高中数学必修二《直线与方程及圆与方程》测试题_及答案

合集下载

必修二《直线与方程》单元测试题(含详细答案)

必修二《直线与方程》单元测试题(含详细答案)

第三章(一)《直线与方程》单元检测试题时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知点A (1,3),B (-1,33),则直线AB 的倾斜角是( )A .60°B .30°C .120°D .150°[答案] C2.直线l 过点P (-1,2),倾斜角为45°,则直线l 的方程为( )A .x -y +1=0B .x -y -1=0C .x -y -3=0D .x -y +3=0[答案] D3.如果直线ax +2y +2=0与直线3x -y -2=0平行,则a 的值为( )A .-3B .-6C .32D .23[答案] B4.直线x a2-y b2=1在y 轴上的截距为( ) A .|b | B .-b 2C .b 2D .±b[答案] B5.已知点A (3,2),B (-2,a ),C (8,12)在同一条直线上,则a 的值是( )A .0B .-4C .-8D .4[答案] C6.如果AB <0,BC <0,那么直线Ax +By +C =0不经过( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] D7.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .1[答案] C8.经过直线l 1:x -3y +4=0和l 2:2x +y =5=0的交点,并且经过原点的直线方程是( )A .19x -9y =0B .9x +19y =0C .3x +19y =0D .19x -3y =0[答案] C9.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( )A .(0,0)B .(17,27) C .(27,17) D .(17,114) [答案] C10.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0[答案] D11.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2[答案] B12.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3),则点B 的坐标可能是( )A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2)[答案] A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为M (1,-1),则直线l 的斜率为_________.[答案] -23[解析] 设A (x 1,y 1),B (x 2,y 2),则y1+y22=-1,又y 1=1,∴y 2=-3,代入方程x-y -7=0,得x 2=4,即B (4,-3),又x1+x22=1,∴x 1=-2,即A (-2,1),∴k AB =-3-14--2=-23. 14.点A (3,-4)与点B (5,8)关于直线l 对称,则直线l 的方程为_________.[答案] x +6y -16=0[解析] 直线l 就是线段AB 的垂直平分线,AB 的中点为(4,2),k AB =6,所以k l =-16,所以直线l 的方程为y -2=-16(x -4),即x +6y -16=0. 15.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为_________.[答案] 3 2[解析] 依题意,知l 1∥l 2,故点M 所在直线平行于l 1和l 2,可设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式,得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2. 16.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15°②30°③45°④60°⑤75°,其中正确答案的序号是_________.(写出所有正确答案的序号)[答案] ①⑤[解析] 两平行线间的距离为d =|3-1|1+1=2, 由图知直线m 与l 1的夹角为30°,l 1的倾斜角为45°,所以直线m 的倾斜角等于30°+45°=75°或45°-30°=15°.[点评] 本题考查直线的斜率、直线的倾斜角、两条平行线间的距离,考查数形结合的思想.是高考在直线知识命题中不多见的较为复杂的题目,但是只要基础扎实、方法灵活、思想深刻,这一问题还是不难解决的.所以在学习中知识是基础、方法是骨架、思想是灵魂,只有以思想方法统领知识才能在考试中以不变应万变.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2015·高一上学期期末试题)已知直线l 经过点P (-2,5)且斜率为-34, (1)求直线l 的方程;(2)若直线m 平行于直线l ,且点P 到直线m 的距离为3,求直线m 的方程.[解析] (1)直线l 的方程为:y -5=-34(x +2)整理得 3x +4y -14=0.(2)设直线m 的方程为3x +4y +n =0,d =|3×-2+4×5+n|32+42=3, 解得n =1或-29.∴直线m 的方程为3x +4y +1=0或3x +4y -29=0.18.(本小题满分12分)求经过两直线3x -2y +1=0和x +3y +4=0的交点,且垂直于直线x +3y +4=0的直线方程.[解析] 解法一:设所求直线方程为3x -2y +1+λ(x +3y +4)=0,即(3+λ)x +(3λ-2)y +(1+4λ)=0.由所求直线垂直于直线x +3y +4=0,得-13·(-3+λ3λ-2)=-1. 解得λ=310. 故所求直线方程是3x -y +2=0.解法二:设所求直线方程为3x -y +m =0.由⎩⎪⎨⎪⎧ 3x -2y +1=0,x +3y +4=0,解得⎩⎪⎨⎪⎧ x =-1,y =-1,即两已知直线的交点为(-1,-1).又3x -y +m =0过点(-1,-1),故-3+1+m =0,m =2.故所求直线方程为3x -y +2=0.19.(本小题满分12分)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,求一点P ,使|PA |=|PB |,且点P 到直线l 的距离等于2.[分析] 解决此题可有两种思路,一是代数法,由“|PA |=|PB |”和“到直线的距离为2”列方程求解;二是几何法,利用点P 在AB 的垂直平分线上及距离为2求解.[解析] 解法1:设点P (x ,y ).因为|PA |=|PB |,所以x -42+y +32=x -22+y +1 2.①又点P 到直线l 的距离等于2, 所以|4x +3y -2|5=2.② 由①②联立方程组,解得P (1,-4)或P (277,-87). 解法2:设点P (x ,y ).因为|PA |=|PB |,所以点P 在线段AB 的垂直平分线上.由题意知k AB =-1,线段AB 的中点为(3,-2),所以线段AB 的垂直平分线的方程是y =x -5.所以设点P (x ,x -5).因为点P 到直线l 的距离等于2,所以|4x +3x -5-2|5=2. 解得x =1或x =277. 所以P (1,-4)或P (277,-87). [点评] 解决解析几何问题的主要方法就是利用点的坐标反映图形的位置,所以只要将题目中的几何条件用坐标表示出来,即可转化为方程的问题.其中解法2是利用了点P 的几何特征产生的结果,所以解题时注意多发现,多思考.20.(本小题满分12分)△ABC 中,A (0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0.(1)求直线AB 的方程;(2)求直线BC 的方程;(3)求△BDE 的面积.[解析] (1)由已知得直线AB 的斜率为2,∴AB 边所在的直线方程为y -1=2(x -0),即2x -y +1=0.(2)由⎩⎪⎨⎪⎧ 2x -y +1=0,2x +y -3=0得⎩⎪⎨⎪⎧ x =12,y =2.即直线AB 与直线BE 的交点为B (12,2). 设C (m ,n ),则由已知条件得⎩⎪⎨⎪⎧ m +2n -4=0,2·m 2+n +12-3=0,解得⎩⎪⎨⎪⎧ m =2,n =1,∴C (2,1).∴BC 边所在直线的方程为y -12-1=x -212-2,即2x +3y -7=0. (3)∵E 是线段AC 的中点,∴E (1,1).∴|BE |=12-12+2-12=52, 由⎩⎪⎨⎪⎧ 2x -y +1=0,x +2y -4=0得⎩⎪⎨⎪⎧ x =25,y =95,∴D (25,95), ∴D 到BE 的距离为d =|2×25+95-3|22+12=255, ∴S △BDE =12·d ·|BE |=110. 21.(本小题满分12分)直线过点P (43,2)且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件: (1)△AOB 的周长为12;(2)△AOB 的面积为6.若存在,求直线的方程;若不存在,请说明理由.[解析] 设直线方程为x a +y b=1(a >0,b >0), 若满足条件(1),则a +b +a2+b2=12,①又∵直线过点P (43,2),∵43a +2b =1.② 由①②可得5a 2-32a +48=0, 解得⎩⎪⎨⎪⎧ a =4,b =3,或⎩⎪⎨⎪⎧ a =125,b =92,∴所求直线的方程为x 4+y 3=1或5x 12+2y 9=1,即3x +4y -12=0或15x +8y -36=0.若满足条件(2),则ab =12,③ 由题意得,43a +2b=1,④ 由③④整理得a 2-6a +8=0,解得⎩⎪⎨⎪⎧ a =4,b =3或⎩⎪⎨⎪⎧ a =2,b =6,∴所求直线的方程为x 4+y 3=1或x 2+y 6=1, 即3x +4y -12=0或3x +y -6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x +4y -12=0.22.(本小题满分12分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB ,AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合,如图,将矩形折叠,使A 点落在线段DC 上.(1)若折痕所在直线的斜率为k ,试求折痕所在直线的方程;(2)当-2+3≤k ≤0时,求折痕长的最大值.[解析] (1)①当k =0时,A 点与D 点重合,折痕所在的直线方程为y =12. ②当k ≠0时,将矩形折叠后A 点落在线段DC 上的点记为G (a,1),∴A 与G 关于折痕所在的直线对称,有k OG ·k =-1⇒1a·k =-1⇒a =-k . 故G 点坐标为(-k,1),从而折痕所在直线与OG 的交点坐标(即线段OG 的中点)为M (-k 2,12). 故折痕所在的直线方程为y -12=k (x +k 2),即y =kx +k22+12. 由①②得折痕所在的直线方程为y =kx +k22+12. (2)当k =0时,折痕的长为2.当-2+3≤k <0时,折痕所在直线交直线BC 于点E (2,2k +k22+12),交y 轴于点N (0,k2+12). 则|NE |2=22+[k2+12-(2k +k22+12)]2=4+4k 2≤4+4(7-43)=32-16 3. 此时,折痕长度的最大值为32-163=2(6-2).而2(6-2)>2,故折痕长度的最大值为2(6-2).。

(word完整版)高中数学必修二直线与方程及圆与方程测试题.docx

(word完整版)高中数学必修二直线与方程及圆与方程测试题.docx

一选择题(共 55 分,每题 5 分)1. 已知直线经过点A(0,4)和点 B ( 1, 2),则直线 AB 的斜率为( )A.3B.-2C. 2D. 不存在2.过点 ( 1,3) 且平行于直线 x2 y3 0 的直线方程为()A . x 2y7 0 B . 2x y 1 0 C . x 2y 5 0 D . 2x y 5 0 3. 在同一直角坐标系中,表示直线y ax 与 yx a 正确的是()yyyyOxOxOxO xABCD4.若直线 x+ay+2=0 和 2x+3y+1=0 互相垂直,则a=()A .2B .2 C .33332D .(25.过 (x , y )和 (x , y )两点的直线的方程是)11 22A. yy 1 x x 1 y 2y 1 x 2 x 1 B.yy 1 x x 1 y 2 y 1x 1 x 2C.( y 2 y 1 )( x x 1) (x 2 x 1 )( y y 1) 0D.( x 2x 1)( x x 1) ( y 2 y 1 )( yy 1 ) 06、若图中的直线 L 1 、 L 2、 L 3 的斜率分别为 K 1、K 2、 K 3 则()A 、 K ﹤ K ﹤ KL 3123LB 、 K ﹤ K ﹤ K2 1 3C 、 K 3﹤ K 2﹤ K 1oxD 、 K 1﹤K 3﹤ K 2L 17、直线 2x+3y-5=0 关于直线 y=x 对称的直线方程为( )A 、 3x+2y-5=0B 、 2x-3y-5=0C 、 3x+2y+5=0D 、 3x-2y-5=08、与直线 2x+3y-6=0 关于点 (1,-1)对称的直线是()A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0A.a=2,b=5;B.a=2,b= 5 ;C.a= 2 ,b=5;D.a= 2 ,b= 5 .10、直线 2x-y=7 与直线 3x+2y-7=0 的交点是()A (3,-1)B (-1,3)C (-3,-1)D (3,1)11、过点 P(4,-1)且与直线 3x-4y+6=0垂直的直线方程是()A 4x+3y-13=0B 4x-3y-19=0C 3x-4y-16=0D 3x+4y-8=0二填空题(共20 分,每题 5 分)12.过点(1,2)且在两坐标轴上的截距相等的直线的方程_ __________;13 两直线 2x+3y- k=0 和 x- ky+12=0 的交点在y 轴上,则k 的值是14、两平行直线x 3y 4 0与 2x 6 y 9 0 的距离是。

高中数学必修2第三章《直线与方程》单元检测卷含解析

高中数学必修2第三章《直线与方程》单元检测卷含解析

高中数学必修2第三章《直线与方程》单元检测卷含解析必修2第三章《直线与方程》单元检测卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是()A。

30° B。

45° C。

60° D。

90°2.如果直线ax+2y+2=与直线3x-y-2=平行,则系数a为()A。

-3 B。

-6 C。

-2/3 D。

2/33.下列叙述中不正确的是()A。

若直线的斜率存在,则必有倾斜角与之对应。

B。

每一条直线都有唯一对应的倾斜角。

C。

与坐标轴垂直的直线的倾斜角为0°或90°。

D。

若直线的倾斜角为α,则直线的斜率为tanα。

4.在同一直角坐标系中,表示直线y=ax与直线y=x+a的图象(如图所示)正确的是(选项不清晰,无法判断)5.若三点A(3,1),B(-2,b),C(8,11)在同一直线上,则实数b等于()A。

2 B。

3 C。

9 D。

-96.过点(3,-4)且在两坐标轴上的截距相等的直线的方程是()A。

x+y+1=0 B。

4x-3y=0 C。

4x+3y=0 D。

4x+3y=0或x+y+1=07.已知点A(x,5)关于点(1,y)的对称点为(-2,-3),则点P(x,y)到原点的距离是()A。

4 B。

13 C。

15 D。

178.设点A(2,-3),B(-3,-2),直线过P(1,1)且与线段AB 相交,则l的斜率k的取值范围是()A。

k≥3/4或k≤-4/3 B。

-4/3≤k≤3/4 C。

-3≤k≤4 D。

以上都不对9.已知直线l1:ax+4y-2=与直线l2:2x-5y+b=互相垂直,垂足为(1,c),则a+b+c的值为()A。

-4 B。

20 C。

高中数学必修二《直线与方程及圆与方程》测试题-及答案

高中数学必修二《直线与方程及圆与方程》测试题-及答案

直线方程一选择题1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( )A.3B.-2C. 2D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A .072=+-y xB .012=-+y xC .250x y --=D .052=-+y x 3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyO A B C D 4.若直线x +a y+2=0和2x +3y+1=0互相垂直,则a =( )A .32-B .32C .23-D .235.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( ) A .23 B .32 C .32- D . 23-6、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则( )A 、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 27、直线2x+3y-5=0关于直线y=x 对称的直线方程为( )A 、3x+2y-5=0B 、2x-3y-5=0C 、3x+2y+5=0D 、3x-2y-5=08、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0 9、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( ) A.a=2,b=5; B.a=2,b=5-; C.a=2-,b=5; D.a=2-,b=5-.10.平行直线x -y +1 = 0,x -y -1 = 0间的距离是( )A .22 B .2 C .2 D .22 11、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 4x+3y-13=0B 4x-3y-19=0C 3x-4y-16=0D 3x+4y-8=0二填空题(共20分,每题5分)12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 __;13两直线2x+3y -k=0和x -ky+12=0的交点在y 轴上,则k 的值是14、两平行直线0962043=-+=-+y x y x 与的距离是 。

高中数学必修二直线与方程测试题一(基础含答案)

高中数学必修二直线与方程测试题一(基础含答案)

高中数学必修二直线与方程综合测试题一(考试时间120分钟,总分150分)一.选择题 (本大题共12小题 ,每小题5分,共60分,请把正确答案填在答题卡上) . 1.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 2.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A .0 B .8- C .2 D .10 3.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限4.直线1x =的倾斜角和斜率分别是( ) A .045,1B .0135,1-C .090,不存在D .0180,不存在5.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠mB .23-≠mC .1≠mD .1≠m ,23-≠m ,0≠m6.过点A (1,4)且纵横截距的绝对值相等的直线共有( ) A.1条 B.2条 C.3条 D.4条7.若直线过点(1,2),(4,( ) A .300 B .450 C .600 D .900 8.若A(1,2),B(-2,3),C(4,y )在同一条直线上,则y 的值是 ( )A .21 B .23 C .1 D .-19.直线x-3y+6=0的倾斜角是( )(A) 600 (B) 1200 (C) 300 (D)1500 10.经过点A(-1,4),且在x 轴上的截距为3的直线方程是( ) (A) x+y+3=0 (B) x-y+3=0 (C) x+y-3=0 (D) x+y-5=011.直线(2m 2+m-3)x+(m 2-m)y=4m-1与直线2x-3y=5平行,则的值为( ) (A)-23或1 (B)1 (C)-89 (D) -89或112.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( ) A .34k ≥B .324k ≤≤C .324k k ≥≤或D .2k ≤二.填空题(共4小题,每题5分,共20分,请把正确答案填在答题卡上) 13.点(1,1)P - 到直线10x y -+=的距离是________________.14.直线 01=-+by ax的倾斜角是直线40x -+=的倾斜角的2倍,且它在y 轴上的截距是1,则=a .15.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是_______________.16.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D )A -1或2B 23C 2D -14.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=05.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C )A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 ( A )A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

人教A版高中必修二试题第七章《直线和圆的方程》测试题

人教A版高中必修二试题第七章《直线和圆的方程》测试题

高中数学学习材料 (灿若寒星 精心整理制作)第七章《直线和圆的方程》测试题一、 选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.直线l 经过A (2,1)、B (1,m 2)(m ∈R)两点,那么直线l 的倾斜角的取值范围是( )A .),0[πB .),2(]4,0[πππ⋃ C .]4,0[πD .),43[]4,0[πππ⋃ 2.已知点A (6,-4),B (1,2)、C (x,y ),O 为坐标原点。

若),(R OB OA OC ∈+=λλ则点C 的轨迹方程是( )A .2x -y +16=0B .2x -y -16=0C .x -y +10=0D .x -y -10=03.已知实数x 、y 满足x 2+y 2=4,则22-+y x xy的最小值为( )A .222-B .222-C .222+D .222--4.若点(5,b )在两条平行直线6x -8y +1=0与3x -4y +5=0之间,则整数b 的值为( )A .5B .-5C .4D .-45.不等式组⎩⎨⎧≤≤≥++-300))(5(x y x y x 表示的平面区域是( )A .矩形B .三角形C .直角梯形D .等腰梯形6.直线ax +by +b -a =0与圆x 2+y 2-x -2=0的位置关系是 ( )A .相离B .相交C .相切D .与a,b 的取值有关7.直线k x y +=与曲线21y x -=恰有一个公共点,则k 的取值范围是 ( ) A.2 ±=k B.(][)∞+∞- , 2 2 , C.()2 , 2-D.2-=k 或(]1 , 1-∈k 8.由直线2+=x y ,4+-=x y 及x 轴围成的三角形的内切圆的圆心是 ( )A.()323 , 1-B.()323 , 1--C.()232 , 1+D.()232 , 1+- 9.将直线1x y +=绕(1,0)点顺时针旋转90°后,再向上平移1个单位与圆222(1)x y r +-=相切,则r的值是( ) A.22 B.2 C.322D.1 10.设点),(y x P 是圆1)1(22=-+y x 上任一点,若不等式0≥++c y x 恒成立,则c 的取值范围是 ( )A.[12,21]---B.[21,)-+∞C.(,21]-∞--D.(12,21)---11.若圆(x-1)2+(y+1)2=R 2上有仅有两个点到直线4x+3y=11的距离等于1,则半径R 的取值范围是( )A .R>1B .R<3C .1<R<3D .R ≠2 12.在圆x 2+y 2=5x 内,过点)23,25(有n 条弦的长度成等差数列,最小弦长为数列的首项a 1,最大弦长为a n ,若公差]31,61[∈d ,那么n 的取值集合为 ( )A .{4,5,6,7}B .{4,5,6}C .{3,4,5,6}D . {3,4,5}二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习〔含答案〕一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是〔 C 〕 A 3B 6C 23D 562.已知过点A(-2,m)和B 〔m,4〕的直线与直线2x+y-1=0平行,则m 的值为〔 C 〕 A 0 B 2 C -8 D 103.假设直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于〔 D 〕A -1或2 B23C 2D -1 4.假设点A 〔2,-3〕是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 〔a 1,b 1〕和〔a 2,b 2〕所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=0 5.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m= 12〞是“直线〔m+2〕x+3my+1=0与直线〔m-2〕x+(m+2y)-3=0相互垂直〞的〔 B 〕A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B 〔-5,6〕,则直线L 的方程为〔B 〕 A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).假设直线2l 经过点〔0,5〕且1l 2l ,则直线2l 的方程为〔 B 〕A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为〔 A 〕A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是〔A 〕A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是〔 C 〕A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为〔D 〕, A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于〔 B 〕A B 4 C 8 D 914.假设直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为〔 B 〕A 1B -1C 3D -315.假设直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba 11+的最小值是〔 C 〕 A.41B.2C.4D.2116.假设直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 〔 A 〕A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,0 17.设两圆1C ,2C 都和两坐标轴相切,且过点〔4,1〕,则两圆心的距离 ︱1C 2C ︱等于〔 C 〕A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 〔 C 〕 A.2B.5C.3D.3519.假设直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211b a +≤1 D.2211b a +≥120.已知A 〔-3,8〕和B 〔2,2〕,在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为〔 B 〕A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x +2(2)y =4相交于M 、N 两点,假设︱MN ︱≥23,则k 的取值范围是〔 A 〕A [-34,0] B [-∞,-34] [0,∞〕 C [-33,33] D [-23,0] 22.〔X 理科2〕已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则A B 的元素个数为〔 C 〕A .0B .1C .2D .3 23.〔X 理科9〕假设曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以了解,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线方程一选择题1. 已知直线经过点A(0,4)和点B(1,2),则直线AB 的斜率为( )A.3B.-2C. 2D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A .072=+-y x B.012=-+y x C .250x y --= D .052=-+y x 3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyOA B C D 4.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a =( )A.32-B .32 C.23-ﻩ D.235.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( ) A.23 B .32 C .32- ﻩD. 23-6、若图中的直线L 1、L 2、L 3的斜率分别为K)A 、K1﹤K 2﹤K 3B 、K2﹤K 1﹤K 3C、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 27、直线2x+3y-5=0关于直线y=x A、3x+2y-5=0 B 、2x-3y-5=0 C 、3x+2y +5=0 D 、3x -2y -5=08、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0 9、直线5x -2y-10=0在x 轴上的截距为a,在y 轴上的截距为b ,则( ) A.a=2,b=5; B.a =2,b =5-; C.a=2-,b=5; D.a =2-,b=5-.10.平行直线x -y +1 = 0,x -y -1 = 0间的距离是 ﻩ( )A.22 B.2ﻩC .2 D.22 11、过点P(4,-1)且与直线3x-4y +6=0垂直的直线方程是( )A 4x+3y -13=0B 4x-3y-19=0C 3x -4y-16=0 D 3x+4y -8=0二填空题(共20分,每题5分)12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 __;x13两直线2x +3y -k=0和x -ky+12=0的交点在y 轴上,则k的值是14、两平行直线0962043=-+=-+y x y x 与的距离是 。

15空间两点M1(-1,0,3),M2(0,4,-1)间的距离是三计算题(共71分) 16、(15分)已知三角形AB C的顶点坐标为A (-1,5)、B(-2,-1)、C(4,3),M 是BC 边上的中点。

(1)求AB 边所在的直线方程;(2)求中线AM 的长(3)求AB 边的高所在直线方程。

17、(12分)求与两坐标轴正向围成面积为2平方单位的三角形,并且两截距之差为3的直线的方程。

18.(12分) 直线062=++y m x 与直线023)2(=++-m my x m 没有公共点,求实数m 的值。

19.(16分)求经过两条直线04:1=-+y x l 和02:2=+-y x l 的交点,且分别与直线012=--y x (1)平行,(2)垂直的直线方程。

20、(16分)过点(2,3)的直线L被两平行直线L1:2x-5y +9=0与L2:2x -5y-7=0所截线段A B的中点恰在直线x-4y -1=0上,求直线L的方程圆与方程练习题一、选择题1. 圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A.22(2)5x y -+= B. 22(2)5x y +-= C.22(2)(2)5x y +++= D.22(2)5x y ++= 2. 若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A . 03=--y x ﻩB. 032=-+y x C . 01=-+y x ﻩD. 052=--y x3. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A. 2 B . 21+C.221+D . 221+4. 将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-=相切,则实数λ的值为( )A. 37-或B. 2-或8 C . 0或10D. 1或115. 在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( )A. 1条 B . 2条 C. 3条 D. 4条6. 圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A. 023=-+y x B. 043=-+y x C. 043=+-y x D. 023=+-y x二、填空题1. 若经过点(1,0)P -的直线与圆032422=+-++y x y x 相切,则此直线在y 轴上的截距是 . .2. 由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0,,60A B APB ∠=,则动点P 的轨迹方为 .3. 圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程 为 . 4.已知圆()4322=+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ⋅的值为________________.5. 已知P 是直线0843=++y x 上的动点,,PA PB 是圆012222=+--+y x y x 的切线,,A B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________________. 三、解答题 1. 点(),P a b 在直线01=++y x 上,求22222+--+b a b a 的最小值.2. 求以(1,2),(5,6)A B --为直径两端点的圆的方程.3. 求过点()1,2A 和()1,10B 且与直线012=--y x 相切的圆的方程.4. 已知圆C 和y 轴相切,圆心在直线03=-y x 上,且被直线x y =截得的弦长为72,求圆C 的方程.5. 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.6. 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?高中数学必修二 第三章直线方程测试题答案1-5 BACAC 6-10 DADB B 11 A 12.y=2x 或x+y-3=0 13.±6 14、20101516、解:(1)由两点式写方程得 121515+-+=---x y ,即 6x -y+11=0 或 直线AB 的斜率为 616)1(251=--=-----=k ,直线AB 的方程为 )1(65+=-x y , 即 6x-y+11=0(2)设M 的坐标为(00,y x ),则由中点坐标公式得1231,124200=+-==+-=y x 故M(1,1),52)51()11(22=-++=AM (3)因为直线AB 的斜率为k AB =51632+=--+·,设A B边的高所在直线的斜率为k,则有1(6)16AB k k k k ⨯=⨯-=-∴=所以A B边高所在直线方程为13(4)61406y x x y -=--+=即。

17.解:设直线方程为1x y a b +=则有题意知有1342ab ab =∴= 又有①314(a b b b -===-则有或舍去)此时4a =直线方程为x+4y-4=0 ②341440b a b a x y -===+-=则有或-1(舍去)此时直线方程为 18.方法(1)解:由题意知260(2)320x m y m x my m m ⎧++=⎨-++=⎩⇒∴23232即有(2m -m +3m)y=4m-12因为两直线没有交点,所以方程没有实根,所以2m -m +3m =0(2m-m +3)=0m=0或m=-1或m=3当m=3时两直线重合,不合题意,所以m=0或m=-1方法(2)由已知,题设中两直线平行,当2222322303116132316m m m m m m m m m mm m m m m --≠≠==-≠≠±=-时,=由=得或由得所以当m=0时两直线方程分别为x+6=0,-2x=0,即x=-6,x =0,两直线也没有公共点, 综合以上知,当m=-1或m=0时两直线没有公共点。

19解:由⎩⎨⎧=+-=-+0204y x y x ,得⎩⎨⎧==31y x ;∴1l 与2l 的交点为(1,3)。

(1) 设与直线012=--y x 平行的直线为02=+-c y x ,则032=+-c ,∴c=1。

∴所求直线方程为012=+-y x 。

方法2:∵所求直线的斜率2=k ,且经过点(1,3),∴求直线的方程为)1(23-=-x y ,即012=+-y x 。

(2) 设与直线012=--y x 垂直的直线为02=++c y x ,则0321=+⨯+c ,∴c =-7。

∴所求直线方程为072=-+y x 。

方法2:∵所求直线的斜率21-=k ,且经过点(1,3),∴求直线的方程为)1(213--=-x y ,即072=-+y x 。

20、解:设线段A B的中点P 的坐标(a,b),由P 到L 1,、L 2的距离相等,得⎣⎦=++-2252952b a ⎣⎦2252752+--b a经整理得,0152=+-b a ,又点P 在直线x-4y-1=0上,所以014=--b a 解方程组⎩⎨⎧=--=+-0140152b a b a 得⎩⎨⎧-=-=13b a 即点P 的坐标(-3,-1),又直线L 过点(2,3)所以直线L的方程为)3(2)3()1(3)1(----=----x y ,即0754=+-y x圆与方程练习题答案一、选择题1. A (,)x y 关于原点(0,0)P 得(,)x y --,则得22(2)()5x y -++-=。

2. A 设圆心为(1,0)C ,则,1,1,12CP AB AB CP k k y x ⊥=-=+=-。

3. B 圆心为max (1,1),1,21C r d =4. A 直线20x y λ-+=沿x 轴向左平移1个单位得220x y λ-++=圆22240x y x y ++-=的圆心为2(1,2),5,5,3,75C r d λλλ-+-====-=或。

5. B 两圆相交,外公切线有两条6. D2224x y -+=()的在点)3,1(P 处的切线方程为(12)(2)34x --= 二、填空题1. 1 点(1,0)P -在圆032422=+-++y x y x 上,即切线为10x y -+=2.224x y += 2OP = 3.22(2)(3)5x y -++= 圆心既在线段AB 的垂直平分线即3y =-,又在 270x y --=上,即圆心为(2,3)-,r =4. 5 设切线为OT ,则25OP OQ OT ⋅==5.当CP 垂直于已知直线时,四边形PACB 的面积最小 三、解答题1. 解(1,1)到直线01=++y x 的距离而2d ==,min 2=.2. 解:(1)(5)(2)(6)0x x y y +-+-+=得2244170x y x y +-+-= 3. 解:圆心显然在线段AB 的垂直平分线6y =上,设圆心为(,6)a ,半径为r ,则222()(6)x a y r -+-=,得222(1)(106)a r -+-=,而r =22(13)(1)16,3,5a a a r --+===22(3)(6)20x y ∴-+-=.4. 解:设圆心为(3,),t t 半径为3r t=,令d ==而22222,927,1r d t t t =--==± 22(3)(1)9x y ∴-+-=,或22(3)(1)9x y +++=5. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(r a ra 解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x .解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=ABk ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.6. 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则 34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.。

相关文档
最新文档