0, &tid);

if ( hThread[i] ) WaitForSingleObject(hThread[i], 10);

}

// 生产者和消费者的执行

WaitForMultipleObjects(totalThreads, hThread, TRUE, INFINITE);

return 0;

}

实验七:Linux多线程编程(实验分析报告)

实验七:Linux多线程编程(实验报告)

————————————————————————————————作者:————————————————————————————————日期:

实验七:Linux多线程编程(4课时) 实验目的:掌握线程的概念;熟悉Linux下线程程序编译的过程;掌握多线程程序编写方法。 实验原理:为什么有了进程的概念后,还要再引入线程呢?使用多线程到底有哪些好处?什么的系统应该选用多线程?我们首先必须回答这些问题。 1 多线程概念 使用多线程的理由之一是和进程相比,它是一种非常"节俭"的多任务操作方式。运行于一个进程中的多个线程,它们彼此之间使用相同的地址空间,共享大部分数据,启动一个线程所花费的空间远远小于启动一个进程所花费的空间。 使用多线程的理由之二是线程间方便的通信机制。同一进程下的线程之间共享数据空间,所以一个线程的数据可以直接为其它线程所用,这不仅快捷,而且方便。2多线程编程函数 Linux系统下的多线程遵循POSIX线程接口,称为pthread。编写Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a。pthread_t在头文件/usr/include/bits/pthreadtypes.h中定义: typedef unsigned long int pthread_t; 它是一个线程的标识符。 函数pthread_create用来创建一个线程,它的原型为: extern int pthread_create((pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg)); 第一个参数为指向线程标识符的指针,第二个参数用来设置线程属性,第三个参数是线程运行函数的起始地址,最后一个参数是运行函数的参数。 函数pthread_join用来等待一个线程的结束。函数原型为: extern int pthread_join(pthread_t th, void **thread_return); 第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。 函数pthread_exit的函数原型为: extern void pthread_exit(void *retval); 唯一的参数是函数的返回代码,只要pthread_join中的第二个参数thread_return不是NULL,这个值将被传递给thread_return。 3 修改线程的属性 线程属性结构为pthread_attr_t,它在头文件/usr/include/pthread.h中定义。属性值不能直接设置,须使用相关函数进行操作,初始化的函数为pthread_attr_init,这个函数必须在pthread_create函数之前调用。 设置线程绑定状态的函数为pthread_attr_setscope,它有两个参数,第一个是指向属性结构的指针,第二个是绑定类型,它有两个取值:PTHREAD_SCOPE_SYSTEM(绑定的)和PTHREAD_SCOPE_PROCESS(非绑定的)。 另外一个可能常用的属性是线程的优先级,它存放在结构sched_param中。用函数pthread_attr_getschedparam和函数pthread_attr_setschedparam进行存放,一般说来,我们总是先取优先级,对取得的值修改后再存放回去。 4 线程的数据处理

16.JAVA网络编程实验 多线程

Java网络编程实验报告 (实验六) 学号:姓名: 实验项目名称:多线程教师评分: 一、实验目的 (1)了解线程的概念。 (2)学习简单的多线程编程。 二、预习内容及要求(要求写出预习内容) 1.进程和线程的概念 进程是程序一次动态执行的过程,对应从代码加载、执行到执行结束这样一个完整的过程,也是进程自身从产生、发展到消亡的过程。 线程是比进程更小的执行单元,一个进程在执行过程中,可以产生多个线程。每个线程都有自身的产生、执行和消亡的过程。 2.线程的状态与生命周期 ●新建:当一个Thread类或其子类的对象被声明并创建时,新生的线程对象处于新建状态。此 时它已经有了相应的内存空间和其他资源。 ●运行:线程创建之后就具备了运行的条件,一旦轮到它来享用CPU资源时,即JVM将CPU 使用权切换给该线程时,此线程的就可以脱离创建它的主线程独立开始自己的生命周期了(即 run方法执行的过程)。 ●中断:有4种原因的中断,CPU资源从当前线程切换给其他线程、执行了sleep(int millsecond) 方法、执行了wait()方法、进入阻塞状态。 ●死亡:run方法结束。 3.线程的创建 在Java语言中,与线程支持密切相关的是https://www.360docs.net/doc/178480695.html,ng.Thread类和https://www.360docs.net/doc/178480695.html,ng.Runnable接口。Runnable 接口定义很简单,只有一个run方法。任何一个类如果希望自己的实例能够以线程的形式执行,都可以来实现Runnable接口。 继承Thread类和实现Runnable接口,都可以用来创建Thread对象,效果上并没有什么不同。继承Thread类的方法很明显的缺点就是这个类不能再继承其他的类了,而实现Runnable接口不会有这个麻烦。 另外,在继承Thread类的代码中,this其实就是指当前正在运行的线程对象,如果使用实现Runnable 接口的方式,要得到当前正在执行的线程,需要使用Thread.currentThread()方法。 线程创建后仅仅是占有了内存资源,在JVM管理的线程中还没有这个线程,此线程必须调用start ()方法(从父类继承的方法)通知JVM,这样JVM就会知道又有一个新一个线程排队等候切换了。

实验一进程调度实验报告书

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理A》 题目:进程调度 班级:软件132 学号:2013122907 姓名:孙莹莹

操作系统原理实验——进程调度实验报告 一、目的与要求 1)进程是操作系统最重要的概念之一,进程调度是操作系统内核的重要功能,本实验要求用C 语言编写一个进程调度模拟程序,使用优先级或时间片轮转法实现进程调度。本实验可加深对进程调度算法的理解。 2)按照实验题目要求独立正确地完成实验内容(编写、调试算法程序,提交程序清单及及相关实验数据与运行结果) 3)于2015年4月18日以前提交本次实验报告(含电子和纸质报告,由学习委员以班为单位统一打包提交)。 二、实验内容或题目 1)设计有5个进程并发执行的模拟调度程序,每个程序由一个PCB表示。 2)模拟调度程序可任选两种调度算法之一实现(有能力的同学可同时实现两个调度算法)。 3)程序执行中应能在屏幕上显示出各进程的状态变化,以便于观察调度的整个过程。 4)本次实验内容(项目)的详细说明以及要求请参见实验指导书。 三、实验步骤与源程序 (1)流程图

(2)实验步骤 1)PCB的结构:优先级算法中,设PCB的结构如下图所示,其中各数据项的含义如下: Id:进程标识符号,取值1—5。 Priority:优先级,随机产生,范围1—5。 Used:目前已占用的CPU时间数,初值为0;当该进程被调用执行时,每执行一个时间片,Used加1。 Need:进程尚需的CPU时间数,初值表示该进程需要运行的总时间,取值范围为5—10。并随机产生,每运行一个时间片need减1;need为0则进程结束。 Status:进程状态R(运行),W(就绪),F(完成);初始时都处于就绪状态。 Next:指向就绪队列中下一个进程的PCB的指针。 2)初始状态及就绪队列组织: 5个进程初始都处于就绪状态,进程标识1—5,used初值都为0。各进程的优先级随机产生,范围1—5。处于就绪状态的进程,用队列加以组织,队列按优先级由高到低依次排列,队首指针设为head,队尾指针为tail。 3)调度原则以及运行时间的处理: 正在执行的进程每执行一个时间片,其优先级减1(允许优先级为负)。进程调度将在以下情况发生:当正在运行的程序其优先级小于就绪队列队首进程的优先级时。程序中进程的运行时间以逻辑时间片为单位。

实验21 进程调度

实验2、1 进程调度 一、 实验目的 多道程序设计中,经常就是若干个进程同时处于就绪状态,必须依照某种策略来决定那个进程优先占有处理机。因而引起进程调度。本实验模拟在单处理机情况下的处理机调度问题,加深对进程调度的理解。 二、 实验要求 1. 设计进程调度算法,进程数不定 2. 包含几种调度算法,并加以实现 3. 输出进程的调度过程——进程的状态、链表等。 三、 参考例 1.题目——优先权法、轮转法 简化假设 1) 进程为计算型的(无I/O) 2) 进程状态:ready 、running 、finish 3) 进程需要的CPU 时间以时间片为单位确定 2.算法描述 1) 优先权法——动态优先权 当前运行进程用完时间片后,其优先权减去一个常数。 2) 轮转法 四、 实验流程图 开始 键盘输入进程数n,与调度方法的选择 优先权法? 轮转法 产生n 个进程,对每个进程产生一个PCB,并用随机数产生进程的优先权及进程所需的CPU 时间 按优先权大小,把n 个进程拉成一个就绪队列 撤销进程就绪队列为空? 结束 N Y Y

注意: 1.产生的各种随机数的取值范围加以限制,如所需的CPU 时间限制在1~20之间。 2.进程数n 不要太大通常取4~8个 3.使用动态数据结构 4.独立编程 5.至少三种调度算法 6.若有可能请在图形方式下,将PCB 的调度用图形成动画显示。 五.实验过程: (1)输入:进程流文件(1、txt),其中存储的就是一系列要执行的进程, 每个作业包括四个数据项: 进程名 进程状态(1就绪 2等待 3运行) 所需时间 优先数(0级最高) 进程0 1 50 2 进程1 2 10 4 进程2 1 15 0 进程3 3 28 5 进程4 2 19 1 进程5 3 8 7 输出: 进程执行流等待时间,平均等待时间 本程序包括:FIFO 算法,优先数调度算法,时间片轮转调度算法 产生n 个进程, 的时间片数,已占用CPU 的时间片数置为0 按进程产生的先后次序拉成就绪队列链 =0? 撤销该进程 就绪队列为空不? =轮转时间片数? N Y Y Y 结束 N

操作系统实验报告--实验一--进程管理

实验一进程管理 一、目的 进程调度是处理机管理的核心内容。本实验要求编写和调试一个简单的进程调度程序。通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。 二、实验内容及要求 1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。可根据实验的不同,PCB结构的内容可以作适当的增删)。为了便于处理,程序中的某进程运行时间以时间片为单位计算。各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。 2、系统资源(r1…r w),共有w类,每类数目为r1…r w。随机产生n进程P i(id,s(j,k),t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。 3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。建立进程就绪队列。 4、编制进程调度算法:时间片轮转调度算法 本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。 三、实验环境 操作系统环境:Windows系统。 编程语言:C#。 四、实验思路和设计 1、程序流程图

2、主要程序代码 //PCB结构体 struct pcb { public int id; //进程ID public int ra; //所需资源A的数量 public int rb; //所需资源B的数量 public int rc; //所需资源C的数量 public int ntime; //所需的时间片个数 public int rtime; //已经运行的时间片个数 public char state; //进程状态,W(等待)、R(运行)、B(阻塞) //public int next; } ArrayList hready = new ArrayList(); ArrayList hblock = new ArrayList(); Random random = new Random(); //ArrayList p = new ArrayList(); int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数 //r为可随机产生的进程数(r=m-n) //a,b,c分别为A,B,C三类资源的总量 //i为进城计数,i=1…n //h为运行的时间片次数,time1Inteval为时间片大小(毫秒) //对进程进行初始化,建立就绪数组、阻塞数组。 public void input()//对进程进行初始化,建立就绪队列、阻塞队列 { m = int.Parse(textBox4.Text); n = int.Parse(textBox5.Text); a = int.Parse(textBox6.Text); b = int.Parse(textBox7.Text); c = int.Parse(textBox8.Text); a1 = a; b1 = b; c1 = c; r = m - n; time1Inteval = int.Parse(textBox9.Text); timer1.Interval = time1Inteval; for (i = 1; i <= n; i++) { pcb jincheng = new pcb(); jincheng.id = i; jincheng.ra = (random.Next(a) + 1); jincheng.rb = (random.Next(b) + 1); jincheng.rc = (random.Next(c) + 1); jincheng.ntime = (random.Next(1, 5)); jincheng.rtime = 0;

查看程序的进程和线程实验报告

查看程序的进程和线程实验报告 篇一:程序实验2:11-多线程编程---实验报告 程序实验二:11-多线程编程实验 专业班级实验日期 5.21 姓名学号实验一(p284:11-thread.c) 1、软件功能描述 创建3个线程,让3个线程重用同一个执行函数,每个线程都有5次循环,可以看成5个小任务,每次循环之间会有随即等待时间(1-10s)意义在于模拟每个任务到达的时间是随机的没有任何的特定规律。 2、程序流程设计 3.部分程序代码注释(关键函数或代码) #include #include #include #define T_NUMBER 3 #define P_NUMBER 5 #define TIME 10.0

void *thrd_func(void *arg ) { (本文来自:https://www.360docs.net/doc/178480695.html, 小草范文网:查看程序的进程和线程实验报告) int thrd_num=(int)arg; int delay_time =0; int count =0; printf("Thread %d is staraing\n",thrd_num); for(count=0;count { delay_time =(int)(rand()*TIME/(RAND_MAX))+1; sleep(delay_time); printf("\tTH%d:job%d delay =%d\n",thrd_num,count,delay_time); } printf("%d finished\n",thrd_num); pthread_exit(NULL); } int main()

8-实验八Java多线程操作(实验报告内容)

实验八 Java多线程操作 (实验报告) 一、目的 1.掌握Java多线程操作。 二、实验内容 启动线程,线程休眠,线程同步,等待和唤醒 三、实验环境 JDK1.6+dos环境 四、实验原理 通过案例掌握多线程操作。 五、实验步骤 1、设计一个线程操作类,要求可以产生三个线程对象,并可以分 别设置三个线程的休眠时间,如下所示: 线程A,休眠10秒 线程B,休眠20秒 线程C,休眠30秒 2、生产者与消费者问题,生产者生产一台电脑,消费者马上将生 产出的电脑取走。 六、实验小结 1、class MyThread implements Runnable{

String name; int time; public MyThread(String name,int time){ https://www.360docs.net/doc/178480695.html,=name; this.time=time; } public void run(){ try{ Thread.sleep(this.time); } catch(Exception e){ } System.out.println(https://www.360docs.net/doc/178480695.html,+"线程,休眠"+this.time/1000+"秒"); } } public class Demo08{ public static void main(String args[]){ MyThread mt1=new MyThread("线程A",10000); MyThread mt2=new MyThread("线程B",20000); MyThread mt3=new MyThread("线程C",30000);

进程调度算法实验报告

操作系统实验报告(二) 实验题目:进程调度算法 实验环境:C++ 实验目的:编程模拟实现几种常见的进程调度算法,通过对几组进程分别使用不同的调度算法,计算进程的平均周转时间和平均带权周转时间,比较 各种算法的性能优劣。 实验内容:编程实现如下算法: 1.先来先服务算法; 2.短进程优先算法; 3.时间片轮转调度算法。 设计分析: 程序流程图: 1.先来先服务算法 开始 初始化PCB,输入进程信息 各进程按先来先到的顺序进入就绪队列 结束 就绪队列? 运行 运行进程所需CPU时间 取消该进程 2.短进程优先算法

3.时间片轮转调度算法 实验代码: 1.先来先服务算法 #include #define n 20 typedef struct { int id; //进程名

int atime; //进程到达时间 int runtime; //进程运行时间 }fcs; void main() { int amount,i,j,diao,huan; fcs f[n]; cout<<"请输入进程个数:"<>amount; for(i=0;i>f[i].id; cin>>f[i].atime; cin>>f[i].runtime; } for(i=0;if[j+1].atime) {diao=f[j].atime; f[j].atime=f[j+1].atime; f[j+1].atime=diao; huan=f[j].id; f[j].id=f[j+1].id; f[j+1].id=huan; } } } for(i=0;i #define n 5 #define num 5 #define max 65535 typedef struct pro { int PRO_ID; int arrive_time;

java多线程实验报告

java多线程实验报告 篇一:西北农林科技大学java多线程实验报告 实验7 多线程 1.实验目的 (1) 掌握Java多线程的概念和实现方法 (2) 掌握Java多线程的同步问题 2.实验内容 任务一:火车售票 假设有火车票1000张,创建10个线程模拟10个售票点,每个售票点100毫秒买一张票。打印出售票过程,注意使用synchronized确保同一张票只能卖出一次。程序运行结果见左图。 打开Eclipse Tickets.java public class Ticket extends Thread { int ticket =1000; String name =""; public void run(){ while(true){synchronized(name){ if(ticket "第" + Thread.currentThread().getName()+ "售票点卖出了第" + ticket-- + "张票"); } } } }} try{ } catch(InterruptedException e){ }

Thread.sleep(100); Test.java public class Test { } public static void main(String args[]){} Ticket t = new Ticket(); new Thread(t,"1").start(); new Thread(t,"2").start(); new Thread(t,"3").start(); new Thread(t,"4").start(); new Thread(t,"5").start(); new Thread(t,"6").start(); new Thread(t,"7").start(); new Thread(t,"8").start(); new Thread(t,"9").start(); new Thread(t,"10").start(); 任务二:银行存款 假设某家银行,它可接受顾客的汇款,每做一次汇款,便可计算出汇款的总额。现有两个顾客,每人都分3次,每次100元将钱到入。试编写一个程序,模拟实际作业。 程序如下: classCBank { private static int sum=0; public static void add(int n){ inttmp=sum; tmp=tmp+n;// 累加汇款总额 try{ Thread.sleep((int)(10000*Math.random())); //

操作系统原理-进程调度实验报告

一、实验目的 通过对进程调度算法的设计,深入理解进程调度的原理。 进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。 进程调度分配处理机,是控制协调进程对CPU的竞争,即按一定的调度算法从就绪队列中选中一个进程,把CPU的使用权交给被选中的进程。 进程通过定义一个进程控制块的数据结构(PCB)来表示;每个进程需要赋予进程ID、进程到达时间、进程需要运行的总时间的属性;在RR中,以1为时间片单位;运行时,输入若干个进程序列,按照时间片输出其执行序列。 二、实验环境 VC++6.0 三、实验内容 实现短进程优先调度算法(SPF)和时间片轮转调度算法(RR) [提示]: (1) 先来先服务(FCFS)调度算法 原理:每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。 将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理,是一种最普遍和最简单的方法。它优先考虑在系统中等待时间最长的作业,而不管要求运行时间的长短。 按照就绪进程进入就绪队列的先后次序进行调度,简单易实现,利于长进程,CPU繁忙型作业,不利于短进程,排队时间相对过长。 (2) 时间片轮转调度算法RR

原理:时间片轮转法主要用于进程调度。采用此算法的系统,其程序就绪队列往往按进程到达的时间来排序。进程调度按一定时间片(q)轮番运行各个进程. 进程按到达时间在就绪队列中排队,调度程序每次把CPU分配给就绪队列首进程使用一个时间片,运行完一个时间片释放CPU,排到就绪队列末尾参加下一轮调度,CPU分配给就绪队列的首进程。 固定时间片轮转法: 1 所有就绪进程按 FCFS 规则排队。 2 处理机总是分配给就绪队列的队首进程。 3 如果运行的进程用完时间片,则系统就把该进程送回就绪队列的队尾,重新排队。 4 因等待某事件而阻塞的进程送到阻塞队列。 5 系统把被唤醒的进程送到就绪队列的队尾。 可变时间片轮转法: 1 进程状态的转换方法同固定时间片轮转法。 2 响应时间固定,时间片的长短依据进程数量的多少由T = N × ( q + t )给出的关系调整。 3 根据进程优先级的高低进一步调整时间片,优先级越高的进程,分配的时间片越长。 多就绪队列轮转法: (3) 算法类型 (4)模拟程序可由两部分组成,先来先服务(FCFS)调度算法,时间片轮转。流程图如下:

实验一-进程调度实验

实验一-进程调度实验 实验一进程调度实验 一、实验目的 用高级语言编写和调试一个进程调度程序,以加深对进程的概念 及进程调度算法的理解 二、实验类别 综合性实验。综合高级语言编程、进程调度模型、进程调度算法及数据结构等多方面的知识 三、实验示例 例题:设计一个有N个进程共行的进程调度程序 进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法。 每个进程有一个进程控制块(PCB)表示。进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。 进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。进程的到达时间为进程输 入的时间。 进程的运行时间以时间片为单位进行计算。 每个进程的状态可以是就绪W(Wait )、运行R(Run )、或完成F

(Finish )三种状态之一。 就绪进程获得CPU后都只能运行一个时间片。用已占用CPU 时间加1来表示。 如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1 (即降低一级),然后把它插入就绪队列等待CPU。 每进行一次调度程序都打印一次运行进程、就绪队列、以及各个 进程的PCB,以便进行检查。 重复以上过程,直到所要进程都完成为止。 调度算法的流程图如下:

进程调度源程序如下: //jin gche ndiaodu.cpp #in elude "stdio.h"

实验一 进程调度

实验一进程调度 1.目的和要求 通过这次实验,理解进程调度的过程,进一步掌握进程状态的转变、进程调度的策略,进一步体会多道程序并发执行的特点,并分析具体的调度算法的特点,掌握对系统性能的评价方法。 2.实验内容 阅读教材《计算机操作系统》第二章和第三章,掌握进程管理及调度相关概念和原理。 编写程序模拟实现进程的时间片轮转调度过程,模拟程序只对PCB进行相应的调度模拟操作,不需要实际程序。假设初始状态为:有n个进程处于就绪状态,有m个进程处于阻塞状态。采用时间片轮转调度算法进行调度(调度过程中,假设处于执行状态的进程不会阻塞),且每过t个时间片系统释放资源,唤醒处于阻塞队列队首的进程。 程序要求如下: 1)按时间片顺序输出系统中进程的调度次序; 2)计算CPU利用率。 3.实验环境 Windows操作系统、VC++6.0 C语言 4.实验提示 用C语言实现提示: 1)程序中进程可用PCB表示,其类型描述如下: struct PCB_type { int pid ; //进程名 int state ; //进程状态

2——表示“执行”状态 1——表示“就绪”状态 0——表示“阻塞”状态 int cpu_time ; //运行需要的CPU时间(需运行的时间片个数) } 2)设置两个队列,将处于“就绪”状态的进程PCB挂在队列ready中;将处于“阻塞”状态的进程PCB挂在队列blocked中。队列类型描述如下:struct QueueNode{ struct PCB_type PCB; Struct QueueNode *next; } 并设全程量: struct QueueNode *ready_head=NULL, //ready队列队首指针 *ready_tail=NULL , //ready队列队尾指针 *blocked_head=NULL, //blocked队列队首指针 *blocked_tail=NULL; //blocked队列队尾指针 3)设计子程序: start_state(); //读入假设的数据,设置系统初始状态 dispath(); //模拟调度 calculate(); //计算CPU利用率 5. 实验要求: 1)上机前认真使用C语言编写好程序,采用Visual C++6.0作为编译环境; 2)上机时独立调试程序 3)根据具体实验要求,填写好实验报告(包括目的和要求、实验内容、实验环境、设计思想、源程序、实例运行结果、总结)。 4)测试用数据: n=2 m=3 t=5

实验四 同步与互斥 Linux实验报告

实验四同步与互斥 【实验目的和要求】 1、掌握进程(线程)的同步与互斥。 2、掌握生产者消费者问题的实现方法。 3、掌握多线程编程方法。 【实验内容】 实现生产者消费者问题 1、有一个仓库,生产者负责生产产品,并放入仓库,消费者会从仓库中拿走产品(消费)。 2、仓库中每次只能入一个(生产者或消费者)。 3、仓库中可存放产品的数量最多10个,当仓库放满时,生产者不能再放入产品。 4、当仓库空时,消费者不能从中取出产品。 5、生产、消费速度不同。 【实验原理】 1、信号量mutex提供对缓冲池访问的互斥要求并初始化为1,信号量empty和 full分别用来表示空缓冲项和满缓冲项的个数,信号量empty初始化为n,信号量full初始化为0。 2、定义如下结构及数据: 定义缓冲区内的数据类型:typedef int buffer_item; 缓冲区:buffer_item buffer[BUFFER_SIZE];

对缓冲区操作的变量:int in,out; 信号量mutex提供了对缓冲池访问的互斥要求:pthread_mutex_t mutex; 信号量empty和full分别表示空缓冲顶和满缓冲顶的个数:sem_t empty,full; 可以设定生产者的生产速度及消费者的消费速度:int pro_speed,con_speed; 对缓冲区操作的自增函数:#define inc(k) if(k < BUFFER_SIZE) k = k+1;else k=0 3、并定义了如下实现问题的函数模块: 将生产的产品放入缓冲区: int insert_item(buffer_item item) 从缓冲区内移走一个产品: int remove_item(buffer_item *item) 生产者进程:void *producer(void *param) 消费者进程:void *consumer(void *param) 生产者结构进程消费者结构进程 【程序代码】 //sx.c #include

Java实验五线程

实验五线程 一实验要求 1、理解进程和线程概念; 2、掌握创建、管理和控制Java线程对象的方法; 3、了解并发执行的多线程存在的各种关系 二实验内容 1、使用线程对象或Timer定时器制作数字时钟标签组件,显示当前日期和时间,每秒刷新,将该标签添加到框架窗口。 import java.awt.FlowLayout; import java.text.SimpleDateFormat;//简单日期格式类 import java.util.Locate; import java.util.Timer;//一种工具,线程用其安排以后在后台线程中执行的任务 import java.util.TimerTask; import java.swing.JLabel; public class ShizhongJFrame extends JFrame{ { Public ShizhongJFrame(){ JFrame f=new JFrame(“数字时钟”); f.setLayout(new FlowLayout()); f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); f.setSize(200,70); final JLable lable=new JLable; final SimpleDateFormat format=new SimpleDateFormat(“H:m:s”,Locate.CHINA); f.add(lable); Timer time=new Timer(); time.scheduleAtFixedRate(new TimerTask(){ Public void run(){ Label.setText(format.format(new Date(System.currentTimeMillis()))); } },0,1000); f.setVisible(true); } Public staic void main(String arg[]){ New ShizhogJFrame(); } } 三实验内容中遇到的问题、解决方法和体会。

实验一-进程调度实验

实验一-进程调度实验

实验一进程调度实验 一、实验目的 用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解 二、实验类别 综合性实验。综合高级语言编程、进程调度模型、进程调度算法及数据结构等多方面的知识 三、实验示例 例题:设计一个有 N个进程共行的进程调度程序 进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法。 每个进程有一个进程控制块(PCB)表示。进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。 进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。进程的到达时间为进程输 入的时间。 进程的运行时间以时间片为单位进行计算。 每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。 就绪进程获得CPU后都只能运行一个时间片。用已占用CPU 时间加1来表示。 如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。 每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的PCB,以便进行检查。 重复以上过程,直到所要进程都完成为止。 调度算法的流程图如下:

进程调度源程序如下: //jingchendiaodu.cpp #include "stdio.h"

#include #include #define getpch(type) (type*)malloc(sizeof(type)) #define NULL 0 struct pcb { /* 定义进程控制块PCB */ char name[10]; char state; int super; int ntime; int rtime; struct pcb* link; }*ready=NULL,*p; typedef struct pcb PCB; sort() /* 建立对进程进行优先级排列函数*/ { PCB *first, *second; int insert=0; if((ready==NULL)||((p->super)>(ready->super))) /*优先级最大者,插入队首*/ { p->link=ready; ready=p; } else /* 进程比较优先级,插入适当的位置中*/ { first=ready; second=first->link; while(second!=NULL) { if((p->super)>(second->super)) /*若插入进程比当前进程优先数大,*/ { /*插入到当前进程前面*/ p->link=second; first->link=p;

linux使用多线程解决“读者—写者”问题实验报告

计算机科学与技术系 实验(项目)报告 一、基本信息 二、目的与要求 目的: 通过实验掌握Linux环境下多线程程序的开发方法。 要求: 1.掌握线程的基本概念及操作; 2.掌握线程间通信的基本方法; 3.掌握Linux环境下多线程程序的开发方法及步骤。 三、完成实验(项目)过程和效果 内容: 1.问题分析; 有100个读线程和100个写线程共同读、写文件 (1)允许多个reader同时读一个文件; (2)当有一个reader在读文件时,不允许writer写文件; (3)当有一个writer在写文件时,不允许reader读文件,也不允许其 他writer写文件。

2.程序实现; 3.程序的调试与运行。 步骤: 1.问题分析 可以利用读写锁解决读者-写者问题 2.程序实现 1)读者: void *Reader(void *id) { RandomSleep(); pthread_rwlock_rdlock(&rwlock); ReaderNum++; ReadFile(*((int *)id)); ReaderNum--; pthread_rwlock_unlock(&rwlock); } 2)写者: void *Writer(void *id) { RandomSleep(); pthread_rwlock_wrlock(&rwlock); WriterNum++; WriteFile(*((int *)id)); WriterNum--;

pthread_rwlock_unlock(&rwlock); } 3)线程的创建: for(i=0; i

Java多线程实验报告

实验报告 课程名称: Java语言程序设计 姓名: 学号: 班级: 数学与计算机科学学院

数学与计算机科学学院实验报告实验名称:多线程 指导教师:日期:

if (isPrime) count++; } System.out.println(st + "~" + en + "之间共有" + count + "个质数"); } public static void main(String[] args) { UseThread thread1 = new UseThread(2, 1000); UseThread thread2 = new UseThread(1000, 2000); thread1.start(); thread2.start(); } } 第2题代码: public class Experiment14_2 { public static void main(String[] args) { MyThread t1 = new MyThread("T1"); MyThread t2 = new MyThread("T2"); t1.start(); t2.start(); System.out.println("活动线程数:" + Thread.activeCount()); System.out.println("main()运行完毕"); } } class MyThread extends Thread { public MyThread(String s) { super(s); } public void run() { for (int i = 1; i <= 3; i++) { System.out.println(getName() + "第" + i + "次运行"); try { sleep((int) (Math.random() * 100)); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println(getName() + "结束"); } }

实验三进程调度蔡凤武

实验三进程调度蔡凤武 进程调度实验目的 1、理解有关进程控制块、进程队列的概念。 2、掌握进程优先权调度算法和时间片轮转调度算法的处理逻辑。 实验内容与基本要求 1、设计进程控制块PCB的结构,分别适用于优先权调度算法和时间片轮转调度算法。 2、建立进程就绪队列。 3、编制两种进程调度算法:优先权调度算法和时间片轮转调度算法。 实验报告内容一.优先权调度算法和时间片轮转调度算法原理。对于优先权调度算法,其关键是在于是采用静态优先权还是动态优先权,以及如何确定进程的优先权。静态优先权是在创建进程是确定的,并且规定它在进程的整个运行期间保持不变。动态优先权要配合抢占调度方式使用,它是指在创建进程时所赋予的优先权,可以随着进程的推进而发生改变,以便获得更好的调度性能。在就绪队列中等待调度的进程,可以随着等待时间的增加,其优先权也以某个速率增加。因此,对于优先权初值很低的进程,在等待足够时间后,其优先权也可能升为最高,从而获得调度,占用处理器并执行。对已时间片轮转调度算法,系统将所

有的就绪进程按进路就绪队列的先后次序排列。每次调度时把CPU 分配给队首进程,让其执行一个时间片,当时间片用完,由计时器发出时钟中断,调度程序则暂停改程序的执行,使其退出处理器,并将它送人就绪队的末尾,等待下一轮调度执行。然后,把cpu分配给就绪队列中新的队首进程,同时让它执行一个时间片。二.程序流程图。结束就绪队列为空吗三.程序及注释。 #include #include #include #include #include #include #define P_NUM5#define P_TIME50 enum st { ready, execute, block, finish};//状态定义进程//struct pcb{ char name[4];//进程名字// int priority;//进程优先权// int cputime;//CPU运行时间// int needtime;//进程运行需要的时间// int count;//进程执行次数// int round;//时间片轮转轮次// st process;//进程状态// pcb *next;};//定义进程//pcb *get_process(){ pcb *q; pcb *t; pcb *p; int i=0; cout<<"input name and time"<>q->name; cin>>q->needtime; q->cputime=0; q->priority=P_TIME-q- >needtime; q->process=ready; q->next=NULL; if(i==0) { p=q; t=q; } else { t->next=q; t=q;} i++; } return p;//输入模拟测试的进程名和执行所需的时间,初始设置可模拟5个进程的调度//}void display (pcb *p){ cout<<"name"<<"

相关文档
最新文档