第2章 单自由度系统的受迫振动题解

合集下载

振动理论及其应用:第2章_单自由度系统受迫振动

振动理论及其应用:第2章_单自由度系统受迫振动

1
2s
1 s2
x
F0 k
ei(t )
Aei(t )
A B 稳态响应的实振幅
若: F (t) F0 cost
则: x(t) Acos(t )
2020年12月9日 <<振动力学>>
无阻尼情况:
x(t) B 1 s2
eit
F0 k
1 1 s2
eit
7
单自由度系统受迫振动 / 简谐力激励的强迫振动
(5)对于有阻尼系统, max并不 出现在s=1处,而且稍偏左
d 0
ds
max 2
s
1
1 2
1 2 2
2020年12月9日 <<振动力学>>
(s)
5
0
0.1
4
3
0.25
0.375
2
0.5
1
1
s
0
0
1
2
3
x F0 ei(t ) Aei(t )
k
14
单自由度系统受迫振动 / 稳态响应的特性
• 稳态响应特性
(s)
1
(1 s2 )2 (2s)2
(s)
5
0
0.1
4
(6)当 1/ 2 振幅无极值
1
3
2
1
0.25 0.375
0.5 1
s
0
0
1
2
3
2020年12月9日 15
受力分析
振动微分方程: mx cx kx F0eit
2x02为0年复12月数9日变量,分别与 F0 cost 和 F0 sin t 相对应 4 <<振动力学>>

建筑工程之结构力学讲义单自由度受迫振动(参考)

建筑工程之结构力学讲义单自由度受迫振动(参考)
(计个3算最)时便两可于个根计外据算形体来相系选似的用的具。结体构情,况如,果视周δ期、相k差、悬Δs殊t 三,参则数动中力哪性一
能相差很大。反之,两个外形看来并不相同的结构,如果其
自振周期相近,则在动荷载作用下的动力性能基本一致。
例4、图示三根单跨梁,EI为常数,在梁中点有集中质量m, 不考虑梁的质量,试比较三者的自振频率。
w =对面于的g 本梁s例既t =,可4采避8E用免Ig较共Q小振l的,3 =截又482.1104 7345780980 354003 =5379..471S
能=获2得n 较60好=2的3经.1济4效50益0 。60=52.3
1 S
2)求动力系数β
= 1 =
1
=5.88
1 2 w 2 152.32 3597..742 1.35
二、一般荷载 一般荷载作用下的动力反应可利用瞬时冲量的 动力反应来推导
1、瞬时冲量的动力反应
P(t)
瞬时冲量S引起的振动可视为
P
由设初体始系条在件t=0引时起静的止自,由振动。 由然动后量有定瞬理时:冲量S作用。
v0m0=S = Pt
v0
=
S m
=
Pt m
y0 =0
Δt τ
Δt
t' t
t t'
yk+1
wr
如 0.2 则 wr 1, = 1 wr ln yk = 1 ln yk
w
2 w yk+1 2 yk+1
设yk和yk+n是相隔n个周期的两个振幅则:
= 1 ln yk 2n yk+n
工程中常用此 方法测定阻尼
例、图示一单层建筑物的计算简图。屋盖系统和柱子的质量均集 中在横梁处共,计加为一m水平力P=9.8kN,测得侧移A0=0.5cm, 然后突然卸载使结构发生水平自由振动。在测得周期T=1.5s 及一

结构动力学课后习题答案

结构动力学课后习题答案

结构动力学课后习题答案结构动力学是研究结构在动态载荷作用下的响应和行为的学科。

它涉及到结构的振动、冲击响应、疲劳分析等方面。

课后习题是帮助学生巩固课堂知识、深化理解的重要手段。

以下内容是结构动力学课后习题的一些可能答案,供参考:习题1:单自由度系统自由振动分析解答:对于一个单自由度系统,其自由振动的频率可以通过以下公式计算:\[ f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} \]其中,\( k \) 是系统的刚度,\( m \) 是系统的总质量。

系统自由振动的振幅随着时间的衰减可以通过阻尼比 \( \zeta \) 来描述,其衰减系数 \( \delta \) 可以通过以下公式计算:\[ \delta = \sqrt{1-\zeta^2} \]习题2:单自由度系统受迫振动分析解答:当单自由度系统受到周期性外力作用时,其受迫振动的振幅可以通过以下公式计算:\[ A = \frac{F_0}{\sqrt{(k-m\omega^2)^2+(m\zeta\omega)^2}} \] 其中,\( F_0 \) 是外力的幅值,\( \omega \) 是外力的角频率。

习题3:多自由度系统模态分析解答:对于多自由度系统,可以通过求解特征值问题来得到系统的模态。

特征值问题通常表示为:\[ [K]{\phi} = \lambda[M]{\phi} \]其中,\( [K] \) 是系统的刚度矩阵,\( [M] \) 是系统的质量矩阵,\( \lambda \) 是特征值,\( {\phi} \) 是对应的特征向量,即模态形状。

习题4:结构的冲击响应分析解答:对于结构的冲击响应分析,通常需要考虑冲击载荷的持续时间和冲击能量。

结构的冲击响应可以通过冲击响应谱(IRF)来分析,它描述了结构在不同频率下的响应。

冲击响应分析的结果可以用来评估结构的耐冲击性能。

习题5:疲劳分析解答:结构的疲劳分析需要考虑结构在重复载荷作用下的寿命。

第二章 单自由度系统振动的理论及应用

第二章 单自由度系统振动的理论及应用

M t
则得
2 .. n 0
通解为:
A sin(n t 0 )
代入:
将振动的初始条件t= 0 , 0 , . 0.
A
.0 2 0 2 n
2
n 0 0 arctan . 0
例: 已知:质量为m=0.5kg的物体沿光滑斜面无初速度滑下。 当物块下落高度h=0.1m时,撞于无质量的弹簧上, 并与弹簧不再分离,弹簧刚度系数k=0.8kN/m。 倾角 30 求:此系统振动的固有频率和振幅并给出物块的运动方程。
计算固有频率的能量法
无阻尼自由振动系统没有能量的损失,振动将永远持续下去. 在振动过程中,系统的动能与弹簧的势能不断转换,但总的机械能 守恒.因此,可以利用能量守恒原理计算系统的固有频率. 如图所示无阻尼振动系统 当系统作自由振动时,运动规律为:
x A sin(0t )
速度为:
dx v 0 A cos(0t ) dt
称为单自由度线性纵向振动系统的运动微分方程式,又称单 自由度有粘性阻尼的受迫振动方程.
可分为如下几种情况进行研究:
(1)当c=0,F(t)=0时, 该方程为单自由度无阻尼自由振动方程.
(2)当F(t)=0时, mx cx kx 0 该方程为单自由度有拈性阻尼的自由振动方程.
.. .
mx .. kx 0
由机械能守恒定律有
Tmax Vmax

1 1 2 2 J 0 Φ ( k1l 2 k 2d 2 )Φ 2 2 2
解得固有频率
0
k1 l 2 k 2 d 2 J
例: 已知:如图表示一质量为m,半径为r的圆柱体,在一半 径为R的圆弧槽上作无滑动的滚动。 求:圆柱体在平衡位置附近作微小振动的固有频率。

【2019年整理】机械振动第二章习题

【2019年整理】机械振动第二章习题

n2 h sin t
研究受迫振动方程特解



2 n
h

2
sin t
l 2 O
m
将ω=1/2ωn代入上式
解得:
h sint
3 4

2 n
2
4F0 /(3 4k sin t)
ml 4 m
4F0 sint
3k l
l
2
k
A
F
例. 图示带有偏心块的电动机,固定在一根弹性梁上。设电机的质量为m1, 偏心块的质量为m2 ,偏心距为e,弹性梁的刚性系数为k,求当电机以角速 度ω匀速旋转时系统的受迫振动规律。
图示有阻尼振动系统,设物块的质量为m,作用在物块上的力有线性恢 复力Fk、粘性阻尼力Fc和简谐激振力F。
若选平衡位置O为坐标原点,坐标轴铅直向下。 则各力在坐标轴上的投影为:
Fk kx
Fc

c

c
dx dt
F H sint
可建立质点运动微分方程
m
d2x dt 2

k x
c
dx dt
x
mx kx kesint
s
可见物块的运动微分方程为 无阻尼受迫振动的微分方程。
mx kx kesint
物块的受迫振动形式:
x bsint
s
l0
st
x
O
激振力的力幅为
H ke
h
ke
e
x
b


2 n
2

m(
2 n
2)
1(
)2
n
s
b为物块绝对运动的振幅。

第2章 单自由度系统的受迫振动题解

第2章  单自由度系统的受迫振动题解

习 题2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值12.41=+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。

解:由题意,可求出系统的运动微分方程为t mxn x p x n 3cos 36022=++ 得到稳态解)3cos(α-=t B x其中m kB B B 45.03604)1(022220==+-=λζλ222122tg λζλωωα-=-=n p n 由d nT i iA A e 2.41===+η489.3π2797.0ln 8.1ln ======dd dd dT p T n T nT ηη 又22n p p n d -=有579.3222=+=n d n p n p p45.51255.1298.0374.0838.01838.0223.02tg 103.1408.045.0838.0223.04)838.01(45.0223.0579.3797.0838.0579.332222===-⨯⨯===⨯⨯+-=======ααζωλB p n p n n所以 x =1.103 cos(3t -51︒27')2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。

解:设原系统的质量为m ,弹簧常数为k 由m kp n =,共振时m kp n ==1ω 所以 mk =6 ①又由 当 86.512=+==m kp n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。

结构动力学习题解答(一二章)

结构动力学习题解答(一二章)

结构动力学习题解答(一二章)第一章单自由度系统总结求单自由度系统固有频率的方法和步骤。

单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。

1、牛顿第二定律法适用范围:所有的单自由度系统的振动。

解题步骤:(1)对系统进行受力分析,得到系统所受的合力;(2)利用牛顿第二定律∑xm ,得到系统的运动微分方=F程;(3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

2、动量距定理法适用范围:绕定轴转动的单自由度系统的振动。

解题步骤:(1)对系统进行受力分析和动量距分析;(2)利用动量距定理J∑θ ,得到系统的运动微分方程;=M(3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

3、拉格朗日方程法:适用范围:所有的单自由度系统的振动。

解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ;(2)由格朗日方程θθ??-LL dt )( =0,得到系统的运动微分方程;(3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

4、能量守恒定理法适用范围:所有无阻尼的单自由度保守系统的振动。

解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const(2)将能量守恒定理T+U=Const 对时间求导得零,即0)(=+dtU T d ,进一步得到系统的运动微分方程;(3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

叙述用衰减法求单自由度系统阻尼比的方法和步骤。

用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。

方法一:衰减曲线法。

求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。

(2)由对数衰减率定义 )ln(1+=i iA A δ,进一步推导有 212ζπζδ-=,因为ζ较小,所以有πδζ2=。

203单自由度体系强迫振动(力学)

203单自由度体系强迫振动(力学)
d y (t ) = v0 (τ )
ω
FP (τ ) d τ sin ω ( t − τ ) = sin ω ( t − τ ) mω
(3)将时刻 t 之前的每一个瞬时冲量的反应进行叠加 ) 1 t y (t ) = ∫0 FP (τ ) sin ω ( t − τ ) d τ mω
1 t y (t ) = ∫0 FP (τ ) sin ω ( t − τ ) dτ mω
动位移、 ※动位移、动内力幅值计算
计算步骤: 计算步骤: 1. 计算荷载幅值作为静荷载所引起的位移、内力; 计算荷载幅值作为静荷载所引起的位移、内力; 2. 计算动力系数; 计算动力系数; 3. 将得到的位移、内力乘以动力系数即得动位移幅值、 将得到的位移、内力乘以动力系数即得动位移幅值、 动内力幅值。 动内力幅值。
y (t ) = − F θ F sin ω t + sin θ t 2 2 2 2 m (ω − θ ) ω m (ω − θ )
伴生自由振动
稳态受迫振动
(2)※稳态受迫振动分析 ) 稳态受迫振动分析
y ( t ) = A sin θ t
y (t ) = µy st sin θt
动位移一定比 静位移大吗? 静位移大吗?
F =µ sin θt 2 mω = µδ 11 F sin θt F =µ sin θt k11
F F y st = = = Fδ 11 2 k11 mω
动力系数 µ 的讨论
重要的特性: 重要的特性:
1 θ µ= , β = 2 ω 1− β
1. 当θ/ω→0时, µ →1,荷载变化 时 , 如何减小 得很慢,可当作静荷载处理。 得很慢,可当作静荷载处理。 3 振幅? 振幅? 2. 当0< θ/ω <1时, µ >1,并且随 时 , 2 θ/ω的增大而增大。 的增大而增大。 的增大而增大 。 3. 当θ/ω →1时, µ →∞。即当荷载 时 1 θ 频率接近于自振频率时, 频率接近于自振频率时,振幅会 ω 无限增大。称为“共振” 无限增大。称为“共振”。通常 0 1 2 3 称为共振区。 把0.75< θ/ω <1.25称为共振区。 称为共振区 4. 当θ/ω >1时, µ 的绝对值随 时 的绝对值随θ/ω 的增大而减小。 很大时, 的增大而减小。当θ很大时,荷载变化很快,结构来不及反应。 很大时 荷载变化很快,结构来不及反应。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值12.41=+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。

解:由题意,可求出系统的运动微分方程为t mxn x p x n 3cos 36022=++ 得到稳态解)3cos(α-=t B x其中m kB B B 45.03604)1(022220==+-=λζλ222122tg λζλωωα-=-=n p n 由d nT i iA A e 2.41===+η489.3π2797.0ln 8.1ln ======dd dd dT p T n T nT ηη 又22n p p n d -=有579.3222=+=n d n p n p p45.51255.1298.0374.0838.01838.0223.02tg 103.1408.045.0838.0223.04)838.01(45.0223.0579.3797.0838.0579.332222===-⨯⨯===⨯⨯+-=======ααζωλB p n p n n所以 x =1.103 cos(3t -51︒27')2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。

解:设原系统的质量为m ,弹簧常数为k 由m kp n =,共振时m kp n ==1ω 所以 mk =6 ①又由 当 86.512=+==m kp n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。

解:列出平衡方程可得:222()sin sin()sin()st Q W W k x w e wt x g gW Qx kx w e wt g g kg Qx x w e wt W Wππ-σ+-=+=++=+所以:2n kgP W Q h w e W==, 又因为st st W W k k =σ=σ即 ()22222()nstst hB PW w e B W g w =-σ-σ将结果代入得:Q =即为所求的振幅2-4如题2-4图所示,作用在质量块上的激振力t F t F ωsin )(0=,弹簧支承端有运动t a x s ωcos =,写出系统的运动微分方程,并求稳态振动。

题2-4图解:选0s x =时物块平衡位置为坐标原点O ,建立坐标系,如右图, 则 ()()s mx k x x p t +-= 即 ()s mx kx kx p t +=+即 0cos sin mx kx ka wt p wt +=+ (*)0p 改成0F ,下面也都一样 利用复数求解 , 用 jwt e 代换sinwt 并设方程(*)的特解为()jwt x t Be = 代入方程(*)得02j p jka B Be k mwφ+==- 其中B 为振幅,φ为响应与激励之间的相位差,有22022p ka B B k mw k mw ⎛⎫⎛⎫==+ ⎪ ⎪--⎝⎭⎝⎭=()()()222042022********22242211n n n n p p a p a p k a p mm m p w p λλ+++==---2202211p a kλ=+-。

2002kaka k mw tg p p k mwφ-==- 0ka arctg p φ∴= ()2202201()sin sin arc 1p ka x t B wt a wt tg k p φλ⎛⎫∴=+=++ ⎪-⎝⎭ 其中,n n w kp p mλ==2-5如题2-5图的弹簧质量系统中,两个弹簧的连接处有一激振力t F ωsin 0,求质量块的振幅。

解:设弹簧1,2的伸长分别为x 1和x 2,则有,21x x x += (A )由图(1)和图(2)的受力分析,得到t P x k x k ωsin 02211+= (B )22x k xm -= (C ) 题2-5图联立解得,t P k k k x k k k k x m ωsin 02122121+++-=t P mk k k x m k k k k xωsin )()(02122121+=++所以)(2121k k m k k p n =,n = 0,得,2102222222)(11)2()1(1)2()(nnp k P kH n p hB ωςλλωω-=+-=+-=2-6在题2-6图示的系统中,刚性杆AB 的质量忽略不计,B 端作用有激振力t F ωsin 0,写出系统运动微分方程,并求下列情况中质量m 作上下振动的振幅值∶(1)系统发生共振;(2) ω等于固有频率p n 的一半。

解:图(1)为系统的静平衡位置,以θ为系统的广义坐标,画受力如图(2)t lF l k l l c l I ωθθθsin 3)3(3)2(20+⋅⋅-⋅⋅⋅-= 又 I =ml 2 t F mlmk mc ωθθθsin 340=9++∴ 则⎪⎪⎩⎪⎪⎨⎧===mlF h m c n m kp n 023,429题2-6图mgθBF 0sin ωtA X AY AF CF K22222222)2()()2()(ωωωωθθn p hllB B n p hB n n +-==+-=1)系统共振,即 ω=n pkmc F mkm c l ml F np hl B n 494)/3(200=⨯⨯==∴ 2)n p 21=ωmkc kF m k m c m k l ml F np p hl B n n 81641194944273)(432222222+=+⎪⎭⎫⎝⎛⨯=+⎪⎭⎫ ⎝⎛=∴2-7写出题2-7图示系统的运动微分方程,并求系统固有频率p n 、阻尼比ζ及稳态响应振幅。

解:以刚杆转角ϕ为广义坐标,由系统的动量矩定理ϕϕϕ22)(4cl l x l k m l s ---= 即 t lka m k m c ωϕϕϕsin 44=++ 令,m k p n 4=,m c n 42=,n n mp c p n 8==ς,mlkah 4=,n p ωλ=得到2222)2()(ωωϕn p hB n+-=22222222)2()1(2)2()1(242ςλλωωϕ+-=+-⨯==ap p n p p l mlkal B B nn nn题2-7图2-8一机器质量为450kg ,支承在弹簧隔振器上,弹簧静变形为0.5cm 。

机器有一偏心重,产生偏心激振力gF 20254.2ω=N ,其中ω是激励频率,g 是重力加速度。

求(1)在机器转速为1200 r/min时传入地基的力;(2)机器的振幅。

解:设系统在平衡位置有位移x , 则0mx kx F +=,即0F kx x m m+=,又有st mg k δ= 则st mg k δ= (1) 所以机器的振幅为2021F B k λλ=- (2) 且n p ωλ=,40rad s ωπ=(3) 又有2n stk gp m δ==(4) 将(1)(2)(4)代入(2)得机器的振幅B =0.584 mm 则传入地基的力为514.7T p kB N ==2-9一个粘性阻尼系统在激振力t F t F ωsin )(0=作用下的强迫振动力为⎪⎭⎫⎝⎛+=6πsin )(t B t x ω,已知F 0=19.6N ,B =5 cm ,π20=ωrad/s ,求最初1秒及1/4秒内,激振力作的功W 1及W 2。

解:由已知可得:()t F t F π20sin 0=()()()()Jtt t t t t tt x t F W t t B t x 39.15d π80cos 1π9.4|40π40cos 39.4d 6ππ20cos ππ20sin 6.19d 6ππ20cos π6πcos 110111-=---=⎪⎭⎫ ⎝⎛+⋅==⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎰⎰⎰ωω同理可得:()()Jt t t tt x t F W 0395.0d 6ππ20cos ππ20sin 6.19d 401040102=⎪⎭⎫ ⎝⎛+⋅==⎰⎰2-10无阻尼系统受题2-10图示的外力作用,已知0)0()0(==xx ,求系统响应。

周期函数才用频谱分析!解:由图得激振力方程为⎪⎩⎪⎨⎧〉≤≤-〈≤=22111100)(t t t t t P t t P t F当 0 < t < t 1时,1)(P F =τ,则有]cos 1[)(sin )(2101t p mp Pd t p mp P t x n n tn n-=-=⎰ττ 由于mkp n =2,所以有 ]cos 1[)(1t p kP t x n -=当t 1 < t < t 2时,1)(P F -=τ,则有⎰-=11)(sin )(t n n d t p mp P t x ττ⎰--+t t n nd t p mp P 1)(sin 1ττ)](cos 1[]cos )([cos 1111t t p kPt p t t p k P n n n -----=当 t < t 2时,0)(=τF ,则有⎰-=11)(sin )(t n n d t p mp P t x ττ⎰--+t t n nd t p mp P 1)(sin 1ττ+ 0题2-10图)](cos)([cos]cos)([cos12111ttpttpkPtpttpkPnnnn------=2-11如题2-11图的系统,基础有阶跃加速度bu(t),初始条件为0)0()0(==xx ,求质量m的相对位移。

解:由牛顿定律,可得系统的微分方程为)()(ssxxkxxcxm----=令)(srxxx-=,则有)(tmbukxx cxmrrr-=++得到系统的激振力为,)()(ττmbuF-=,可得响应为)cossin1()](cos)(sin[)(sin)(222222)(tpetppnepnbtpePnptpepnnepbdtpempmbtxdntddntdtdndddndntdtdtndr-------+-=-++-+-=--=⎰τττττττ其中22nppnd-=,mkpn=2,mcn=2。

2-12上题系统中,若基础有阶跃位移au(t),求零初始条件下的绝对位移。

解:由上题可得系统的微分方程为()()s smx k x x c x x=-+-即s smx cx kx kx cx++=+基础有阶跃位移为()au t故sx=0sx=()au t()mx cx kx kau t∴++=得到系统的激振力为,)()(ττkauF=,可得响应为()()()()sint n tddFx t e p t dtmpτττ--=-⎰⎰-=--tdtnddtpempkau)()(sin)(ττττ题2-11图22221sin cos nt n d d d d nt d d p p ka n e e p t p t mp n p n e n n τ-⎡⎤⎛⎫=-+ ⎪⎢⎥+⎝⎭⎣⎦ 1sin cos n p t nd d d p ae p t p t p ζζ-⎡⎤⎛⎫=+-⎢⎥⎪⎝⎭⎣⎦ 其中22n p p n d -=,m k p n =2,mcn =2。

相关文档
最新文档