塔吊电气控制线路原理说明终审稿)
6.1.1 快速拆装式塔式起重机电气控制电路_怎样识读电气控制电路图_[共4页]
![6.1.1 快速拆装式塔式起重机电气控制电路_怎样识读电气控制电路图_[共4页]](https://img.taocdn.com/s3/m/f7308157d4d8d15abf234e0c.png)
第6章起重机械电气控制电路6.1建筑工地用起重机电气控制电路6.1.1 快速拆装式塔式起重机电气控制电路快速拆装式塔式起重机电气控制电路如图6.1.1所示。
【看图思路】电源进线处为集电环,快速拆装式塔式起重机为下回转,电源进线不能用导线直接接入,采用滑动连接,在回转部位装有集电环。
(1)起重电动机M的控制M为起重电动机(绕线转子型异步电动机),由凸轮控制器QM进行正、反向启动和调速控制。
YB1为失电抱闸起升制动器,当电动机M失电时,YB1也失电,YB1的闸瓦将起重电动机M刹住。
同时YB1还受启停脚踏开关SF2[21]的控制,踏下SF2,KM7[21]失电释放,制动器YB1动作,刹住起重电动机M。
起重电动机M用过电流继过器KI1、KI2作过载保护。
(2)电动机M1~M3的控制电动机M1~M3的控制电路均为由接触器组成的正、反转控制电路。
M1为行走电动机,由接触器KM1、KM2进行正、反转控制,以控制M1的行走方向。
在控制回路中装有限位开关SQ3、SQ4。
SQ3、SQ4分别装在行车轨道尽头处,行车至轨道尽头时,撞压行程开关SQ3或SQ4,使行车自动停止行走。
M2为回转电动机,由接触器KM3、KM4进行正、反转控制。
M3为变幅电动机,由接触器KM5、KM6进行正、反转控制。
变幅电动机上装有失电抱闸控制器YB2,进行制动控制,变幅电动机为点动控制。
向上抬时,超过上限幅度时,上限幅度限制行程开关SQ5断开,电动M3自动停转。
SQ1~SQ4均为复合行程开关(动断触点接在电动机控制电路,动合触点接在警笛电路),因此,在司机室内不论是升起、行走、变幅到极限位置,警笛HA2都要响,警示驾驶员。
SF1为脚踏电铃开关,当起重机有动作时都要打铃HA1警示地面人员注意。
熔断器FU1~FU5作短路保护。
(3)主接触器KM的控制在起重机投入运行前,应将凸轮控制器QM的控制手柄扳到“零位”,QM在主接触器KM控制电路的动断触点Q5、Q6[14]处于闭合状态下,然后按下启动按钮SB2,KM得电吸合并自锁,其主触点[2]闭合,接通总电源,其辅助动合触点KM(1-9)[14]闭合,接通控制电路电源。
塔吊的电器工作原理

塔吊的电器工作原理
塔吊主要是由电动驱动系统、液压系统和控制系统组成的。
其中电动驱动系统起着重要的作用。
塔吊的电动驱动系统包括:电动机、齿轮箱和绳轮等部件。
工作原理如下:
1. 电动机:塔吊的电动机一般是交流异步电动机,它通过电能转换为机械能。
电动机的转速范围通常为0-1500转/分,根据需要可调节转速。
2. 齿轮箱:齿轮箱是将电动机的高转速降低到塔吊所需的转速的装置。
它由一组齿轮组成,不同的齿轮比可以实现不同的转速调节。
3. 绳轮:塔吊的绳轮一般是多层的,通过绳轮组成的滑轮组,将电动机的转速进一步降低,使塔吊起重机构能够达到所需的速度和扭矩。
4. 控制系统:塔吊的控制系统是整个电器系统的核心部分,它可以实现对塔吊的起重机构、回转机构以及高度和幅度等的控制。
控制系统通过接收操作人员发送的指令,将电能转换为控制信号,控制电动机的运行。
同时,控制系统还能实现超负荷报警、高度限位和幅度限制等保护功能。
总之,塔吊的电器工作原理是通过电能转换为机械能,实现对塔吊的控制和运行。
各个部件协同工作,通过齿轮箱和绳轮的配合,使塔吊产生合适的速度和扭矩,
完成吊装任务。
控制系统则负责接收指令,并向电动机发送控制信号,实现对塔吊的各项动作的控制。
电气控制电路的原理

电气控制电路的原理
电气控制电路是一种用来控制电气设备或系统运行的电路。
它主要由控制元件、控制电源和被控制设备组成。
控制元件是电气控制电路中的核心部分,常用的控制元件有开关、继电器、电动机驱动器等。
开关用来控制电路的通断,继电器可以将小电流控制较大电流的流动,而电动机驱动器则用来控制电动机的转速和方向。
控制电源为整个电气控制电路提供驱动力。
它可以通过直流电源或交流电源来提供电能。
在实际应用中,由于被控制设备的特点和要求不同,控制电源也会有所不同。
被控制设备是电气控制电路的终端部分,它可以是电机、灯具、加热器等。
被控制设备通过控制电路中的控制元件来实现控制和操作。
电气控制电路的原理可以简单概括为通过控制电源提供的电能,通过控制元件的控制来控制和操作被控制设备。
具体的操作方式和控制逻辑可以根据实际需求和应用场景进行设计和调整。
在实际应用中,电气控制电路常常需要考虑电路的稳定性、安全性和可靠性。
在电路设计和安装过程中,需要严格按照相关标准和规范进行操作,避免因电气控制电路设计不当而引发事故或故障。
通过电气控制电路的设计和运用,可以实现对电气设备和系统的自动化控制,提高工作效率和安全性,降低能耗和生产成本。
塔吊电气控制线路原理

塔式起重机电气控制线路,电工朋友们请收好塔式起重机,简称塔机,一般口头语叫做塔吊,它具有回转半径大、提升高度高、操作简单、装卸容易等优点,是建筑工地普遍使用的一种起重机械。
塔机外型示意图见图3—6,由金属结构部分、机械传动部分、电气系统和安全保护装置组成。
电气系统由电动机、控制系统、照明系统组成。
通过操作控制开关完成重物升降、塔臂回转和小车行走操作。
塔机又分为轨道行走式、固定式、内爬式、附着式、平臂式、动臂式等,目前建筑施工和安装工程中使用较多的是上回转自升固定平臂式。
下面以QTZ80型塔式起重机为例,对电气控制原理进行分析。
(一)主回路部分(二)控制线路总起动部分(三)小车行走控制小车行走控制线路见图3—9,操作小车控制开关SA3, 可控制小车以高、中、低三种速度向前、向后行进。
控制原理如下:1、小车行走控制2、线路保护(1)终点极限保护:当小车前进(后退)到终点时,终点极限开关4SQ1(4SQ2)断开,控制线路中前进(后退)支路被切断,小车停止行进。
(2)临近终点减速保护:当小车行走临近终点时,限位开关4SQ3、4SQ4断开,中间继电器4KA1失电,中速支路、高速支路同时被切断,低速支路接通,电动机低速运转。
(3)力矩超限保护:力矩超限保护接触器1KM2常开触头接入向前支路,当力矩超限时,1KM2失电,向前支路被切断,小车只能向后行进。
(四)塔臂回转控制塔臂回转控制线路见图3—10,操作回转控制开关SA2 , 可控制塔臂以高、中、低三种速度向左、向右旋转。
控制原理如下:1、右(左)回转控制1、制动器控制3、线路保护(1)回转角度限位保护:当向右(左)旋转到极限角度时,限位器3SQ1(3SQ2)动作,3KM2(3KM3)失电,回转电动机停转,只能做反向旋转操作;(2)回转角度临界减速保护:当向右(左)旋转接近极限角度时,减速限位开关3SQ3(3SQ4)动作断开,3KA1、3KM5、3KM6、3KM7失电,3KM4得电,回转电动机低速运行。
塔式起重机电气控制线路设计

上海第二工业大学课程报告TQ60/80型塔式起重机电气控制线路设计班级:07工业工程学号:姓名:杨慧课程:机床电气控制课程指导老师:何成目录TQ60/80型塔式起重机电气控制线路设计课程设计目的(1)知道TQ60/80型塔式起重机电气控制线路有哪些电动机组成(2)了解各个电动机配置情况及其控制(3)知道TQ60/80型塔式起重机运动形式、电路特点及其控制要求(4)初步定下TQ60/80型塔式起重机控制电路设计步骤(5)绘制TQ60/80型塔式起重机控制线路主电路和控制电路(6)知道TQ60/80型塔式起重机的工作原理TQ60/80型塔式起重机设计内容1)M1为定子串电阻降压启动2)M1可实行正/反转,能耗制动,通过限位开关控制行程3)M2、M3控制行车的正反向,通过复合按钮和接触器双重连锁4)M4可实现正/反转,能耗制动5)M5串电阻降压启动6)M5为双速电机,可实现正/反转7)机床具有信号灯,信号电路电压为6V,由控制变压器TC提供8)机床具有照明灯,照明电路电压为24V,由控制变压器TC提供。
思考题:1)为确保安全,当出现事故时,要使所有的电机急停,电路如何设计?2)M2只能前进,不能后退,分析故障原因TQ60/80型塔式起重机相关知识TQ60/80型塔式起重机的用途TQ68/80型塔式起重机是普通上回转塔式起重机,适用于18层以下混凝土结构高层建筑施工。
起重机最大起重幅度为30m(米),最大起重量为8t(吨),最大起升高度为50m,设备总容量为48KW。
组成结构TQ60/80型塔式起重机的基本组成部件都是(1)起重机的基座通过螺栓与一块支撑起重机的大型混凝土板固定在一起。
(2)基座与塔柱(或塔)相连,塔体高度即塔式起重机的高度。
(3)与塔顶相连的是回转单元——包括齿轮和电机——它们使得起重机水平旋转在回转单元的顶部有三个部分:(1)水平伸出的长起重臂(或工作臂),它是起重机中负荷重物部分。
塔吊的电气原理

塔吊的电气原理塔吊的电气原理主要包括供电系统、控制系统和安全系统。
供电系统是塔吊正常运转的基础。
通常情况下,塔吊使用三相交流电作为主要的电源。
电源系统包括电缆,电缆通过电缆卷筒与塔吊主体相连。
为了确保电缆的安全可靠,电缆卷筒通常采用自动收放功能。
在供电系统中还需要设置电压降低器和变压器,根据工地现场的供电电压要求将高压电转换为低压电,并通过电缆传输至控制系统。
控制系统是塔吊的核心部分,通过对塔吊的各种运行参数进行监控和控制。
控制系统包括主控制台、电气柜和传感器等。
主控制台是塔吊操作员进行操作和监控的地方,可以通过按钮、旋钮等控制装置控制塔吊的升降、伸缩、转动和起重等动作。
主控制台与电气柜通过电缆连接,电气柜是控制塔吊各种电力元件的集中管理设备。
传感器主要用于感知塔吊各种参数,比如高度、角度、载重等,并将这些参数转化成电信号,传输给控制系统,进一步实现塔吊的控制。
安全系统是保障塔吊工作安全的重要组成部分。
其中,最核心的是塔吊的高度和载重传感器。
高度传感器用于监测塔吊的高度,当超过设定的高度时,会触发报警或停机,以避免高度超限。
载重传感器用于监测塔吊的载重情况,当超过设定的载重时,也会触发报警或停机,以确保塔吊在安全载荷范围内工作。
此外,塔吊还需要设置各种保护装置,比如风速传感器、倾斜传感器等,用于监测环境条件,并在超过安全范围时采取相应措施,比如停机或减小负载。
在塔吊的电气原理中,还需要注意相电位的问题。
相电位表示的是系统中各个负载点之间电位的差异。
为了确保塔吊运行的稳定性和安全性,需要保证各个负载点之间的电位平衡。
为了实现相电位平衡,通常使用中性点接地系统,并对系统进行绝缘监测和保护。
绝缘监测通过监测绝缘电阻,一旦出现绝缘故障,可以及时发出警报,以避免安全隐患。
总之,塔吊的电气原理是将供电系统、控制系统和安全系统有机地结合在一起,通过电力传输、信号传输和参数监测实现对塔吊的控制和保护,确保塔吊的正常工作和安全性。
塔式起重机电气控制电路分析

塔式起重机电气控制电路分析由于塔式起重机电动机较多,对应每一台电动机的控制电路也较复杂,为了分析电路图方便,我们用对应的方法进行标注,例如:M5的控制电器有KM5,KM51,KM52,KM53,SQ51,SQ52,SA5等。
(1)电源部分三相四线制380V电源用一根四心重型橡套电缆(3*16+1*6)送到电缆卷筒的集电环W1上。
经过装在电缆卷筒旁的铁壳开关QS、FU1,再用电缆送到装在驾驶室内的自动开关QF上,然后分送给主电路、控制电路和信号测量电路。
集电环的结构与环线式转子的滑环和电刷相类似,主要由滑环和碳刷等组成。
滑环装在有关的转动部件上,碳刷装在不动的部件上,转动部件上的电源可以通过集电环装置与不动部件上的导线连接起来。
W1用于行走机构,W2用于变幅机构的连线。
铁壳开关QS是全机电源的隔离开关熔断器EU1作为全机的后备短路保护。
本机加装了一个具有电磁脱扣器和热脱扣器的自动开关QF,脱扣电流为100A,作为本机的适中和过载保护,是保护更加完善,故障跳闸后恢复供电更加迅速。
为了使司机和维修人员在检查和修理时有一个明亮和舒适的工作环境,照明灯E、电铃HA以及电炉和电扇的插座XS1和XS2不受自动开关QF控制。
还设有电源指示灯HL、电流表A、电压表V、以便监视电源的工作情况。
因起重机高度大,变幅时不准提升,回转或行走,以保护安全。
为此用两个接触器KM1和KM5控制这两部分主电路的电源。
KM1用按钮SB1操作。
KM5用按钮SB5操作。
KM1和KM5之间不但有按钮互锁,而且有接触器触点互锁,使两者不能同时动作,以满足变幅时不准提升、行走和回转的要求。
(2)变幅部分各电气元件的作用①接触器KM51和KM52 实现电动机的正反转,起重臂上仰或下俯。
两者之间有电气互锁,防止因故同时动作而造成电源相间短路。
②接触器KM53 起动结束后短接频敏电阻器,以便提高电动机的转速,减小损耗。
KM53装在电动机M5旁,它的线圈有一端接在M5定子U相上。
塔吊电气原理图

• 小车向内外工作原理:主回路我不讲了应该简单,就是5个接触器,XC1是1速,XC2
是2速,XC3星型接法,XZC XFC是总的正反接触器,右边是直流制动电路是 档位控制台,不好模拟我就1 2 档开关代替。这里以正转XZC为例(正反一样的), 控制中正反互锁的。首先380V通过控制变压器出来220V电源引入进来先串接FR4 FR3 FR2 FR1热继常闭-- XJ相序NO保护--XBQ1(欠压接触器)得电工作--指示灯灭--按下 SQ(启动)-ZC(配电柜总接触器)工作--自锁闭合-当打到正转1档时--XZC得电--XC1 支路得电--1档工作。当打到2档时--KT4时间继电器线圈得电--延时 3S(可以设定)-KT4闭合--XC2 XC3得电--XC1断开。当按下90%力矩预警限位开关--CLY得电--动断触点 先断开--XC2 XC3不能工作--只有XC1档能工作--实行保护!
பைடு நூலகம்
• 回转线路工作原理:从档位图可以看出 ,它是左右4档位的,而且是双回转电机的,
同时运行,同样速度!同一条横线上有相同的黑点代表它们是同电位的。这里以右转 为例,当打到1档时,对应横线上的黑点只有HZC这支线路线圈得电,HZC得电下来再 看主回路,由于三相绕组串接有电阻,所以是全电阻运行,速度最慢!HZC得电--HFC 支路上的动断触电断开,实行正反互锁。打到2档时,对应黑点有HZC和HR21 HR31这 两支线路得电,线圈工作,等于2个主回路串接绕组的电阻。打到3档时HZC HR21 HR31 HR22 HR32 这几条支线得电,等于串接1个电阻。打到4档时 HZC HR21 HR31 HR22 HR32 HR23 HR33 线路得电,等于0电阻串接,速度最快!根据串联电阻限流特 性。。控制线路最右边是回转制动线路,串接有HZC HFC的动断触点,也就说回转在 工作中制动时不能工作的。制动是直流制动线路(没画),原理是通过变压器变压 30V 整流出大约28V直流电到绕组,根据直流制动原理产生一个反向电动势迫使电机 停。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塔吊电气控制线路原理
说明
公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]
塔式起重机电气控制线路
塔式起重机简称塔机,具有回转半径大、提升高度高、操作简单、装卸容易等优点,是建筑工地普遍使用的一种起重机械。
塔机外型示意图见图3—6,由金属结构部分、机械传动部分、电气系统和安全保护装置组成。
电气系统由电动机、控制系统、照明系统组成。
通过操作控制开关完成重物升降、塔臂回转和小车行走操作。
图3—6塔式起重机外型示意图
1-机座;2-塔身;3-顶升机构;4-回转机构;
5-行走小车;6-塔臂;7-驾驶室;8-平衡臂;9-配重塔机又分为轨道行走式、固定式、内爬式、附着式、平臂式、动臂式等,目前建筑施工和安装工程中使用较多的是上回转自升固定平臂式。
下面以QTZ80型塔式起重机为例,对电气控制原理进行分析。
(一)主回路部分
图3-7QTZ80塔式起重机电气主线路
(二)控制线路总起动部分
(三)小车行走控制
小车行走控制线路见图3—9,操作小车控制开关SA3, 可控制小车以高、中、低三种速度向前、向后行进。
图3—9小车行走控制线路
控制原理如下:
1、小车行走控制
2、线路保护
(1)终点极限保护:当小车前进(后退)到终点时,终点极限开关4SQ1(4SQ2)断开,控制线路中前进(后退)支路被切断,小车停止行进。
(2)临近终点减速保护:当小车行走临近终点时,限位开关4SQ3、4SQ4断开,中间继电器4KA1失电,中速支路、高速支路同时被切断,低速支路接通,电动机低速运转。
(3)力矩超限保护:力矩超限保护接触器1KM2常开触头接入向前支路,当力矩超限时,1KM2失电,向前支路被切断,小车只能向后行进。
(四)塔臂回转控制
塔臂回转控制线路见图3—10,操作回转控制开关SA2 , 可控制塔臂以高、中、低三种速度向左、向右旋转。
控制原理如下:
1、右(左)回转控制
1、制动器控制
图3—10塔臂回转控制线路
3、线路保护
(1)回转角度限位保护:当向右(左)旋转到极限角度时,限位器3SQ1(3SQ2)动作,3KM2(3KM3)失电,回转电动机停转,只能做反向旋转操作;
(2)回转角度临界减速保护:当向右(左)旋转接近极限角度时,减速限位开关3SQ3(3SQ4)动作断开,3KA1、3KM5、3KM6、3KM7失电,3KM4得电,回转电动机低速运行。
(五)、起升控制,
操作起升控制开关SA1分别置于不同档位,可用低、中、高三种速度
起吊。
起升控制线路如图3—11所示,为了便于分析电气控制过程,现
将提升状态五个档位对应控制线路分解叙述,见图3—12~15。
3—11起升控制线路
1、控制开关拨至上升第Ⅰ档,S1 S3闭合,控制线路分解为图3—12。
接触器2KM1得电、力矩限制接触器1KM2触头处于闭合状态,
2KM3得电使低速支路长开触头闭合,2KM6、2KM5相继得电,对应主线路
2KM6闭合,转子电阻全部接入,2KM1闭合,转子电压加在液压制动器电
机M2上使之处于半制动状态,2KM5闭合,滑环电动机M3定子绕组8级接法, 2KM3闭合,电动机得电低速正转(上升)。
通过线间变压器201抽头110
伏交流电经2KM1触头再经75号线接入桥堆,涡流制动器起动。
图3-12起升Ⅰ档控制线路分解图
2、当控制开关拨至第Ⅱ档,S2、S3、S7闭合,S1断开使2KM1失电,制动器支路2KM1常闭触头复位。
S2闭合使2KM2得电,S3闭合使2KM3继续得电,控制线路分解为图3—13。
主电路2KM1断开2KM2闭合使三相交流电直接加在液压制动器电机M2上,制动器完全松开。
S7闭合使涡流制动器继续保持制动状态,2KM5、2KM6依然闭合,电动机仍为8级接法低速正转(上升)。
3、当控制开关拨至第Ⅲ档,S2、S3闭合,除S7断开使涡流制动器断电松开而外,电路状态与Ⅱ档一样。
图3—13起升Ⅱ、Ⅲ控制线路分解图
4、当控制开关拨至第Ⅳ档,S2、S3、S6闭合,S6闭合使2KM9得电,时间继电器2KT1得电,触头延时闭合使2KM10得电继而使时间继电器2KT2得电。
主电路电动机转子因2KM9和2KM10相继闭合使电阻R1、R2先后被短接,使电动机得到两次加速。
中间继电器控制支路触头2KT2延时闭合,为下一步改变电动机定子绕组接法高速运转做好准备.。
见图3—14。
图3—14起升Ⅳ档控制线路分解图
5、当控制开关拨至第Ⅴ档,S2、S3、S5、S6闭合,S5闭合使中间继电器2KA1得电自锁(触头2KM5在Ⅰ档时完成闭合),其常闭触头动作切断低速支路,2KM5失电,常闭触头复位接通高速支路,接触器2KM8、2KM7相继得电,见图3—15。
主回路转子电阻继续被短接,触头2KM5断开、2KM8闭合,电动机定子绕组接为4级,触头2KM7闭合,电动机高速运转。
图3—15起升Ⅴ档控制线路分解图
6、线路保护,提升控制线路中设有力矩超限保护2SQ1、提升高度限位保护2SQ2、高速限重保护2SQ3,保护原理如下:
力矩超限保护,力矩超限时2SQ1动作,切断提升线路,2KM3失电,提升动作停止。
同时总电源控制线路中单独设置的力矩保护接触器常开触头1KM2 再次提供了力矩保护。
高度限位保护,当提升高度超限,高度限位保护开关2SQ2动作,提升线路切断,2KM3失电,提升动作停止。
高速限重保护, 当控制开关在第Ⅴ档,定子绕组4级接法,转子电阻短接,电动机高速运转,若起重量超过15吨时,超重开关2SQ3动作,2KA1失电,2KM7、2KM8相继失电,2KM6、2KM5相继得电,电动机定子绕组由4级接法变为8级接法,转子电阻R1、R2 接入,电动机低速运转。
提升控制线路中接有瞬间动作限流保护器FA常闭触头,当电动机定子电流超过额定电流时FA动作,切断提升控制线路中相关控制器件电源,电动机停止运转。
如遇突然停电,液压制动器M2失电对提升电动机制动,避免起吊物体荷重下降。