继电实验4
继电保护4

A,电压变换器 电压变换器的作用:电压变换器的作用是将电压互感器二次 侧较高的电压值变换成较小的电压值. 电压变换器的类型:电压变换器常见有普通型和谐振型两种. 电压变换器用UV表示. 电压变换器的二次电压与一次电压的关系如下: UV=KVUK KV----为电压变换器的变换系数 KV---普通型电压变换器二次电压与一次电压同相位,谐振型电压 变换器二次电压超前一次电压90°. B,电抗变换器 电抗变换器的作用:电抗变换器用于电流的测量,即将电流 互感器二次侧的较大的电流值变换成与其成正比的较小的电 压.电抗变换器用TX表示.
�
电抗变换器二次电压与一次电流的关系为: UX=KXIK KX-----为电抗变换器的变换系数,其量纲为欧姆. 在变换器各项参数不变的情况下,电抗变换器的变换系数的 值为一常量. jXeR'φ UR=IKZ=IK———— jXe+R'φ W2 W2 jXeR'φ U×= —— Ur= —— ———— Ik=KxIk W1 W1 jXe+R'φ (2)比较电路 A,比较的基本形式 整流型功率方向继电器是通过对电流,电压所形成的电压值 进行绝对值的比较来实现它们之间的相位的比较,从而判断功 率的流动方向.
D,均压式比较电路和环流式比较电路的优缺点 均压式比较电路为利用电压的平衡进行比较,执行元件的动 作与否,决定于两侧整流器输出的电压水平,继电器动作较 为灵敏,但继电器的功耗较大. 环流式比较电路是利用电流的平衡进行比较,执行元件的动 作与否,决定于两侧整流器的输出电流的大小,继电器动作 的灵敏性较低,但继电器的功耗较小. (3)整流型功率方向继电器的执行元件 整流型功率方向继电器的执行元件一般多采用极化继电器. A,极化继电器的结构 极化继电器的组成主要包括:铁芯,工作线圈,永久磁铁, 衔铁,接点. B,极化继电器的工作原理 ◆永久磁铁产生永久磁通,即极化磁通Фp1,Фp2两部分.
继电保护试验内容

二、常规继电器特性实验(一)电磁型电压、电流继电器的特性实验1.实验目的1)了解继电器基本分类方法及其结构。
2)熟悉几种常用继电器,如电流继电器、电压继电器、时间继电器、中间继电器、信号继电器等的构成原理。
3)学会调整、测量电磁型继电器的动作值、返回值和计算返回系数。
4)测量继电器的基本特性。
5)学习和设计多种继电器配合实验。
3.实验容1)电流继电器特性实验电流继电器动作、返回电流值测试实验。
实验电路原理图如图2-2所示:图2-2 电流继电器动作电流值测试实验原理图实验步骤如下:(1)按图接线,将电流继电器的动作值整定为1A ,使调压器输出指示为0V ,-滑线电阻的滑动触头放在中间位置。
(2)查线路无误后,先合上三相电源开关(对应指示灯亮),再合上单相电源开关和直流电源开关。
(3)慢慢调节调压器使电流表读数缓慢升高,记下继电器刚动作(动作信号灯XD1亮)时的最小电流值,即为动作值。
(4)继电器动作后,再调节调压器使电流值平滑下降,记下继电器返回时(指示灯XD1灭)的最大电流值,即为返回值。
(5)重复步骤(2)至(4),测三组数据。
(6)实验完成后,使调压器输出为0V,断开所有电源开关。
(7)分别计算动作值和返回值的平均值即为电流继电器的动作电流值和返回电流值。
(8)计算整定值的误差、变差及返回系数。
误差=[动作最小值-整定值 ]/整定值变差=[动作最大值-动作最小值]/动作平均值 100%返回系数=返回平均值/动作平均值表2-1 电流继电器动作值、返回值测试实验数据记录表2)电流继电器动作时间测试实验电流继电器动作时间测试实验原理图如图2-3所示:图2-3 电流继电器动作时间测试实验电路原理图实验步骤如下:(1)按图接线,将电流继电器的常开触点接在多功能表的“输出2”和“公共线”,将开关BK的一条支路接在多功能表的“输入1”和“公共线”,使调压器输出为0V,将电流继电器动作值整定为1.2A,滑线电阻的滑动触头置于其中间位置。
电力继电保护实验报告

一、实验目的1. 了解电力系统继电保护的基本原理和作用。
2. 熟悉继电保护装置的组成和结构。
3. 掌握继电保护装置的调试和实验方法。
4. 培养实验操作能力和分析问题、解决问题的能力。
二、实验原理电力系统继电保护是利用继电器等元件对电力系统中的故障进行检测、判断和动作的一种自动保护装置。
其主要原理是根据电力系统故障时出现的电气量(如电流、电压、频率等)的变化,通过继电保护装置的动作,实现对故障的切除或报警,从而保证电力系统的安全稳定运行。
三、实验仪器与设备1. 继电保护实验装置2. 电流表、电压表、频率表3. 调压器、开关、导线等4. 实验记录表格四、实验内容1. 继电保护装置的组成与结构(1)实验目的:了解继电保护装置的组成和结构。
(2)实验步骤:1. 观察继电保护实验装置的组成,包括继电器、接触器、开关、电流表、电压表、频率表等。
2. 分析各元件的作用和连接方式。
3. 根据实验要求,搭建实验电路。
2. 继电保护装置的调试(1)实验目的:掌握继电保护装置的调试方法。
(2)实验步骤:1. 根据实验要求,设置继电保护装置的动作值、返回值等参数。
2. 通过调节调压器,使电流、电压、频率等电气量达到设定值。
3. 观察继电保护装置的动作情况,记录实验数据。
3. 继电保护装置的实验(1)实验目的:掌握继电保护装置的实验方法。
(2)实验步骤:1. 搭建实验电路,接入电流表、电压表、频率表等测量元件。
2. 根据实验要求,设置故障情况(如短路、过载等)。
3. 观察继电保护装置的动作情况,记录实验数据。
4. 分析实验数据,验证继电保护装置的性能。
五、实验结果与分析1. 继电保护装置的组成与结构通过实验,我们了解了继电保护装置的组成和结构,包括继电器、接触器、开关、电流表、电压表、频率表等。
各元件的作用和连接方式如下:- 继电器:实现电气量的检测和动作。
- 接触器:实现电路的接通和断开。
- 开关:实现电路的控制。
- 电流表、电压表、频率表:测量电气量。
(整理)电力系统继电保护实验指导书

实验一 阶段式过电流与自动重合闸前加速一、实验目的1、熟悉自动重合闸前加速保护的原理与接线。
2、掌握自动重合闸与继电保护的配合形式。
3、理解继电保护与自动重合闸前加速这种配合形式的使用场合。
二、实验说明重合闸前加速保护是当线路发生故障时,靠近电源侧的保护首先无选择性地瞬时动作,使断路器跳闸,尔后再借助于自动重合闸来纠正这种非选择性的动作。
重合闸前加速保护的动作原理可由图12-1说明,线路X-1上装有无选择性的电流速断保护1和过流保护2,线路X-2上装有过流保护4,ZCH 仅装在靠近电源的线路X-1上。
无选择性电流速断保护1的动作电流,按线路末端的短路电流来整定,动作不带延时。
过流保护2、4的动作时限按阶梯原则来整定,即t 2>t 4。
图 12-1 自动重合闸前加速保护原理示意图当任何线路、母线(I 除外)或变压器高压侧发生故障时,装在变电所I 的无选择性电流速断保护1总是先动作,不带延时地将1QF 跳开,尔后ZCH 动作再将1QF 重合。
若所发生的故障是暂时性的,则重合成功,恢复供电;若故障为永久性的,由于电流速断已由ZCH 的动作退出工作,因此,此时通过各电流保护有选择性地切除故障。
图12-2示出了ZCH 前加速保护的原理接线图。
其中1LJ 是电流速断,2LJ 是过流保护。
从该图可以清楚地看出,线路X-1故障时,首先速断保护的1LJ 动作,其接点闭合,经JSJ 的常闭接点不带时限地动作于断路器,使其跳闸,随后断路器辅助触点起动重合闸装置,将断路器合上。
重合闸动作的同时,起动加速继电器JSJ ,其常闭接点打开,若此时线路故障还存在,但因JSJ 的常闭接点已打开,只能由过流保护继电器2LJ 及SJ 带时限有选择性地动作于断路器跳闸,再次切除故障。
自动重合闸前加速保护有利于迅速消除故障,从而提高了重合闸的成功率,另外还具有只需装一套ZCH 的优点。
其缺点是增加了1QF 的动作次数,一旦1QF 或ZCH 拒绝动作将会扩大停电范围。
电力系统继电保护原理实验

实验一继电器特性实验二、原理说明1、电流继电器DL-20C系列电流继电器用于反映发电机、变压器及输电线路短路和过负荷的继电保护装置中。
过电流继电器:当电流升高至整定值时,继电器立即动作,其常开触点闭合,常闭触点断开。
继电器的铭牌刻度值是按电流继电器两线圈串联,电压继电器两线圈并联时标注的指示值等于整定值;若上述二继电器两线圈分别作并联和串联时,则整定值为指示值的2倍。
2、时间继电器DS系列时间继电器用于各种继电保护和自动控制线路中,使被控制元件按时限控制原则进行动作。
DS-20系列时间继电器是带有延时机构的吸入式电磁继电器,其中DS-21~DS-24是内附热稳定限流电阻型时间继电器(线圈适于短时工作),DS-21/C~DS-24/C是外附热稳定限流电阻型时间继电器(线圈适于长时工作)。
DS-25~28是交流时间继电器。
该继电器具有一付瞬时转换触点,一付滑动主触点和一付终止主触点。
当加电压于线圈两端时,衔铁克服塔形弹簧的反作用力被吸入,瞬时常开触点闭合,常闭触点断开,同时延时机构开始启动,先闭合滑动常开主触点,再延时后闭合终止常开主触点,从而得到所需延时,当线圈断电时,在塔形弹簧作用下,使衔铁和延时机构立刻返回原位。
从电压加于线圈的瞬间起到延时闭合常开主触点上,这段时间就是继电器的延时时间,可通过整定螺钉来移动静接点位置进行调整,并由螺钉下的指针在刻度盘上指示要设定的时限。
三、实验设备四、实验内容及步骤1、电流继电器整定点的动作值、返回值及返回系数测试电流继电器特性测试实验接线图注2如图1-1所示。
(1) 电流继电器的动作电流和返回电流测试a 、选择ZB11继电器组件中的DL-24C/6型电流继电器,确定动作值并进行初步整定。
选2.4A 和4.8A 为实验整定值。
b 、根据整定值要求对继电器线圈确定接线方式(串联或并联)本实验整定值2.4A 采用是串联的接线方式,4.8A 采用并联的接线方式。
c 、按图1-1接线,检查无误后,调节自耦调压器及变阻器,增大输出电流,使继电器动作。
继电保护三段式保护

姓名:李鑫学号:32112117班级:电气121成绩:实验四(单侧电源辐射式输电线路)三段式电流保护一、实验目的1、掌握无时限电流速断保护、带时限电流速断保护及过电流保护的电路原理、工作特性及整定原则。
2、理解输电线路阶段式电流保护的原理图、展开图及保护装置中各继电器的功用。
3、掌握阶段式电流保护的电气接线和操作实验技术。
二、实验原理1、阶段式电流保护的构成无时限电流速断只能保护线路的一部分,带时限电流速断只能保护本线路全长,但却不能作为下一线路的后备保护,还必须采用过电流保护作为本线路和下一线路的后备保护。
由无时限电流速断、带时限电流速断与定时限过电流保护相配合可构成的一整套输电线路阶段式电流保护,叫做三段式电流保护。
图4-1 三段式电流保护各段的保护范围及时限配合输电线路并不一定都要装三段式电流保护,有时只装其中的两段就可以了。
例如用于“线路-变压器组”保护时,无时限电流速断保护按保护全线路考虑后,此时,可不装设带时限电流速断保护,只装设无时限电流速断和过电流保护装置。
又如在很短的线路上,装设无时限电流速断往往其保护区很短,甚至没有保护区,这时就只需装设带时限电流速断和过电流保护装置,叫做二段式电流保护。
在只有一个电源的辐射式单侧电源供电线路上,三段式电流保护装置各段的保护范围和时限特性见图4-1。
XL-1线路保护的第Ⅰ段为无时限电流速断保护,它的保护范围为线路XL-1的前一部分即线路首端,动作时限为t1I,它由继电器的固有动作时间决定。
第Ⅱ段为带时限电流速断保护,它的保护范围为线路XL-1的全部并延伸至线路XL-2的一部分,其动作时限为t1II = t2I +△t。
无时限电流速断和带时限电流速断是线路XL-1的主保护。
第Ⅲ段为定时限过电流保护,保护范围包括XL-1及XL-2全部,其动作时限为t1III ,它是按照阶梯原则来选择的,即t1III = t2III+△t ,t2III 为线路XL-2的过电流保护的动作时限。
继电保护实验报告(完整版)

报告编号:YT-FS-8685-31继电保护实验报告(完整版)After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas.互惠互利共同繁荣Mutual Benefit And Common Prosperity继电保护实验报告(完整版)备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。
文档可根据实际情况进行修改和使用。
电流方向继电器特性实验一、实验目的1、了解继电器的結构及工作原理。
2、掌握继电器的调试方法。
二、构造原理及用途继电器由电磁铁、线圈、Z型舌片、弹簧、动触点、静触点、整定把手、刻度盘、轴承、限制螺杆等组成。
继电器动作的原理:当继电器线圈中的电流增加到一定值时,该电流产生的电磁力矩能够克服弹簧反作用力矩和摩擦力矩,使Z型舌片沿顺时针方向转动,动静接点接通,继电器动作。
当线圈的电流中断或减小到一定值时,弹簧的反作用力矩使继电器返回。
利用连接片可将继电器的线圈串联或并联,再加上改变调整把手的位置可使其动作值的调整范围变更四倍。
继电器的内部接线图如下:图一为动合触点,图二为动断触点,图三为一动合一动断触点。
电流继电器用于发电机、变压器、线路及电动机等的过负荷和短路保护装置。
三、实验内容1. 外部检查2. 内部及机械部分的检查3. 绝缘检查4. 刻度值检查5. 接点工作可靠性检查四、实验仪器1、微机保护综合测试仪2、功率方向继电器3、DL-31 型电流继电器4、电脑、导线若干。
五、实验步骤1、外部检查检查外壳与底座间的接合应牢固、紧密;外罩应完好,继电器端子接线应牢固可靠。
电力系统继电保护实验指导书

实验一电磁型电流继电器实验一.实验目的1.熟悉DL型电流继电器的内部结构、工作原理、基本特性。
2.测量电流继电器的动作值及返回值,计算返回系数。
掌握测试、调整这些参数的基本方法。
3.了解继电器常开接点和常闭接点的区别,观察接点工作可靠性。
二.原理说明DL-20C系列电流继电器为电磁式继电器。
由电磁系统、整定装置、接触点系统组成。
当线圈导通时,衔铁克服游丝的反作用力矩而动作,使动合触点闭合。
转动刻度盘上的指针,可改变游丝的力矩,从而改变继电器的动作值。
改变线圈的串联或并联,可获得不同的额定值。
DL-20C系列电流继电器铭牌刻度值,为线圈并联时的额定值。
继电器用于反映发电机,变压器及输电线短路和过负荷的继电保护装置中。
三.实验设备序号设备名称使用仪器名称数量1 控制屏 12 EPL-20A 变压器及单相可调电源 13 EPL-04 继电器—DL-21C电流继电器 14 EPL-11 交流电压表 15 EPL-11 交流电流表 16 EPL-11 直流电源及母线 17 EPL-12B 光示牌 1四.实验内容及步骤1.机械部分检查、转轴活动部分检查、舌片与电磁铁间隙的检查、弹簧的检查与调整、触点的检查与调整轴承与轴尖的检查。
2. 整定点的动作值、返回值及返回系数测试实验接线图1-2为过流继电器的实验接线。
(1)电流继电器的动作电流和返回电流测试:a .选择EPL-04组件的DL-21C过流继电器(额定电流为6A),确定动作值并进行整定。
本实验整定值为2.7A及5.4A两种工作状态。
注意:本继电器在出厂时已把转动刻度盘上的指针调整到2.7A,学生也可以拆下玻璃罩子自行调整电流整定值。
b .根据整定值要求对继电器线圈确定接线方式; 注意:(1)过流继电器线圈可采用串联或并联接法,如右图所示。
其中串联接法电流动作值可由转动刻度盘上的指针所对应的电流值读出,并联接法电流动作值则为串联接法的2倍。
(2)串并联接线时需注意线圈的极性,应按照要求接线,否则得不到预期的动作电流值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、中间继电器实验一、实验目的中间继电器种类很多,目前国内生产的就有二十多个系列,数百种产品。
本实验选择了具有代表性的三个系列中的四种中间继电器进行实验测试,希望能通过本次实验熟悉中间继电器的实际结构、工作原理、基本特性,掌握对各类中间继电器的测试和调整方法。
二、预习与思考1、为什么目前在一些保护屏上广泛采用DZ-30B系列中间继电器,它与DZ-10系列中间继电器比较有那些特点?2、具有保持绕组的中间继电器为什么要进行极性检验?如何判明各绕组的同极性端子。
3、使用中间继电器一般根据哪几个指标进行选择?4、发电厂、变电所的继电保护及自动装置中常用哪几种中间继电器?三、原理说明DZ—30B、 DZB—10B、DZS--10B系列中间继电器用于直流操作的各种继电保护和自动控制线路中,作为辅助继电器以增加接点数量和接点容量。
1、DZ—30B为电磁式瞬时动作继电器。
当电压加在线圈两端时,衔铁向闭合位置运动,此时常开触点闭合,常闭触点断开。
断开电源时,衔铁在接触片的反弹力下,返回到原始状态,常开触点断开,常闭触点闭合。
继电器内部接线见图4—1图4—1 DZ -30B 中间继电器内部接线图2、DZB —10B 系列是具有保持绕组的中间继电器,它基于电磁原理工作,按不同要求在同一铁芯上绕有两个以上的线圈,其中DZB -11B 、12B 、13B 为电压启动、电流保持型;DZB -14B 为电流启动、电压保持型。
该继电器为瞬时动作继电器。
当动作电压(或电流)加在线圈两端时,衔铁向闭合位置运动,此时,常开触点闭合,常闭触点断开,断开启动电源时,由于电压(或电流)保持绕组的磁场的存在所以衔铁仍然闭合,只有保持绕组断电后,衔铁在接触片的反弹力作用下返回到原始状态,常开触点断开,常闭触点闭合。
继电器内部接线见图4—2。
3、DZS —10B 系列是带有时限的中间继电器,它基于电磁原理工作。
继电器分为动作延时和返回延时两种,本系列中的DZS —11B 、13B 为动作延时,DZS —12B 、14B 为返回延时继电器。
在这种继电器线圈的上面或下面装有阻尼环,当线圈通电或断电时,阻尼环中感应电流所产生的磁通会阻碍主磁通V 12345618171615141310DZ-31B 三 常开触点三转换触点1211987V 1245618171615141310DZ-32B 六常开触点1211987的增加或减少,由此获得继电器动作延时或返回延时。
继电器结构图见附图4—3,内部接线见图4—4。
图4—2 DZB -10B 中间继电器内部接线图V 12345618171615141310DZB-11B 三 常开触点三转换触点1211987+I+I V 12345618171615141310DZB-12B 六常开触点1187+I+I +I V12345618171615141310DZB-13B 三常开触点三转换触点1211987+I+I12345618171615141310DZB-14B 三常开触点三转换触点1211987+V+++图4—3 DZS -10B 中间继电器结构图图4—4 DZS -10B 中间继电器内部接线图V +123456718171615141310DZS-11B 二常开触点二转换触点V +123456718171615141310DZS-12B 二常开触点二转换触点V +12456718141310DZS-13B 三常开触点V +12456718141310DZS-14B 三常开触点15163173151617四、实验设备五、实验步骤和要求1、内部结构及触点检查:方法与实验二相同,但中间继电器接点较多,故在进行检查时应特别注意:(1)触点应在正位接触,各对触点应同时接触同时离开。
(2)触点接触后应有足够的压力和共同的行程,使其接触良好。
(3)转换触点在切换过程中应能满足保护使用上的要求。
2、线圈直流电阻测量:用电桥或万用表的电阻档测量继电器线圈的直流电阻,将测得数值填入表4-4,并与表4-1,4-2,4-3中所对应继电器的额定技术数据进行比较,实测值不应超过制造厂规定值的±10%。
3、绝缘测试用1000伏兆欧表测试全部端子对铁心的绝缘电阻应不小于50兆欧;各绕组间的绝缘电阻应不小于10兆欧;绕组对接点及各接点间的绝缘电阻应不小于50兆欧。
将测得数据填入表4--4。
4、继电器动作值与返回值检验:实验接线见图4—5、4-6、4-7、4-8。
实验时调整可变电阻R、R1、R 2逐步增大输出电压(或电流),使继电器动作,然后断开开关S或S1,再瞬间合上开关S或S1看继电器能否动作,如不能动作,调节可变电阻加大输出电压(或电流)。
在给继电器突然加入电压(或电流)时,使衔铁完全被吸入的最低电压(或电流)值,即为动作电压(电流)值,记入表4-4。
继电器的动作电压不应大于额定电压的70%。
动作电流不应大于其额定电流。
出口中间继电器动作电压应为其额定电压的50%~70%。
图4—5电压起动型实验接线图然后调整可变电阻R,减少电压(电流),使继电器的衔铁返回到原始位置的最大电压(电流)值即为返回值。
记入表4—4。
对于DZ—30B及DZS—10B 系列中间继电器返回电压不应小于额定电压的5%。
对于DZB—10B系中间继电器的返回电压(电流)值不应小于额定值的2%。
5、保持值测试:对于DZB—10B系列具有保持绕组的中间继电器,应测量保持线圈的保持值,试验接线见图4—6、图4--7:图4—6电流启动电压保持型实验接线图图4—7电压启动电流保持型实验接线图实验时,先闭合开关经S1、S2,在动作线圈加入额定电压(电流)使继电器动作后,调整保持线圈回路的电流(电压),测出断开开关S2后,继电器能保持住的最小电流(电压),此即为继电器最小保持值,记入表4-4。
电流保持型线圈的最小保持值不应大于额定电流的80%。
电压保持型线圈的最小保持值不得大于额定电压的65%。
但也不得过小,以免返回不可靠。
继电器的动作,返回和保持值与其要求的数值相差较大时,可以调整弹簧的拉力或者调整衔铁限制机构,以改变衔铁与铁心的气隙,使其达到要求。
继电器经过调整后,应重测动作值,返回值和保持值。
6、极性检验带有保持线圈的中间继电器,新安装或线圈重绕后应作极性检验,以判明各线圈的同极性端子。
线圈极性可在保持值试验时判明,也可单独作极性试验予以判定。
线圈极性应与制造厂所标极性一致。
7、返回时间测定测定返回时间的实验接线见图4—8图4—8测定继电器返回时间实验接线图1)测定返回延时时间的注意事项:实验接线可根据所用电秒表型式而定,但要求在测试时操作闸刀应保证触头同时接触与断开(可用瞬时中间继电器的触点来代替闸刀),以减少测量误差。
(1)、在额定电压下测定具有延时返回的中间继电器的返回时间时,对于经常通电的延时返回中间继电器,应在热状态下测定其返回时间。
(2)、对于延时返回时间要求严格的继电器,应在80%及100%额定电压下测定返回时间。
(3)、在特殊需要的情况下,可测定瞬时动作中间继电器的动作时间和返回时间,可测定用于切换回路中的中间继电器有关触点的切换时间,但一般情况下不测定。
2)测定返回延时时间步骤按图4—8接好线,检查无误后,合上开关S,将电秒表复位,调整可变电阻R,增大输出电压,使其达到被测继电器的额定电压,这时中间继电器DZ-31B的常闭触点○8○9瞬时断开,中间继电器DZS-12B的常开触点○4○5瞬时闭合,电秒表不计时。
断开开关S,二继电器失电,继电器DZ-31B 的返回常闭触点○8○9复位闭合,电秒表开始计时,经一定延时后,中间继电器DZS-12B的常开触点断开,电秒表中止计时,此时,电秒表所指示时间即为继电器的返回延时时间,记入表4--4。
3)返回时间的调整方法电磁式中间继电器的线圈在接入或断开电源时,由于线圈电感的影响,电流按指数律增长或衰减。
铁芯中的涡流亦能抑制线圈中的电流增长或衰减,导致继电器的延时特性。
返回时间一般采用下述方法进行调整:a、在圆柱铁芯根部套上较多的铜质阻尼环。
b、使用与阻尼环起同样作用的阻尼线圈。
c、减小继电器衔铁与铁芯间的间隙。
d、减少反作用弹簧的拉力。
阻尼环阻尼作用的大小是由时间常数T=L/R决定的,因所用阻尼环只有一匝,故电感不大,为了尽量减少电阻,就必须使用导电性能好和截面大的材料制造。
阻尼环感应的电流所产生的磁通,与阻尼环放置位置有关,装在铁芯端部靠近气隙处时延时动作的作用大,装在铁芯根部则延时返回的作用大,可视具体情况进行调整。
调整后应重测继电器的动作,返回和保持值。
六、技术数据中间继电器的额定技术数据及触点形式列入表4—1、4—2、4—3、供参考。
4—1 DZ--30系列中间继电器额定技术数据及触点形式:表4-2(A)DZB-10B系列延时中间继电器延时方式和触点形式:表4—2(B)DZB-10B系列延时中间继电器额定技术数据:表4—3 DZB—10B系列中间继电器额定技术数据及触点形式:表4—4 中间继电器实验记录表七、实验报告实验结束后认真总结,针对实验中四种继电器的具体测试方法,按要求及时写出中间继电器实验报告和本次实验体会,并书面解答本实验的思考题。