高考数学导数专题复习(基础精心整理)学生版

高考数学导数专题复习(基础精心整理)学生版
高考数学导数专题复习(基础精心整理)学生版

导数专题复习(基础精心整理)学生版

【基础知识】

1.导数定义:在点处的导数记作k =

相应的切线方程是))((000x x x f y y -'=-

2.常见函数的导数公式:

①;②;③;④; ⑤;⑥;⑦;⑧ 。 3.导数的四则运算法则:

(1) (2) (3)

4.导数的应用: (1)利用导数判断函数单调性:

①是增函数;②为减函数;③为常数; (2)利用导数求极值:①求导数;②求方程的根;③列表得极值(判断零点两边的导函数的正负)。

(3)利用导数求最值:比较端点值和极值 【基本题型】

一、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ?=+?-;(2)求平均变化率

()()00f x x f x y x x +?-?=?V ;(3)取极限,得导数()00lim x y

f x x

→?'=?V 。

例1..已知x

f x f x x f x ?-?+=→?)

2()2(lim ,1)(0则的值是( )

A. 41-

B. 2

C. 4

1

D. -2

变式1:()()()为则设h

f h f f h 233lim ,430

--='→( )

A .-1 B.-2 C .-3

D .1

二、导数的几何意义

()f x 0x x

x f x x f x f x x y x ?-?+='=='→?)

()(lim

)(|000

00'0C ='1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()ln x x a a a =x x e e =')('1(log )ln a x x a

=x

x 1

)(ln '=

)()()()(])()(['+'='x g x f x g x f x g x f 2)()()()()()()(x g x g x f x g x f x g x f '

-'='

???

? ??'

?'='x u u f x u f ))(()(0)(x f x f ?>')(0)(x f x f ?<')(0)(x f x f ?≡')(x f '0)(='x f

函数()f x 在点0x 处的导数的几何意义,就是曲线()y f x =在点()()0,0P x f x 处的切线的斜率,即曲线()y f x =在点()()0,0P x f x 处的切线的斜率是()0f x ',相应地切线的方程是()()000y y f x x x -='-。特别提醒:

(1)在求曲线的切线方程时,要注意区分所求切线是曲线上某点处的切线,还是过某点的切线:曲线上某点处的切线只有一条,而过某点的切线不一定只有一条,即使此点在曲线上也不一定只有一条;(2)在求过某一点的切线方程时,要首先判断此点是在曲线上,还是不在曲线上,只有当此点在曲线上时,此点处的切线的斜率才是0()f x ';(3)公切线的问题 例2. 已知曲线y=.

3

43

13+x (1)求曲线在x=2处的切线方程;

(2)求曲线过点(2,4)的切线方程.

解(1)∵y′=x 2,∴在点P (2,4)处的切线的斜率k='y |x=2=4.

∴曲线在点P (2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.

(2)设曲线y=3

43

13+x 与过点P (2,4)的切线相切于点??

?

?

?+343

1,30

0x x A ,则切线的斜率k='y |0

x x ==20

x .

∴切线方程为),(343

102030

x x x x y -=??

? ??+-即.34323020

+-

?=x x x y ∵点P (2,4)在切线上,∴4=,3

43223020

+-x x 即,044,0432020302030

=+-+∴=+-x x x x x ∴,0)1)(1(4)1(0002

0=-+-+x x x x ∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为4x-y-4=0或x-y+2=0. 例3.(2016年全国Ⅱ)若直线是曲线的切线,也是曲线的切

线,则 .

【解析】设y kx b =+与ln 2y x =+和ln(1)y x =+的切点分别为11(,ln 2)x x + 和22(,ln(1))x x +.

则切线分别为1111ln 2()y x x x x --=-,2221

ln(1)()1

y x x x x -+=-+, 化简得111ln 1y x x x =

?++,()22221ln 111

x

y x x x x =++-++, 依题意,()1

22

122111ln 1ln 11x x x x x x ?=?+??

?+=+-?+?

,解得112x =,从而1ln 11ln 2b x =+=-. 变式训练(1)设函数32()33f x x ax bx =-+的图像与直线1210x y +-=相切于点(1,11)-。

y kx b =+ln 2y x =+ln(1)y x =+b =

(1)求,a b 的值;(2)讨论函数()f x 的单调性。

变式训练(2)若函数ax x x g x x f +==2)(ln )(与的图象有一条与直线x y =平行的公共切线,则实数=a 三、单调性:

(1)多项式函数的导数与函数的单调性:

①若()0f x '>,则()f x 为增函数;若()0f x '<,则()f x 为减函数;若()0f x '=恒成立,则()f x 为常数函数;若()f x '的符号不确定,则()f x 不是单调函数。

②若函数()y f x =在区间(,a b )上单调递增,则()0f x '≥,反之等号不成立;若函数

()y f x =在区间(,a b )上单调递减,则()0f x '≤,反之等号不成立。

(2)利用导数求函数单调区间的步骤:(1)求()f x ';(2)求方程()0f x '=的根,设根为

12,,n x x x L ;(3)12,,n x x x L 将给定区间分成n+1个子区间,再在每一个子区间内判断()f x '的

符号,由此确定每一子区间的单调性。

例4 若3()f x ax x =+在区间[-1,1]上单调递增,求a 的取值范围. 【解题思路】解这类题时,通常令'()0f x ≥(函数()f x 在区间[,]a b 上递增)或

'()0f x ≤(函数()f x 在区间[,]a b 上递减),得出恒成立的条件,再利用处理不等式恒成立的方法

获解.

解析:2()31f x ax '=+Q 又()f x 在区间[-1,1]上单调递增

2()310f x ax '∴=+≥在[-1,1]上恒成立 即213a x ≥-

在xt [-1,1]的最大值为1

3

- 13a ∴≥- 故a 的取值范围为1

[,]3

-+∞

变式训练(1)设0>a 函数ax x x f -=3)(在),1[+∞上单调函数,则实数a 的取值范围______ 变式训练(2)设函数cx bx ax x f ++=23)(在1,1-=x 处有极值,且2)2(=-f ,求)(x f 的单调区间

变式训练(3)已知函数()32f x x ax bx c =-+++图像上的点()1,2P -处的切线方程为31y x =-+.

(1)若函数()f x 在2x =-时有极值,求()f x 的表达式,(2)函数()f x 在区间[]2,0-上单调递增,求实数b 的取值范围

四、函数的极值:

(1)定义:设函数()f x 在点0x 附近有定义,如果对0x 附近所有的点,都有0()()f x f x <,就说是0()f x 函数()f x 的一个极大值。记作y 极大值=0()f x ,如果对0x 附近所有的点,都有

0()()f x f x >,就说是0()f x 函数()f x 的一个极小值。记作y 极小值=0()f x 。极大值和极小值统

称为极值。

(2)求函数()y f x =在某个区间上的极值的步骤:(i )求导数()f x ';(ii )求方程()0f x '=的根0x ;(iii )检查()f x '在方程()0f x '=的根0x 的左右的符号:“左正右负”?()f x 在0x 处取极大值;“左负右正”?()f x 在0x 处取极小值。特别提醒:(1)0x 是极值点的充要条件是0x 点两侧导数异号,而不仅是()0f x '=0,()0f x '=0是0x 为极值点的必要而不充分条件。(2)给出函数极大(小)值的条件,一定要既考虑0()0f x '=,又要考虑检验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记! 例4:已知R a ∈,函数x a x a x x f )14(2

1121)(2

3++++=

. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值; (Ⅱ)如果函数)(x f 是),(∞+-∞上的单调函数,求a 的取值范围. 解:)14()1(4

1)(2

++++=

'a x a x x f .

(Ⅰ)∵ ()f x '是偶函数,∵ 1-=a . 此时x x x f 3121)(3-=

,34

1

)(2-='x x f , 令0)(='x f ,解得:32±=x . 列表如下:

可知:()f x 的极大值为34)32(=-f , ()f x 的极小值为34)32(-=f . (Ⅱ)∵函数)(x f 是),(∞+-∞上的单调函数,

∴2

1()(1)(41)04

f x x a x a '=

++++≥,在给定区间R 上恒成立判别式法 则221

(1)4(41)204

a a a a ?=+-??+=-≤, 解得:02a ≤≤.

综上,a 的取值范围是}20{≤≤a a .

变式训练(1)函数1)1(32+-=x y 的极值点是 ( )

A 、极大值点1-=x

B 、极大值点0=x

C 、极小值点0=x

D 、极小值点1=x ; 变式训练(2)已知函数1)6()(23++++=x a ax x x f 有极大值和极小值,则实数a 的取值范围是_____;

变式训练(3)函数()3221f x x ax bx a x =+++=在处有极小值10,则a+b 的值为__ 五、函数的最大值和最小值:

(1)定义:函数()f x 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”;函数()f x 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”。

(2)求函数()y f x =在[,a b ]上的最大值与最小值的步骤:(1)求函数()y f x =在(,a b )内的极值(极大值或极小值);(2)将()y f x =的各极值与()f a ,()f b 比较,其中最大的一个为最大值,最小的一个为最小值。

例六.(2017北京)已知函数()cos x f x e x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间[0,]2

π

上的最大值和最小值.

【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0x f x x x f ''=--=.

又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.

(Ⅱ)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-.

当π(0,)2x ∈时,()0h x '<,所以()h x 在区间π

[0,]2

上单调递减.

所以?π(0,]2x ∈有()(0)0h x h <=,即()0f x '<.所以函数()f x 在区间π

[0,]2

上单调递减.

因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ

()22

f =-.

变式训练(1)函数5123223+--=x x x y 在[0,3]上的最大值、最小值分别是__ 六、恒成立问题(分离参数或转化为最值问题) 例七. 已知函数()ln f x x x =.

(Ⅰ)求()f x 的最小值;(Ⅱ)若对所有1x ≥都有()1f x ax ≥-,求实数a 的取值范围. 【解题思路】先求极值再求端点值,比较求出最大(小)值.当区间只有一个极大(小)值时,该值就是最大(小)值

解析:()f x 的定义域为0∞(,+), …………1分 ()f x 的导数()1ln f x x '=+. ………………3分

令()0f x '>,解得1e x >;令()0f x '<,解得1

0e

x <<.

从而()f x 在10e ?? ???,单调递减,在1e ??

∞ ???

,+单调递增. ………………5分

所以,当1e x =时,()f x 取得最小值1

e -. ………………………… 6分

(Ⅱ):依题意,得()1f x ax ≥-在[1)+∞,上恒成立, 即不等式1

ln a x x

≤+对于[1)x ∈+∞,

恒成立 . ……………………8分 令1

()ln g x x x

=+

, 则21111()1g x x x x x ??'=-=- ???. ……………………10分

当1x >时,因为11()10g x x x ??

'=-> ???

故()g x 是(1)+∞,上的增函数, 所以 ()g x 的最小值是(1)1g =, ……………… 13分 所以a 的取值范围是(1]-∞,. …………………………………………14分

变式训练(1)已知定义在R 上的函数32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11.

(Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的范围.

七、定积分

设函数()f x 在区间[,]a b 上连续,用分点011i i n a x x x x x b -=<<<<<<=……把区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上取任一点(1,2,,)i i n ξ=…作和式1()n

n i i I f x ξ==?∑(其

中x ?为小区间长度),把n →∞即0x ?→时,和式n I 的极限叫做函数()f x 在区间[,]a b 上的定积分,记作:?b a

dx x f )(,即?b

a

dx x f )(=1

lim ()n

i n i f x ξ→∞

=?∑。

这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式。

(1)定积分的几何意义:当函数()f x 在区间[,]a b 上恒为正时,定积分()b

a f x dx ?的几何意义是

以曲线()y f x =为曲边的曲边梯形的面积。 (2)定积分的性质

①??=b

a

b

a

dx x f k dx x kf )()((k 为常数);②???±=±b

a

b

a

b

a

dx x g dx x f dx x g x f )()()()(;

③???+=b a

c a

b

c

dx x f dx x f dx x f )()()((其中a c b <<)。

2、微积分基本定理

如果()y f x =是区间[,]a b 上的连续函数,并且()()F x f x '=,那么:

()()|()()b

b a a

f x dx F x F b F a ==-?

3、定积分的简单应用

(1) 定积分在几何中的应用:求曲边梯形的面积由三条直线

,()x a x b a b ==<,x 轴及一条曲线()(()0)y f x f x =≥围成

的曲边梯

的面积。

如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0),及直线x =a ,x =b (a

(2) 定积分在物理中的应用:

①求变速直线运动的路程()b

a s v t dt =?(()v t 为速度函数)②求变力所做的功

()b

a

W f x dx =?

例8.(2012福建)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴

影部分的概率为

A

. B . C . D .

8.C 【解析】∵31

220121

1)()032

6S x x dx x x -=-=?阴影=(,正方形的面积为1,

∴P =1

6

变式训练(1)(2011新课标)由曲线,直线及轴所围成的图形的面积为

A .

B .4

C .

D .6 变式训练(2)(2011福建)10

(2)x e x dx +?等于

A .1

B .1e -

C .e

D .1e +

变式训练(3)(2010湖南)42

1

dx x

?

等于 ?=b

a dx x f S )(??-b

a b

a

dx x f dx x f )()(21141516

17y x =2y x =-y 10316

3

A .2ln2-

B .2ln 2

C .ln 2-

D .ln 2

导数练习题

1.()()()

0000

3,lim x f x x f x x f x x x

?→+?--??设在可导则等于( )

A .()02x f '

B .()0x f '

C .()03x f '

D .()04x f '

2.(2019全国Ⅰ理13)曲线2

3()e x

y x x =+在点(0)0,处的切线方程为____________. 3.(2019全国Ⅲ理6)已知曲线e ln x y a x x =+在点1e a (,)处的切线方程为y =2x +b ,则 A .e 1a b ==-,

B .a=e ,b =1

C .1e 1a b -==,

D .1e a -= ,1b =-

4.(2018全国卷Ⅰ)设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处

的切线方程为 A .2y x =-

B .y x =-

C .2y x =

D .y x =

5.(2014新课标Ⅰ)设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a = A .0 B .1 C .2 D .3

6.(2014山东)直线x y 4=与曲线3y x =在第一象限内围成的封闭图形的面积为

A .22

B .24

C .2

D .4 7.(2010新课标)曲线3

y 21x x =-+在点(1,0)处的切线方程为

A .1y x =-

B .1y x =-+

C .22y x =-

D .22y x =-+

8.(2010辽宁)已知点P 在曲线y=

4

1

x

e +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 A .[0,4

π

) B .[,)42ππ C .3(,

]24ππ D .3[,)4ππ 9.P 在曲线3

2

3+-=x x y 上移动,在点P 处的切线的倾斜角为α,则α的取值范围是______

10.(2018全国卷Ⅱ)曲线2ln(1)=+y x 在点(0,0)处的切线方程为__________.

11.(2018全国卷Ⅲ)曲线(1)x

y ax e =+在点(0,1)处的切线的斜率为2-,则a =____.

12.(2015陕西)设曲线x

y e =在点(0,1)处的切线与曲线1

(0)y x x

=

>上点P 处的切线垂直,则P 的坐标为 .

13.(2014江苏)在平面直角坐标系中,若曲线(a ,b 为常数)过点,且该曲线在点P 处的切线与直线平行,则的值是 .

14.(2013江西)若曲线1y x α

=+(R α∈)在点(1,2)处的切线经过坐标原点,则α= . 15.(2013湖南)若 .16.(2012江西)1

21

(sin )x x dx -+=?

___________.

17.(2012山东)设,若曲线与直线所围成封闭图形的面积为,则 .

18.(2012新课标)曲线(3ln 1)y x x =+在点(1,1)处的切线方程为________.

19.已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1,C 2都相切,则直线l 方程为 .

20.(2016年北京)设函数,曲线在点处的切线方程为,

(I )求,的值;(II )求的单调区间.

21.(2015重庆)设函数23()()e

x

x ax

f x a R +=∈.(Ⅰ)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)若()f x 在[3,)+∞上为减函数,求a 的取值范围.

22.(2014新课标Ⅰ)设函数1()ln x x

be f x ae x x

-=+,曲线()y f x =在点(1,(1))f 处的切线为

(1)2y e x =-+. (Ⅰ)求,a b ;(Ⅱ)证明:()1f x >.

23.(2013新课标Ⅱ)已知函数(Ι)设是的极值点,求,并讨论xOy x

b

ax y +

=2)5,2(-P 0327=++y x b a +2

09,T

x dx T =?则常数的值为0>a x y =

0,==y a x 2a =a ()a x

f x xe

bx -=+()y f x =(2,(2))f (1)4y e x =-+a b ()f x ()()ln x

f x e x m =-+0x =()f x m ()

f x

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

浙江导数大题专练

导数大题专练 (2015年浙江省理15分)已知函数()2=++∈( ),f x x ax b a b R ,记M (a ,b )是|f (x )|在区间[-1,1]上的最大值. (1)证明:当|a |2时,M (a ,b )2; (2)当a ,b 满足M (a ,b )2,求|a |+|b |的最大值. ≥≥≤

(2015年浙江省文15分)设函数. (1)当时,求函数在上的最小值的表达式; (2)已知函数在上存在零点,,求b 的取值范围. 2 (),(,)f x x ax b a b R =++∈2 14 a b =+()f x [1,1]-()g a ()f x [1,1]-021b a ≤-≤

(2016理)已知,函数F(x)=min{2|x?1|,x2?2ax+4a?2},其中min{p,q}= (I)求使得等式F(x)=x2?2ax+4a?2成立的x的取值范围;(II)(i)求F(x)的最小值m(a); (ii)求F(x)在区间[0,6]上的最大值M(a).

(2016文)设函数=,.证明:(I); (II).

(2017真)已知函数f(x)=(x e x-( 1 2 x≥). (Ⅰ)求f(x)的导函数; (Ⅱ)求f(x)在区间 1 [+) 2 ∞ ,上的取值范围.

(2017押)已知函数()()||()f x x t x t R =-∈. (Ⅰ)求函数()y f x =的单调区间; (Ⅱ)当t>0时,若f(x))在区间1-1,2]上的最大值为M(t),最小值为m(t),求M(t)-m(t)的最小值.

2020届高考数学导数的11个专题

目录 导数专题一、单调性问题 (2) 导数专题二、极值问题 (38) 导数专题三、最值问题 (53) 导数专题四、零点问题 (77) 导数专题五、恒成立问题和存在性问题 (118) 导数专题六、渐近线和间断点问题 (170) 导数专题七、特殊值法判定超越函数的零点问题 (190) 导数专题八、避免分类讨论的参变分离和变换主元 (201) 导数专题九、公切线解决导数中零点问题 (214) 导数专题十、极值点偏移问题 (219) 导数专题十一、构造函数解决导数问题 (227)

导数专题一、单调性问题 【知识结构】 【知识点】 一、导函数代数意义:利用导函数的正负来判断原函数单调性; 二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论, 讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤: 第一步、求函数的定义域、求导,并求导函数零点; 第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与 区间的位置关系(分类讨论); 第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域);第四步、(列表)根据第五步的草图列出f '(x),f (x)随x 变化的情况表,并写出函数的单调区间; 第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数 值比较得到函数的最值. 四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点: 1.最高次项系数是否为0; 2.导函数是否有极值点; 3.两根的大小关系; 4.根与定义域端点讨论等。 五、求解函数单调性问题的思路: (1)已知函数在区间上单调递增或单调递减,转化为f '(x) ≥ 0 或f '(x) ≤ 0 恒成立; (2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参 变量的范围; (3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于 零有解. 六、原函数单调性转化为导函数给区间正负问题的处理方法 (1)参变分离; (2)导函数的根与区间端点直接比较;

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

2021高考数学浙江导数解答题200题

第一题:浙江省绍兴市上虞区2019届高三第二次(5月)教学质量调测数学试题 已知函数()x f x ae x -=+与21()(,)2 g x x x b a b R =+-∈(1)若(),()f x g x 在2x =处有相同的切线,求,a b 的值; (2)设()()()F x f x g x =-,若函数()F x 有两个极值点1212,()x x x x >,且1230x x -≥,求实数a 的取值范围 第二题:浙江省2019年诸暨市高考适应性试卷数学 已知函数2()(0) x f x e ax a =->(1)若()f x 在R 上单调递增,求正数a 的取值范围; (2)若()f x 在12,x x x =处的导数相等,证明:122ln 2x x a +<(3)当12a =时,证明:对于任意11k e ≤+,若12 b <,则直线y kx b =+与曲线()y f x =有唯一公共点(注:当1k >时,直线y x k =+与曲线x y e =的交点在y 轴两侧) 第三题:浙江省2019年5月高三高仿真模拟浙江百校联考(金色联盟) 已知函数()ln(1)() f x x ax a a R =--+∈(1)求函数()f x 在区间[2,3]上的最大值; (2)设函数()f x 有两个零点12,x x ,求证:1222 x x e +>+第四题:浙江省台州市2019届高三4月调研数学试卷 已知函数2()x f x x e =(1)若关于x 的方程()f x a =有三个不同的实数解,求实数a 的取值范围; (2)若实数,m n 满足(2)m n f +=-,其中m n >,分别记:关于x 的方程()f x m =在(,0)-∞上两个不同的解为12,x x ;若关于x 的方程()f x n =在(2,)-+∞上两个不同的解为34,x x ,求证:1234x x x x ->-第五题:浙江省嘉兴、平湖市2018学年第二学期高三模拟(2019.05)考试数学已知函数2 ()ln ,()1(,)a f x x g x bx a b R x ==+-∈(1)当1,0a b =-=时,求曲线()()y f x g x =-在1x =处的切线方程;

高考题汇编2010-全国高考数学真题--第21题导数

2017-2019年全国高考数学真题--第21题导数 2018年:设函数2 ()1x f x e x ax =---。 (1)若0a =, 求()f x 的单调区间; (2)若当0x ≥时()0f x ≥, 求a 的取值范围 2019年:已知函数ln ()1a x b f x x x = ++, 曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >, 且1x ≠时, ln ()1x k f x x x >+-, 求k 的取值范围. 2019年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(, 求b a )1(+的最大值.

2019: 一卷:已知函数()f x =2 x ax b ++, ()g x =()x e cx d +, 若曲线()y f x =和 曲线()y g x =都过点P (0, 2), 且在点P 处有相同的切线42y x =+ (Ⅰ)求a , b , c , d 的值; (Ⅱ)若x ≥-2时, ()f x ≤()kg x , 求k 的取值范围. 2019一卷:设函数1 ()ln x x be f x ae x x -=+, 曲线()y f x =在点(1, (1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ , ()ln g x x =-. (Ⅰ)当a 为何值时, x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m , n 中的最小值, 设函数{}()min (),()(0)=>h x f x g x x , 讨论()h x 零点的个数.

浙江省高考数学一轮复习:13 导数与函数的单调性

浙江省高考数学一轮复习:13 导数与函数的单调性 姓名:________ 班级:________ 成绩:________ 一、单选题 (共12题;共24分) 1. (2分)函数的定义域为开区间,导函数在内的图象如图所示,则函数 在开区间内有极小值点() A . 1个 B . 2个 C . 3个 D . 4个 2. (2分) (2020高二下·九台期中) 函数的单调递减区间为() A . (-∞,0) B . (1,+∞) C . (0,1) D . (0,+∞) 3. (2分) (2020高二下·北京期中) 函数的增区间是() A . B . C . D . 4. (2分) (2016高二下·绵阳期中) 函数f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()

A . B . C . D . 5. (2分)函数在[0,3]上的最大值和最小值分别是() A . 5,-15 B . 5,-4 C . -4,-15 D . 5,-16 6. (2分) (2019高二下·余姚期中) 已知可导函数,则当时, 大小关系为() A . B . C .

D . 7. (2分)若函数恰有三个单调区间,则实数a的取值范围为() A . B . C . D . 8. (2分) (2020高三上·双鸭山开学考) 定义在(1,+∞)上的函数f(x)满足x2 +1>0(为函数f(x)的导函数),f(3)=,则关于x的不等式f(log2x)﹣1>logx2的解集为() A . (1,8) B . (2,+∞) C . (4,+∞) D . (8,+∞) 9. (2分)函数的单调递减区间是() A . B . C . D . 10. (2分) (2019高二上·建瓯月考) 分别是定义在R上的奇函数和偶函数,当时, ,且则不等式的解集为() A . (-∞,-2)∪(2,+∞) B . (-2,0)∪(0,2) C . (-2,0)∪(2,+∞)

高考数学导数专题复习(基础精心整理)学生版

导数专题复习(基础精心整理)学生版 【基础知识】 1.导数定义:在点处的导数记作k = 相应的切线方程是))((000x x x f y y -'=- 2.常见函数的导数公式: ①;②;③;④; ⑤;⑥;⑦;⑧ 。 3.导数的四则运算法则: (1) (2) (3) 4.导数的应用: (1)利用导数判断函数单调性: ①是增函数;②为减函数;③为常数; (2)利用导数求极值:①求导数;②求方程的根;③列表得极值(判断零点两边的导函数的正负)。 (3)利用导数求最值:比较端点值和极值 【基本题型】 一、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ?=+?-;(2)求平均变化率 ()()00f x x f x y x x +?-?=?V ;(3)取极限,得导数()00lim x y f x x →?'=?V 。 例1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 4 1 D. -2 变式1:()()()为则设h f h f f h 233lim ,430 --='→( ) A .-1 B.-2 C .-3 D .1 二、导数的几何意义 ()f x 0x x x f x x f x f x x y x ?-?+='=='→?) ()(lim )(|000 00'0C ='1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()ln x x a a a =x x e e =')('1(log )ln a x x a =x x 1 )(ln '= )()()()(])()(['+'='x g x f x g x f x g x f 2)()()()()()()(x g x g x f x g x f x g x f ' -'=' ??? ? ??' ?'='x u u f x u f ))(()(0)(x f x f ?>')(0)(x f x f ?<')(0)(x f x f ?≡')(x f '0)(='x f

高考数学理科导数大题目专项训练及答案

高一兴趣导数大题目专项训练 班级 姓名 1.已知函数()f x 是定义在[,0)(0,]e e - 上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+(其中e 为自然对数的底,a ∈R ). (Ⅰ)求函数()f x 的解析式; (Ⅱ)试问:是否存在实数0a <,使得当[,0)x e ∈-,()f x 的最小值是3?如果存在,求出实数a 的值;如果不存在,请说明理由; (Ⅲ)设ln ||()||x g x x =([,0)(0,]x e e ∈- ),求证:当1a =-时,1 |()|()2 f x g x >+; 2. 若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足: ()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知 2()h x x =,()2ln x e x ?=(其中e 为自然对数的底数). (1)求()()()F x h x x ?=-的极值; (2) 函数()h x 和()x ?是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

3. 设关于x 的方程012 =--mx x 有两个实根α、β,且βα<。定义函数.1 2)(2+-= x m x x f (I )求)(ααf 的值;(II )判断),()(βα在区间x f 上单调性,并加以证明; (III )若μλ,为正实数,①试比较)(),( ),(βμ λμβ λααf f f ++的大小; ②证明.|||)()(|βαμ λλβ μαμλμβλα-<++-++f f 4. 若函数22()()()x f x x ax b e x R -=++∈在1x =处取得极值. (I )求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间; (II )是否存在实数m ,使得对任意(0,1)a ∈及12,[0,2]x x ∈总有12|()()|f x f x -< 21[(2)]1m a m e -+++恒成立,若存在,求出m 的范围;若不存在,请说明理由. 5.若函数()()2 ln ,f x x g x x x ==- (1)求函数()()()()x g x kf x k R ?=+∈的单调区间; (2)若对所有的[),x e ∈+∞都有()xf x ax a ≥-成立,求实数a 的取值范围.

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

(完整word)2019年高考数学全国一卷导数

已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π-存在唯一极大值点; (2)()f x 有且仅有2个零点. 分析:(1)设()()g x f 'x =,则1()cos 1g x x x =-+,()g x 在1,2π??- ??? 存在唯一极大值点的问题就转化为()g'x 在1,2π??- ??? 有唯一零点,而唯一零点问题经常用零点存在性,即确定单调性及两端点处函数值异号。 (2)这是一个零点问题,经常转化为两函数交点问题,即 。 首先来画一下函数图象。 )1ln(sin x x + =

从图象上可以大致确定零点一个为0一个在区间??? ??ππ ,2上,我们只需证明其他区间无零点就可以了,很显然应该分四段讨论。 解:(1)设()()g x f 'x =,则1()cos 1g x x x =- +, 21sin ())(1x 'x g x =-+ +. 当1,2x π??∈- ???时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π??- ???有唯一零点,设为α. 则当(1,)x α∈-时,()0g'x >;当,2x α?π?∈ ??? 时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ?? ???单调递减,故()g x 在1,2π??- ??? 存在唯一极大值点,即()f 'x 在1,2π??- ??? 存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x ?π?∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而(0)=0f ',02f 'π??< ???,所以存在,2βαπ??∈ ??? ,使得()0f 'β=,

浙江省高考数学试卷(含答案)

2017年浙江省高考数学试卷 一、选择题(共10小题,每小题4分,满分40分) 1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1) C.(﹣1,0)D.(1,2) 2.(4分)椭圆+=1的离心率是() A.B.C.D. 3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是() — A.+1 B.+3 C.+1 D.+3 4.(4分)若x、y满足约束条件,则z=x+2y的取值范围是() A.[0,6] B.[0,4] C.[6,+∞)D.[4,+∞) 5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m() A.与a有关,且与b有关B.与a有关,但与b无关 C.与a无关,且与b无关D.与a无关,但与b有关 6.(4分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的() 。

A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件 7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是() A.B.C.D. 8.(4分)已知随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2.若0<p1<p2<,则() A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)( 9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则() A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α 10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=?,I2=?,I3=?,则()

2021年高考数学专题03 导数及其应用 (原卷版)

专题03 导数及其应用 易错点1 不能正确识别图象与平均变化率的关系 A , B 两机关单位开展节能活动,活动开始后两机关的用电量()()12W t W t ,与时间t (天)的关系如图 所示,则一定有 A .两机关单位节能效果一样好 B .A 机关单位比B 机关单位节能效果好 C .A 机关单位的用电量在0[0]t ,上的平均变化率比B 机关单位的用电量在0[0]t ,上的平均变化率大 D .A 机关单位与B 机关单位自节能以来用电量总是一样大 【错解】选C. 因为在(0,t 0)上,()1W t 的图象比()2W t 的图象陡峭,所以在(0,t 0)上用电量的平均变化率,A 机关单位比B 机关单位大. 【错因分析】识图时,一定要结合题意弄清图形所反映的量之间的关系,特别是单调性,增长(减少)的快慢等要弄清. 【试题解析】由题可知,A 机关单位所对应的图象比较陡峭,B 机关单位所对应的图象比较平缓,且用电量在0[0]t ,上的平均变化率都小于0,故一定有A 机关单位比B 机关单位节能效果好.故选B. 【参考答案】B 1.平均变化率

函数()y f x =从1x 到2x 的平均变化率为 2121 ()() f x f x x x --,若21x x x ?=-,2()y f x ?=-1()f x ,则平 均变化率可表示为y x ??. 2.瞬时速度 一般地,如果物体的运动规律可以用函数()s s t =来描述,那么,物体在时刻t 的瞬时速度v 就是物体在 t 到t t +?这段时间内,当t ?无限趋近于0时, s t ??无限趋近的常数. 1.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗? 【答案】见解析. 【解析】山路从A 到B 高度的平均变化率为h AB =1001 5005 -=-, 山路从B 到C 高度的平均变化率为h BC =15101 70504 -=-, ∴h BC >h AB , ∴山路从B 到C 比从A 到B 要陡峭的多. 易错点2 求切线时混淆“某点处”和“过某点” 若经过点P (2,8)作曲线3 y x =的切线,则切线方程为 A .12160x y --= B .320x y -+=

浙江省2020年高考数学模拟题分项汇编 3 导数(解析版)(28道题)

第三章 导数 1.从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等. 2.浙江省恢复对导数的考查后,已连续三年将导数应用问题设计为压轴题,同时在小题中也加以考查,难度控制在中等以上.特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查学生灵活应用数学知识分析问题、解决问题的能力. 3.常见题型,选择题、解答题各一道,难度基本稳定在中等以上. 一.选择题 1.(2019·浙江省高三月考)α,,22ππβ?? ∈-???? ,且sin sin 0ααββ->,则下列结论正确的是( ) A .αβ> B .0αβ+> C .αβ< D .2 2 αβ> 【答案】D 【解析】 构造()sin f x x x =形式,则()sin cos f x x x x +'=,0, 2x π?? ∈???? 时导函数()0f x '≥,()f x 单调递增;,02x π?? ∈-???? 时导函数()0f x '<,()f x 单调递减.又Q ()f x 为偶函数,根据单调性和对称性可知选 D.故本小题选D. 2.(2019年9月浙江省嘉兴市高三测试)已知,R a b ∈,关于x 的不等式3 2 11x ax bx +++≤在[0,2]x ∈时恒成立,则当b 取得最大值时,a 的取值范围为( ) A .[2]- B .3 [2,]4 -- C .3[]4 - D .5 [,2]2 - - 【答案】A

近3年2015-2017各地高考数学真题分类专题汇总--导数及其应用

2017年高考数学试题分类汇编及答案解析---导数及其应用 一、选择题(在每小题给出的四个选项中?只有一项是符合题目要求的) 1(2017北京文)已知函数1()3()3 x x f x =-?则()f x ( ) .A 是偶函数?且在R 上是增函数 .B 是奇函数?且在R 上是增函数 .C 是偶函数?且在R 上是减函数 .D 是奇函数?且在R 上是增函数 2.(2017新课标Ⅱ文)函数2()ln(28)f x x x =--的单调递增区间是( ) .A (,2)-∞- .B (,1)-∞ .C (1, )+∞ .D (4,)+∞ З.(2017山东文)设()()1 21,1x f x x x <<=-≥?? ,若()()1f a f a =+,则 1f a ?? = ??? ( )2.A 4.B 6.C 8.D 4.(2017山东文)若函数()e x f x 在()f x 的定义域上单调递增,则称函数()f x 具有M 性 质.下列函数中具有M 性质的是( ) x x f A -=2)(. .B ()2f x x = .C ()3x f x -= .D ()c o s f x x = 5.(2017新课标Ⅰ文数)函数sin21cos x y x = -的部分图像大致为( ) б.(2017新课标Ⅰ文数)已知函数()ln ln(2)f x x x =+-?则( ) .A )(x f y =在)2,0(单调递增 .B )(x f y =在)2,0(单调递减 .C )(x f y =的图像关于直线1=x 对称 .D )(x f y =的图像关于点)0,1(对称 7.(2017天津文)已知奇函数()f x 在R 上是增函数.若 0.8221 (log ),(log 4.1),(2)5a f b f c f =-==?则,,a b c 的大小关系为( ) .A a b c << .B b a c << .C c b a << .D c a b <<

相关文档
最新文档