第三章 传热
环境工程原理-环境工程原理课后思考题解答3传热

第三章 传 热1、传热基本方式有几种,各有什么特点?答:根据传质机理的不同,可将热量传递方式分为三种。
(1) 热传导热量从物体内温度较高的部分传递到温度较低的部分,或传递到与之接触的另一物体的过程称为热传导,又称导热。
特点:没有物质的宏观位移(2) 对流传热流体内部质点发生相对位移的热量传递过程。
自然对流:流体中各处的温度不同引起的密度差别,导致轻者上浮,重者下沉,流体质点产生相对位移强制对流:因泵或搅拌等外力所致的质点强制运动(3) 热辐射物体因热的原因发出辐射能的过程称为热辐射。
热辐射不仅有能量的传递,而且还有能量形式的转移,不需要任何物质作媒介。
2、圆筒壁与平壁导热速率计算式有什么区别?答: 平壁热传导的导热速率公式:圆筒壁的导热速率公式:3、简述对流传热机理。
答:对流传热是指流动流体与固体壁面的热量传递过程,故对流传热与流体的流动状况密切相关。
对流传热包括强制对流(层流和湍流)、自然对流、蒸汽冷凝和液体沸腾等形式的传热过程。
它们的机理各不相同。
对强制湍流的情况分析如下。
当湍流的流体流经固体壁面时,将形成湍流边界层,边界层由邻近壁面处的层流内层、离开S b t t Rt Q λ21-=∆==热阻推动力12211221ln 1)(2ln )(2r r t t L r r t t L Q λπλπ-⋅=-⋅⋅=壁面一定距离处的缓冲层和湍流核心三部分组成。
假定壁面温度高于流体温度,热流便由壁面流向流体中。
在层流内层中,由于在传热方向上并不发生流体质点的移动和混合,因此其传热方式是热传导。
因流体的导热系数较小,虽然该层很薄,但热阻很大,故通过该层的温度差较大。
在缓冲层内,热对流和热传导均起作用,该层内温度发生缓慢的变化。
在湍流主体中,由于流体质点在传热方向上移动和混合,传热主要是热对流方式。
在湍流主体中温度较为均匀,热阻很小。
4、牛顿冷却定律形式,使用中应注意的问题。
答:为工程计算的需要,采用平均对流传热系数来表达整个换热器的对流传热速率, 牛顿冷却定律是一种推论,假设Q ∝∆t 。
化工原理第三章传热

Q S
Kt m
t m
1/ K
(1-3)
传 热 速 率
传热温度差(推动力) 热阻(阻力)
式中:△tm──传热过程的推动力, ℃ 1/K ──传热总阻力(热阻),m2 ·℃/W
两点说明:
➢ 单位传热面积的传热速率(热通量)正比于推动力,反比于 热阻。因此,提高换热器的传热速率的途径是提高传热推
动力和降低热阻。
三、 换热器类型
换热器:实现冷、热介质热量交换的设备
用于输送热量的介质—载热体。 加热介质(加热剂):起加热作用的载热体。水蒸气、热水等。 冷却介质(冷却剂):起冷却作用的载热体。冷水、空气制冷剂。
① 直接混合式 —— 将热流体与冷流体直接混合的一种传热方式。 ② 蓄热式 —— 热量 存储在热载体上 传递给冷流体。如
式中:d1为套管的内管直径,d2为套管的内管直径。
应用范围:
Re 1200 ~ 220000, d2 1.65 ~ 17 d1
特征尺寸: 流动当量直径de。
定性温度: 流体进、出口温度的算术平均值。
滴状冷凝:若冷凝液不能润湿壁面,由于表面张力的作用,冷凝 液在壁面上形成许多液滴,并沿壁面落下,此中冷凝 称为。在实际生产过程中,多为膜状冷凝过程。
➢ 一般金属(固体)的导热系数>非金属(固体)>液体>气体
➢ 多数固体λ与温度的关系
λ=k0+k×t
单位:W/(m •K)
k0 --0℃下的导热系数
k为经验常数。
对大多数金属材料,其k值为负值;对非金属材料则为正值。
➢ 对于金属 t ↑ λ↓(通过自由电子的运动) 对于非金属 t ↑ λ↑ (通过靠晶格结构的振动) 对于液体 t ↑ λ↓ (通过靠晶格结构的振动) 对于气体 t ↑ λ↑ (通过分子不规则热运动)
第三章 传热学3-辐射换热

E E Eb T4
18
3.1 辐射率
上面公式只是针对方向和光谱波长平均的情况,但实际上,真实表面的 辐射能力是随方向和波长变化的。
方向
波长
19
因此,我们需要定义单色定向辐射率,对于某一指定的方向和波
长
ε,θ
,θ ,TE ,actu alem itted E ,b lack b o d y
26
角系数的定义、性质及计算
1. 角系数的定义
在介绍角系数概念前,要先温习两个概念 (1)投入辐射:单位时间内投射到单位面积上的总辐射能,记为G。
(2)有效辐射:单位时间内离开单位面积的总辐射能为该表面的 有效辐射。包括了自身的发射辐射E和反射辐射G。G为投射 辐射。
有效辐射示意图
27
4 角系数
对于平面和凸面: Fii 0
对于凹面:
Fii 0
31
(3) 完整性
对于有n个表面组成的封闭系统,据能量守恒可得:
Q i Q i1 Q i2 Q i i Q i N
Qi1Qi2 Qii QiN1
Qi Qi
Qi
Qi
N
F ijF i1F i2 F ii F iN1
反射又分镜反射和漫反射两种镜反射漫反射立体角定义图14微元立体角可见辐射面积15辐射强度在单位时间内在某给定辐射方向上在与物体的发射方向垂直方向上的每单位投影面积在单位立体角内所发射的全波长的能量称为该方向上的辐射强度又称定向辐射强度用isrcosdqcosda方向的可见辐射面积10单位时间内辐射物体的单位表面积向半球空间发射的所有波长的能量总和
方向的立体角
dAcos 方向的可见辐射面积 9
传热学第三章对流传热

传热学第三章对流传热一、名词解释1.速度边界层:在流场中壁面附近流速发生急剧变化的薄层。
2.温度边界层:在流体温度场中壁面附近温度发生急剧变化的薄层。
3.定性温度:确定换热过程中流体物性的温度。
4.特征尺度:对于对流传热起决定作用的几何尺寸。
5.相似准则(如Nu,Re,Pr,Gr,Ra):由几个变量组成的无量纲的组合量。
6.强迫对流传热:由于机械(泵或风机等)的作用或其它压差而引起的相对运动。
7.自然对流传热:流体各部分之间由于密度差而引起的相对运动。
8.大空间自然对流传热:传热面上边界层的形成和发展不受周围物体的干扰时的自然对流传热。
9.珠状凝结:当凝结液不能润湿壁面(θ>90˚)时,凝结液在壁面上形成许多液滴,而不形成连续的液膜。
10.膜状凝结:当液体能润湿壁面时,凝结液和壁面的润湿角(液体与壁面交界处的切面经液体到壁面的交角)θ<90˚,凝结液在壁面上形成一层完整的液膜。
11.核态沸腾:在加热面上产生汽泡,换热温差小,且产生汽泡的速度小于汽泡脱离加热表面的速度,汽泡的剧烈扰动使表面传热系数和热流密度都急剧增加。
12.膜态沸腾:在加热表面上形成稳定的汽膜层,相变过程不是发生在壁面上,而是汽液界面上,但由于蒸汽的导热系数远小于液体的导热系数,因此表面传热系数大大下降。
二、填空题1.影响自然对流传热系数的主要因素有:、、、、、。
(流动起因,流动速度,流体有无相变,壁面的几何形状、大小和位置,流体的热物理性质)2.速度边界层是指。
(在流场中壁面附近流速发生急剧变化的薄层。
)温度边界层是指。
(在流体温度场中壁面附近温度发生急剧变化的薄层。
)3.流体刚刚流入恒壁温的管道作层流传热时,其局部对流传热系数沿管长逐渐,这是由于。
(减小,边界层厚度沿管长逐渐增厚)4.温度边界层越对流传热系数越小,强化传热应使温度边界层越。
(厚,簿)5.流体流过弯曲的管道或螺旋管时,对流传热系数会,这是由于。
(增大,离心力的作用产生了二次环流增强了扰动)6. 流体横掠管束时,一般情况下, 布置的平均对流传热系数要比 布置时高。
第三章 液态成形过程的传热

33
第三节 铸件凝固时间的确定
实验法
两种方法:测温法和残余液体倾出法
有限元法 : 有限元法是根据变分原理来求解热传导问题微分方程的一 种数值计算方法。有限元法的解题步骤是先将连续求解域分割为有限 个单元 组成的离散化模型,再用变分原理将各单元内的热传导方程转 化为等价的线性方程组,最后求解全域内的总体合成矩阵。
16
17
第二节 铸件凝固温度场
研究温度场的方法三
测温法
τ(2 ──凝固时间( min); - 17) V──铸件体积(cm3); S──铸件散热表面积(cm2),
令
K
R V1 1 2 K2 S K
(2 - 21)
R──铸件折算厚度(cm) K──凝固系数(cm/min1/2)
当铸件合金、铸型和浇注条件确定之后,铸件凝固时 间取决于铸件体积与散热表面积之比 ,即折算厚度 (模数)。由于考虑了铸件结构形状的影响,计算值 更接近实际,是对“平方根定律”的发展。
2.铸型性质的影响
铸型的吸热速度越大,则铸件的凝固速度越大,断面的温度场的梯度也 就越大。
(1)铸型的蓄热系数b2
b2越大,冷却能力强,铸件中的gradt越大
(2)铸型的预热温度:
铸型温度上升,冷却作用小 ,gradt下降 熔模铸造的型壳预热至600~800℃, 金属型加热至200~400℃,提高铸 件精度减少热裂。
6
2.铸件在金属型中冷却 (1)铸件的冷却和铸型的加热 都不十分激烈。 在这种系统中,大部分温 度降在中间层上,当金属型 的铸型工作表面涂有较厚的 涂料时,就属此种情况。 特点:铸件断面上的温 差和铸型断面上的温差与中 间层的温差相比,可忽略不 计。可以认为,铸件和铸型 断面上的温度分布实际上是 均匀的,传热过程主要取决 于涂料层的热物理参数。
第三章传热过程

第三章传热过程内容提要:本章先对传热的三种基本方式即传导传热、对流传热和辐射传热以及工业上的换热方法进行介绍,然后着重讨论传导传热、对流传热的机理和传导传热、对流传热的速率方程式,在此基础上建立总传热速率方程。
冷热流体通过固体壁面进行热交换时的热量衡算及与总传热方程相结合解决热交换过程中的问题。
对强化和抑制传热过程的途径以及列管式热交换器的基本结构仅作简单介绍。
学习指导:了解传导传热和对流传热的机理,掌握传导传热、对流传热的速率方程式,掌握总传热速率方程式并对其中的总传热系数K、传热平均温度差Δtm能分别计算,能将热交换中热量衡算式与总传热方程相结合而解决热交换中的计算问题。
了解强化和抑制传热过程的方法以及列管式热交换器的基本结构。
第一节概述在自然界,在人们的生产和日常生活中,每时每刻都在发生由于物体或系统内部温度不同而使热量自动地转移到温度较低的部分的过程,这一过程称为热的传递简称传热。
而本章主要研究化工生产中的传热。
一、化工生产中的传热过程在化工生产、科学实验中随时会遇到热量传递问题,化工生产中的化学反应要求在一定温度下进行,而适宜的温度依靠加热或冷却才能实现。
例如,氮、氢合成氨、由氨氧化制硝酸、萘氧化制苯酐等,由于催化剂的活性和反应的要求,反应温度必须控制在一定的范围,过高过低都会导致原料利用率降低,温度控制不当甚至会发生事故。
又如在蒸馏、蒸发、干燥、结晶、冷冻等操作中也必须供给或移走一定的热量才能顺利进行。
在这类情况下,要求热量的传递速率要高,即通常所说的要求传热良好。
另有一类情况如高温或低温下操作的设备或管道,为了保持其温度应尽量隔绝热的传递即要求传热速度要低,即通常所说的保温。
此外,能量的充分利用是化工生产尤其是大型生产中极为重要的问题,为了充分利用反应热,回收余热和废热以降低生产成本,工业上大量使用热交换器,这都涉及到热量的传递问题。
传热过程是研究具有不同温度的物体内或物体间热量的传递。
第三章传热传质问题的分析与计算

第三章传热传质问题的分析与计算第三章:传热传质问题的分析与计算在工程领域中,传热传质问题是一个非常重要的研究方向。
它涉及到热量和物质的传递,对于工业过程的高效运行和优化具有至关重要的影响。
在本章中,我们将探讨传热传质问题的分析与计算方法,以及如何应用这些方法解决实际工程问题。
首先,我们需要了解传热传质的基本概念。
传热是指热量从一个物体传递到另一个物体的过程。
常见的传热方式有三种:传导、对流和辐射。
传导是指热量通过物质内部的分子和原子之间的碰撞传递。
对流是指热量通过流体的运动传递。
辐射是指热量通过电磁辐射传递,例如太阳辐射。
类似地,传质是指物质通过扩散或对流传递的过程。
扩散是指物质通过浓度梯度的差异进行传递。
对流是指物质通过流体的运动进行传递,例如空气中的氧气通过呼吸进入人体。
在传热传质问题的计算中,我们需要考虑各种参数和变量,例如温度、密度、热传导系数、速度、浓度等。
这些参数可以通过实验测量或理论计算得到。
同时,我们需要根据问题的具体情况选择合适的方程和模型进行计算。
对于传热问题,我们经常使用热传导方程进行计算。
热传导方程描述了热量在固体中的传递过程。
它可以用来计算温度场的变化。
在计算中,我们需要确定边界条件和初始条件,并使用适当的数值方法求解方程。
在传质问题中,我们可以使用物质传质方程进行计算。
物质传质方程描述了物质的浓度分布随时间和空间的变化。
类似于热传导方程,我们需要确定边界条件和初始条件,并使用适当的数值方法求解方程。
除了这些基本方程,我们还可以使用其他模型和方法来解决复杂的传热传质问题。
例如,对于对流传热问题,我们可以使用雷诺平均Navier-Stokes方程来考虑流体的运动,并计算热量的传递。
对于多相流问题,我们可以使用数值方法来模拟各相的运动和相互作用。
在实际工程中,传热传质问题的分析和计算通常涉及到多个领域的知识。
除了传热传质的基本理论,我们还需要了解流体力学、材料科学、化学等相关领域的知识。
传热学_第三章

热
学
第三章 非稳态导热的分析与计算
§3-1 非稳态导热过程分析 §3-2 集总参数系统分析 (零维问题) 零维问题) §3-3 典型一维物体非稳态导热的分析解 §3-4 二维及三维非稳态导热问题的求解
2010-10-6
1
R
青岛科技大学热能与动力工程
§3-1 非稳态导热过程分析 一、非稳态导热过程及其特点
θ =e4.6 = 0.01 当τ=4τs时 θ0 工程上认为τ= 4τs时导热体已 达到热平衡状态
2010-10-6
θ =e1 = 0.386 θ0
θ/θ0 θ 1 0.386 0 1 τ/τs τ
11
R
青岛科技大学热能与动力工程
三、集总参数系统的判定
θ =e θ0
判定依据
τ hA ρcV
=e
t 2t =a 2 τ x
θ = t(x,τ ) t∞ —过余温度
θ 2θ =a 2 τ x
τ = 0, θ = t0-t∞ =θ0
x = 0, θ x = 0 x = δ , -λ θ x = hθ x=δ
2010-10-6 14
R
青岛科技大学热能与动力工程
采用分离变量法求解:取 采用分离变量法求解: θ 2θ =a 2 τ x
导热系统内温度场随时间变化的导热过程为非稳态导热。 导热系统内温度场随时间变化的导热过程为非稳态导热。 温度场随时间变化的导热过程为非稳态导热 温度随时间变化,热流也随时间变化 也随时间变化。 温度随时间变化,热流也随时间变化。 自然界和工程上许多导热过程为非稳态, 自然界和工程上许多导热过程为非稳态,t = f(τ) 例如:冶金、热处理与热加工中工件被加热或冷却;锅炉、 例如:冶金、热处理与热加工中工件被加热或冷却;锅炉、 内燃机等装置起动、停机、变工况;自然环境温度; 内燃机等装置起动、停机、变工况;自然环境温度;供暖 或停暖过程中墙内与室内空气温度 非稳态导热的分类 非稳态导热的分类:周期性和非周期性 分类: 周期性非稳态导热: 周期性非稳态导热:物体温度按一定的周期发生变化 非周期性非稳态导热(瞬态导热): ):物体的温度随时间不 非周期性非稳态导热(瞬态导热):物体的温度随时间不 断地升高(加热过程)或降低(冷却过程), ),在经历相当 断地升高(加热过程)或降低(冷却过程),在经历相当 长时间后,物体温度逐渐趋近于周围介质温度, 长时间后,物体温度逐渐趋近于周围介质温度,最终达到 热平衡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章传热
一、选择题
1.参与间壁换热的两种流体,若进出口温度一定,传热平均温度差最大时的流向安排是()A.并流B.折流C.逆流D.错流
2.下列强化传热的措施中,错误的是()
A.增大传热面积B.提高传热推动力
C.提高传热系数D.增加热设备与环境之间的传热速率
3.下列导热系数最大的材料是()
A.气体B.非金属C.液体D.金属
4.以下换热方法,工业生产中应用最广泛的是()
A.直接换热B.间壁换热C.蓄热式换热D.辐射换热
5.下列关于热导率的叙述,正确的是()
A.物质的热导率越大,其导热能力越小
B.一般而言,金属的热导率最大,非金属的次之
C.液体的热导率小于气体的热导率
D.液体的热导率随温度的升高而升高
6.下列方法中,不能达到强化传热目的是()
A.降低热流体的流速B.采用带翅片的传热管
C.清除壁面污垢D.在水冷器中增大冷却水流量
7.夹套换热器的换热方式是()换热。
A.蓄热式B.直接接触式C.间壁式 D.热辐射式
8.热传导不能在()进行。
A.液体内B.金属内C.空气中 D.真空中
9.其他条件不变,提高液体流速,其对流传热系数()
A.变小 B.发散C.变大 D.不变
10.当换热器中冷热流体的进出口温度一定时,下面说法正确的是()
A.逆流时,∆tm一定大于并流、错流或折流的∆tm
B.采用并流操作时可以节约流体(或冷流体)的用量
C.逆流、并流、错流、折流所需的传热面积都一样
D.上述说法都是错误的
11.下列单元操作属于热量传递的是()
A.固体流态化B.膜分离C.加热冷却D.渗析
12.下列方法中,能达到削弱传热目的是()
A.增大传热面积B.增大传热温度差
C.减小传热系数D.它们所起的作用都一样
13.对某一气液平衡物系,总压一定时,若温度升高,则其亨利系数E将()
A.减小B.增加C.不变D.不确定
14.传热过程中当两侧流体的对流传热系数都较大时,影响传热过程的将是()
A.管壁热阻B.管内对流传热热阻
C.污垢热阻D.管外对流传热热阻
15.在化工单元过程中有“三传”之说,即传质、传热、传动,下列单元过程操作中属于传热的是()A.蒸馏B.萃取C.过滤D.流体输送
16.列管式再沸器属于()换热器。
A.蓄热式B.直接接触 C.间壁式D.间歇式
17.金属两端存在的()是热传导进行的推动力。
A.压力差B.温度差C.电流差D.流量差
18.直接接触式换热的效率()
A.较高B.较低 C.较宽D.较窄
19.流体有相变的对流传热速率比无相变的()
A.大得多B.小得多C.更缓慢D.更收敛
20.增大传热系数,换热器的传热速率()
A.收敛B.减小 C.提高D.无变化
21.三种不同材料组成的平壁隔热层,各层的导热速率()
A.相等B.内层最大C.外层最大D.中间层最大
22.固定管板式列管换热器的换热方式属于()
A.蓄热式换热B.间壁式换热C.辐射式换热D.直接接触式换热
23.热量自发传递的方向是()传递。
A.多方向性B.由低温处向高温处C.无方向性D.由高温处向低温处
24.冷热流体进出口温度相同时,采取()操作△tm 最大。
A.并流B.逆流C.错流D.折流
二、判断题
1.对于平壁导热,壁面越厚,热阻越小。
()
2.提高无相变时的对流传热措施是降低流速。
()
3.不管以何种方式传热,热量自发传递的方向总是由低温处向高温处传递。
()
1
4.大多数纯金属的热导率随温度的升高而增大。
()
5.传热过程的推动力为传热温度差。
()
6.为保证换热器完成换热任务,换热器的传热速率应小于其热负荷。
()
7.对于无相变时的对流传热,增大流速可以增大对流传热系数。
()
8.间壁式换热器的传热速率与传热面积成反比。
()
9.在传热过程中,生产中的间歇操作和连续操作中的开、停车过程是稳态的传热过程。
()
10.通常情况下,有相变的对流给热系数比无相变的要大得多。
()
11.工业上常用的换热设备是固定管板式换热器。
()
12.无机熔盐是工业上应用最多的加热剂。
()
13.固定管板式换热器冷热两流体的流动方向相反称为逆流。
()
14.列管式换热器两侧的冷热流体,其中热流体粘度小、流速快,所以列管两边的污垢对热流体侧传热系数无影响。
()
15.水蒸汽是工业上常用的加热剂。
()
16.换热器中冷热两流体的流动方向相同时称为并流。
()
17.换热器两侧的污垢,对热流体一侧的传热系数没影响。
()
18.空气是工业上高温物体常用的冷却剂。
()
19.换热器中冷热两流体的流动方向相反时称为逆流。
()
20.换热器中垢层越厚,传热效果越好。
()
21.对流传热系数在有相变时比无相变的大得多。
()
22.热传导可以在真空中进行。
()
三、简答题
1.工业上传热的基本方式有哪几种?各有什么特点?
2.简述影响对流传热系数的主要因素。
3.简述强化传热的方法。
4.解释换热器热负荷与传热速率的含义,并指出两者之间的关系。
四、计算题
1.普通砖平壁厚度为0.5m,一侧温度为300℃,另一侧温度为30℃,已知平壁的平均热导率为0.9W·m-1·℃-1。
试求:(1)通过平壁的热通量;(2)平面壁距离高温侧0.3m处的温度。
(解题时要求在答题卡上画出热量传递示意图)
2.在套管换热器内用水冷凝乙醇蒸汽,乙醇走管程,水走壳程。
其中乙醇蒸汽的流量为10kg/h,冷凝水的流量为100kg/h,乙醇的进、出口温度分别为90℃、50℃,冷凝水的进、出口温度分别为25℃、45℃。
试求:(1)热损;(2)换热器的热负荷。
(已知:35℃水的比热容c p c,m=4.25kJ/(kg·K);70℃乙醇的比热容c p h,m=3.25kJ/(kg·K);
乙醇的沸点是78℃,该温度下乙醇的汽化潜热r h=850kJ/kg。
3.有一列管式换热器,传热量为100kW,传热系数为K=200W·m-2·K-1,平均传热温度差为50K,求该换热器的换热面积(m2)。
4.用套管换热器加热某溶液,溶液的流量是800 kg•h-1,平均比热容为 3.5 kJ•kg-1•℃-1,进出口温度分别为30 ℃和60℃,热水的平均比热容为4.18 kJ•kg-1•℃-1,进出口温度分别为90 ℃和65℃,求热水的消耗量和该换热器的热负荷。
(热损失不计)
2。