灰口铸铁热处理基本原理
灰口铸铁的热处理

灰口铸铁的热处理灰口铸铁中存在着大量的片状石墨,故机械性能很差,而热处理只能改变铸铁的基体组织,不能改变片状石墨的有害作用。
这就是说,通过热处理来提高灰口铸铁的机械性能的效果不大。
因此,生产中对灰口铸铁进行热处理的种类并不多,较常用的仅有以下几种。
一.消除内应力退火当铸件形状复杂,厚薄不均时,由于浇注后冷却过程中各部位的冷却速度不同,往往在铸件内部产生很大的应力。
它不仅削弱了铸件的强度,而且在随后的切削加工之后,由于应力的重新分布而引起变形,甚至开裂。
因此,对精度要求较高或大型、复杂的铸件(如机床床身、机架等)在切削加工之前,都要进行一次消除内应力的退火,有时甚至在粗加工之后还要进行一次。
消除内应力退火通常是将铸件缓慢加热到500-560℃,保温一段时间(每10毫米截面保温一小时),然后以极缓慢的速度随炉冷至150-200℃后出炉。
此时,铸件的内应力基本上被消除。
应当指出,若退火温度超过560℃或保温时间过长,会引起石墨化,使铸件的强度与硬度降低,是不适宜的。
二.消除部分白口的软化退火铸件冷凝时,在表面或某些薄壁处,由于冷却速度较快,很容易出现白口组织,使铸件的硬度和脆性增加,造成切削加工的困难和使用时易剥落。
此时就必须将铸件加热到共析温度以上,进行消除白口的软化退火。
消除白口的软化退火,一般是把铸件加热到850-950℃,保温1-3小时,使共晶渗碳体发生分解,即进行第一阶段石墨化,然后又在随炉缓慢冷却过程中使二次渗碳体及共析渗碳体发生分解,即进行中间和第二阶段石墨化,待随炉缓冷到500-400℃时,再出炉空冷,这样就可获得铁素体或铁素体珠光体基体的灰口铸铁,从而降低了铸件的硬度,改善了切削加工性。
若采用较快的冷却速度,使铸件不发生第二阶段石墨化,则最终就获得珠光体基体的灰口铸铁,增加了铸件的强度和耐磨性。
三.表面淬火表面淬火的目的是提高灰口铸铁件的表面硬度和耐磨性。
表面淬火的方法有高频感应加热表面淬火、火焰加热表面淬火及接触电热表面淬火等。
灰口铸铁的热处理

该 根据 材料 、 具 体 的工 件 以及装 载条 件 等 因素 选 择 渗 氮工 艺 , 以获得 符合 要求 的渗氮层 。
[ 知 识 园地 ]
灰 口铸 铁 的热 处 理
灰 口铸铁 中的石 墨是 片状 的 , 对基 体 的割裂 作用 大 。热 处理 只能 改变基 体组 织 , 不能 改变 石 墨的形 状 和 分布 。强 化基 体 的热处 理对 灰 口铸 铁 效果 不大 。所 以灰 口铸 铁一 般不 进行 这类 热处 理 。球墨 铸铁 的石 墨是
超过0 . 0 5 5 %。一般说来 , 钢的质量主要看 P 、 S 含量的高低 , 越是优质高级 的钢种 , 其P 、 S含量越低。为防
止 灰 口铸铁 件切 削后 的变 形 , 通常在 切 削加工 之前 进行 一 次消 除应 力退 火 。这种退 火 也称人 工 时效 , 即将 铸 件以6 0~ 1 0 0 ̄ C / h的速 度 缓慢加 热 到 5 0 0~6 0 0℃ , 经 长时 问保 温后 ( 一般 为 4~8 h ) 以2 0~5 0 c j C / h的速
3 结 论
研究 结 果 表 明 , 1 . 2 3 6 7钢 和 1 . 2 3 4 4钢 采 用 相
为 合适 。
如果 工艺 参数 相 同 , 则 活 性 屏 离 子 渗氮 与普 通
离子 渗氮 的效 果 很 接 近 。在 小孑 L 的 渗氮 方 面 , 活 性
同 的工艺 在不 同的炉 子 中进行 离 子 渗 氮 , 其 渗 层 的 硬 度 分布 和化合 物层 厚 度是相 同的 。将 气体 渗 氮与 离子 渗氮做 对 比时 , 必须 区分 是 用低 氮 气 氛 还 是 高 氮气氛进行 渗氮 的。采用低 氮气 氛离子 渗 氮时 , 由 于工 件 表 面 活 化 较 好 , 所 以 渗 氮 效 果 较 好 。采 用 高氮 气 氛 时 , 离 子 渗 氮 与 气 体 渗 氮 的 效 果 是 一 样 的 。如果 要 求 较 薄 的 化 合 物 层 , 则 气 体 渗 氮 更
第二篇铸铁及其熔炼 第二章 灰铸铁

第三节 灰铸铁癿结晶
• • • • • • • • • 一、碳在铸铁中癿存存形式 二、铁—碳(渗碳体)合金二元相图 三、灰铸铁癿结晶 1、灰铸铁癿一次结晶 2、灰铸铁癿二次结晶 四、石墨结晶癿特点 1、G形核 2、G长大 3、灰铸铁中片状石墨癿形态
•
第四节 影响铸铁组织和性能癿主要因素
• • • • • • • • • • • • • 一、铸铁癿化学成分对铸铁组织和性能癿影响 1、各元素在铸铁中癿存在形式 2、铸铁中常见元素有对铁—碳双重相图各临界点癿影响 3、化学成份对铸铁G化癿影响 4、化学成分对金属基体癿影响 5、碳当量CE和共晶度SC 二、铸件况却速度对铸铁组织和性能癿影响 1、铸件壁厚对况却速度癿影响 2、浇注温度对铸件况却速度癿影响 3、 2、炉料癿影响
第二节 灰铸铁癿金相组织、性能特点、牌 号及技术要求
一、灰铸铁癿金相组织 • 灰铸铁癿金相组织由片状石墨和金属基体两部分组成(即: F+G片、F+P+G片戒P+G片)。此外,还有少量癿夹杂物, 如硫化物、磷化物、碳化物、氧化物等。 • 1、石墨及其对性能癿影响 • 石墨本身有两个显著癿特点:一是密度小(约2.25g/cm3, 仅为铁癿1/3),在铸铁组织中占体积大;二是石墨本身软 而脆,力学能差,且强度较低(σb<20Mpa)。石墨在铸 铁组织中就相当于存在着许多切口一样,对金属基体起着 割离作用;另一方面,引起应力集中,致使金属基体癿力 学性能得丌到充分癿収挥(据测定基体癿性能収挥 30%~50%)。石墨对灰铸铁性能癿影响起着决定性癿作用。 这主要表现在石墨癿形状、分布、大小和数量等方面。
• 2、金属基体对性能的影响 • 灰铸铁癿金属基体主要分为三种:F体、F体+P体、P体。 如面2-8所示。 • (1)F体:铁素体本身质软,强度和硬度较低(σb约 为250MPa,硬度约为90HBS),塑性高(δ约为50% 左右)。但是在铁素体基体癿灰铸铁中,由于片状石墨 癿存在,铁素体癿塑性难収挥。 • (2)F体+P体:铁珠光体本身强度硬度较高(σb约为 700MPa,硬度约为200HBS),塑性低(δ约为 15%),在实际生产中,随着P含量癿提高,其强度硬 度也在提高,见图2-9所示。
铸铁热处理

1.炉冷至室温或600℃出炉空冷
1.出炉空冷至室温
2.冷却至720-760℃二阶段石墨化+炉
2.出炉空冷至600℃,再进炉,以速度
冷至室温,或炉冷至600℃出炉空冷 精选可编辑ppt 50-100℃/H;冷至300℃以下,出4炉空 冷
正火
铸铁正火的目的是为了提高铸件的硬度、耐磨性、或作为表面淬火的预备热处理, 改善基体组织.但是,灰铸铁无法通过热处理来改善力学性能,这是因为灰铸铁中 的石墨呈片状分布,破坏了铸铁基体组织的连续性,同时,石墨端部易引起应力集 中,致使灰铸铁热处理后基体组织的强度和塑性、韧性不能充分发挥作用
2.热处理不能改变石墨的形态和分布特性,而铸铁热处理的效果又与铸铁 基体中的石墨形态有密切关系.对于灰铁而言,热处理具有一点的局限性. 而球墨铸铁中的石磨成球状,对基体的削弱作用较小.因而,凡能改变金 属基体组织的各种热处理方法,对于球墨铸铁都是有效的
精选可编辑ppt
1
灰铸铁的热处理
退火
1.去应力退火:为消除铸件的残余应力,稳定几何尺寸,减小或消除加工 过后的畸变.通常普通灰铁件的去应力退火温度以550℃为宜.加热速度以 50℃/h.保温时间以25mm/h计算. 其冷却速度一定要慢,防止产生二次残 余内应力,冷却速度一般控制在20-40℃/h
精选可编辑ppt
6
加热温度对铸铁正火后硬度的影响
在正火温度范围内,加热温度愈高, 硬度也愈高. 正火后的冷却速度影响铁素体的析 出量,冷却速度愈大,铁素体的析 出量愈少,硬度愈高。因此,可采 用控制冷却速度的方法来达到调整 硬度.
精选可编辑ppt
7
球墨铸铁的热处理
球状石墨由于呈球形,故对集体的破坏割裂作用很小,引起应力集中的程度 也不大,基体的作用能较充分的发挥,所以可以通过热处理改变基体组织获 得所需性能
灰口铸铁表面淬火后应达到的硬度

【淬火后的灰口铸铁表面硬度】一、概述在工程材料领域,灰口铸铁是一种常见的金属材料,因其具有良好的耐磨性、耐热性和耐磨损性能,被广泛应用于机械零件、汽车零配件等领域。
而淬火是提高灰口铸铁表面硬度的一种有效方法,一般淬火后的硬度是衡量其质量的重要指标之一。
二、灰口铸铁表面淬火的目的淬火是一种通过快速冷却的热处理工艺,能够使材料达到较高的硬度,提高其耐磨、耐腐蚀的能力。
对于灰口铸铁,淬火的目的主要是改善其表面硬度,提高零件的耐磨性,延长使用寿命。
三、淬火后应达到的硬度要求根据工程要求,对于灰口铸铁表面淬火后应达到的硬度一般有以下要求:1. 表面硬度应达到HRC45-HRC50之间,以保证零件在工作时能够承受一定的负载和磨损,同时保持稳定的工作性能。
2. 淬火层的深度需要达到一定的要求,通常为1.5mm左右,以确保零件表面具有足够的硬度和耐磨性。
四、淬火工艺对硬度的影响在灰口铸铁表面淬火的过程中,淬火工艺参数的选择对硬度有着重要的影响。
主要包括淬火温度、保温时间、冷却介质的选择等因素。
适当的工艺参数能够保证淬火层的硬度达到要求,而不当的选择则会影响淬火效果,导致硬度不达标或者出现裂纹等缺陷。
五、个人观点对于灰口铸铁表面淬火后应达到的硬度,我认为淬火工艺的选择和控制是非常重要的。
只有在严格控制工艺参数的基础上,才能够保证淬火层达到要求的硬度,同时避免零件出现不良的变形和裂纹。
对淬火后的零件进行合理的热处理回火,能够进一步提高其硬度和耐磨性,从而满足不同工况下的使用要求。
六、总结在本文中,我对灰口铸铁表面淬火后应达到的硬度进行了探讨,并就淬火的目的、硬度要求、淬火工艺的影响以及个人观点进行了阐述。
通过深入分析和论证,相信读者对灰口铸铁的淬火硬度要求有了更为全面和深入的理解。
希望本文能够为相关领域的专业人士提供一些参考和借鉴。
七、淬火工艺的优化为了确保灰口铸铁表面淬火后达到要求的硬度,淬火工艺的优化是至关重要的。
第2章 灰铸铁

第二章普通灰铸铁第一节铁-碳双重相图合金相图是分析合金金相组织的有用工具。
铸铁是以铁元素为基的含有碳、硅、锰、磷、硫等元素的多元铁合金,但其中对铸铁的金相组织起决定作用的主要是铁、碳和硅,所以,除根据铁-碳相图来分析铸铁的金相组织外,还必须研究铁-碳-硅三元合金的相图。
一、铁-碳相图的二重性从热力学的观点看,在一定的条件下,高温时的渗碳体能自动分解成为奥氏体和石墨,这表明渗碳体的自由能较高,亦即在这个条件下一定成分的铸铁以奥氏体和石墨的状态存在时具有较低的能量,是处于稳定平衡的状态,说明了奥氏体加渗碳体的组织,虽然亦是在某种条件下形成,在转变过程中也是平衡的,但不是最稳定的。
从结晶动力学(晶核的形成与长大过程)的观点来看,以含C 4.3% 的共晶成分液体在低于共晶温度的凝固为例:在液体中形成含C 6.67% 的渗碳体晶核要比形成含C 100% 的石墨核容易,而且渗碳体是间隙型的金属间化合物,并不要求铁原子从晶核中扩散出去。
因此,在某些条件下,奥氏体加石墨的共晶转变的进行还不如莱氏体共晶转变那样顺利。
至于共析转变,也可以从热力学、动力学两方面去分析而得到和上面相似的结论。
C相图只是介稳定的,Fe-C(石墨)由此可见,从热力学观点上看,Fe-Fe3C相图转变也是相图才是稳定的。
从动力学观点看,在一定条件下,按Fe-Fe3可能的,因此就出现了二重性。
二、铁-碳双重相图及其分析对铸铁合金长期使用与研究的结果,人们得到了如图2﹣1所示的铁碳合金C介稳定系相图与Fe-C(石墨)稳定系相图,分别以实双重相图,即Fe-Fe3线和虚线表示。
表2﹣1为图中各临界点的温度及含碳量。
图2-1 铁-碳相图G-石墨Fe3C-渗碳体表2﹣1 铁碳相图各临界点的温度、成分从这里看出,在稳定平衡的Fe-C相图中的共晶温度和共析温度都比介稳定平衡的高一些。
共晶温度高出6℃,共析温度高出9℃,这是容易理解的。
如图2﹣2的示意图所示,共晶成分的液体的自由能和共晶莱氏体(奥氏体加渗碳体)的自由能都是随着温度的上升而减低的,这二条曲线的交点就是共晶温度Tc。
灰铸铁的孕育处理.

金属材料与热处理课程
灰铸铁的孕育处理
主讲教师:苗高蕾 西安航空职业技术学院
职业教育材料成型与控制技术专业教学资源库
灰铸铁的孕育处理
孕育处理
为提高灰口铸铁的力学性能,生产中浇注前向铁液中 加入一定量的孕育剂。对灰铸铁进行孕育处理,以细化片 状石墨。 常用的孕育剂有硅铁和硅钙合金。
金属材料与热处理
职业教育材料成型与控制技术专业教学资源库
思考
孕育处理的目的是什么?
金属材料与热处理
金属材料与热处理
职业教育材料成型与控制技术
职业教育材料成型与控制技术专业教学资源库
孕育处理前
孕育处理后
金属材料与热处理
职业教育材料成型与控制技术专业教学资源库
小结
为提高灰口铸铁的力学性能,生产中浇注前向铁液中加入一 定量的孕育剂。对灰铸铁进行孕育处理,以细化片状石墨。
经孕育处理的灰铸铁称为孕育铸铁
金属材料与热处理
职业教育材料成型与控制技术专业教学资源库
灰铸铁的孕育处理
孕育处理
孕育铸铁的结晶过程几乎是在全部铁液中同时进行的, 可以避免铸铁边缘及薄壁处出现白口组织,使铸件各部位
截面上的组织和性能均匀一致。孕育铸铁的强度较高,塑
性和韧性有所提高,常用于力学性能要求较高、截面尺寸 变化较大的大型铸件。
金属材料与热处理 模块八 课题二 灰口铸铁

思与练习
1.灰铸铁与钢相比,其组织和性能有何特点?经过孕育处理后的灰铸铁性能有何 变化? 2.灰铸铁有哪些优越性? 3.生产中是采用什么方法来改善灰铸铁的力学性能的? 4.试分析制造齿轮箱所采用的材料和热处理方法 5.在机械加工车间加工一批灰铸铁件时,发现在铸件的薄壁处加工不动。试分析 其原因,并提出解决办法。 6.解释灰铸铁牌号HT250的含义。
HT200 或HT250这种灰铸铁材料强度较高,刚度很好,不易产生形变,这是 高精度机床最主要的性能要求;笨重的铸铁材料及其高含量的石墨可以起到减震 的作用。另外,超大尺寸和复杂外形的零件,选择灰铸铁制造,造价低,加工更 容易。由于床身尺寸大、形状复杂,在冷却过程中会产生较大的内应力。为防止 铸件变形或开裂,应采用去应力退火的热处理方法消除其内应力。
机车床床身
案例分析
•由于床身用于支撑机床上的全部零件,主要承受较大的压应力。 机床在工作时转速很高,产生震动,所以要求床身应具有足够的强 度、刚度(不易变形,提高加工精度)和良好的减震性。另外,床 身的尺寸较大,形状复杂,还要求加工容易,造价低等。选择什么 材料能满足其要求呢?
必备知识
灰铸铁通常是指断口呈灰色,其中的碳主要以片状石墨形式存在的铸铁。在 铸铁的总生产量中,灰铸铁件占80%以上。 一、灰口铸铁的成分和组织
因为化学成分将影响铸铁的石墨化程度,所以灰铸铁的成分应在一定的范围内, 一般为:WC为2.7%~3.6% 、WSi为1.0%~2.2%、 WS<0.15%、 Wp <0.3 %。其中碳、硅、锰是调节组织的元素,磷是控制使用的元素,硫是限制使用的 元素。
其组织是由钢的基体和在基体上分布的片状石墨组成。由于石墨化程度不同, 基体组织中的含碳量也不同;石墨化越充分,则基体中的含碳量也越低,这样便 形成了三种不同的基体组织的灰铸铁,即铁素体灰铸铁(F+片状G)、珠光 体—铁素体灰铸铁(P+F+片状G)和珠光体灰铸铁(P+片状G)。它们的 显微组织如图8—8所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰口铸铁的热处理
灰口铸铁进行热处理,不能改变片状石墨的形状和分布特征,因而不能根据改善它的性能特别是塑性(硬度除外)。
因此对于灰口铸铁来说,热处理有一定的局限性。
一灰口铸铁的除应力低温退火
HT20-40铸铁在350℃以下基本处于稳性状态,在350℃以上,铸铁开始进入稳塑性温度区域,加热至450℃以上,铸铁便开始激烈的变形,若在这个温度以上时效则残余应力可得到较大程度的消除,但时效的温度局限限度硬度降低的限制。
铸铁低温热时效温度一般为500-600℃是适宜的。
在选择时效温度时,必须考虑铸铁的化学成分,主要根据硅的含量是否添加合金元素而定。
普通灰口铸铁当温度超高550℃即可能发生部分渗碳体的分解与粒化,使铸铁组织发生转变,降低强度和硬度。
当含有合金元素时,这些过程发生于接近临界点的温度。
在含硅与含碳低的高质量铸铁中,这两种过程发生于650℃左右。
普通灰口铸铁退火温度550℃较适宜,超过570℃机械性能急剧下降,低Ni-Cr合金铸铁退火温度可提高到600℃,而高Ni-Cu-Cr合金铸铁退火温度高达650℃时时效较显著。
铸件的装炉温度应低于200℃,升温速度不能太快,一般为60-120℃/小时。
冷却速度必须缓慢。
在350℃以上过快的冷却,可能产生二次残余内应力。
所以350℃以上必须缓冷,一般为20-40℃/小时,冷至200-150℃以下可出炉空冷。