2013—2014交大附中初一(七年级)上学期数学期中试题_题型归纳

合集下载

2013—2014学年度七年级数学上册期中试题及答案

2013—2014学年度七年级数学上册期中试题及答案

2013——2014学年度第一学期期中考试七年级数学试卷(时间120分钟 满分150分)亲爱的同学,这份试卷将记录你的自信、沉着、智慧和收获. 我们一直投给你信任的目光。

请认真审题,看清要求,仔细答题. 预祝你取得好成绩!一、精心选一选(本大题共8题,每小题3分,共24分。

每题给出四个答案,其中只有一个符合题目的要求,请把选出的答案编号填在答卷上。

) 1.-3的相反数是A .3B .-3C .13 D .13- 2.已知矩形周长为20cm ,设长为x cm ,则宽为A. x -20B. 220x- C.x 220- D. x -103.下列化简,正确的是A .-(-3)= -3B .-[-(-10)]= -10C .-(+5)=5D .-[-(+8)]= -8 4.据统计,截止5月31日上海世博会累计入园人数为803万.这个数字用科学记数法表示为 A .8×106B .8.03×107C .8.03×106D .803×1045.绝对值大于2且小于5的所有整数的和是 A .0 B .7 C .14 D .28 6.若3<a<4时,化简|3||4|a a -+-= A .2a-7B .2a-1C .1D .77.已知代数式x +2y +1的值是3,则代数式2x +4y +1的值是 A .4B .5C .7D .不能确定8.观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A .97×98×99B .98×99×100C .99×100×101D .100×101×102 二、细心填一填(本大题共10题,每小题3分,共30分)9.如果-20%表示减少20%,那么+6%表示10.单项式25xy -的系数是11.表示“x 与4的差的3倍”的代数式为_____________ 12.若15423-+-n m b a b a与的和仍是一个单项式,则m +=n13.多项式223(2)1mx y m x y ++-是四次三项式,则m 的值为 14.化简: =-++-)7()35(x y y x _______________. 15.若关于a ,b 的多项式()()2222222a ab bamab b ---++不含ab 项,则m=16.M 、N 是数轴上的二个点,线段MN 的长度为2,若点M 表示的数为﹣1,则点N 表示的数为 。

2024-2025学年上海市交通大学附属中学上学期七年级数学期中卷

2024-2025学年上海市交通大学附属中学上学期七年级数学期中卷

2024-2025学年上海市交通大学附属中学上学期七年级数学期中卷1.下列单项式的次数是次的是()A.B.C.D.2.下列语句中正确的是()A.是单项式B.C.(是有理数)D.底数是3.下列多项式能用完全平方公式因式分解的是()A.B.C.D.4.下列式子:①;②;③;④;⑤;⑥中符合平方差公式特征的有()A.个B.个C.个D.个5.若,则的值是()A.0B.1C.D.26.已知实数a,b,c,d满足,且,,则()A.a、c都是正数B.a、c都是负数C.a、c互为相反数D.以上都不对7.多项式的常数项是______8.多项式的公因式是________.9.关于、的单项式与是同类项,则______10.将整式按的升幂排列______11.已知,,则____.12.若,,则______.13.计算:______14.因式分解:______15.如果,那么_________.16.如果关于的二次三项式是完全平方式,那么的值是______.17.已知,则______18.式子,此时,叫做以为底的对数,记为(即).一般地,若(且,),则叫做以为底的对数,记为(即).如,则叫做以为底的对数,记为,则,同理,.由此可以得到下列式子:,根据以上的信息及运算关系,若,则______19.计算:20.计算:21.计算:22.计算:23.因式分解:24.分解因式25.先化简,再求值:,其中26.若的展开式中不含的二次项和一次项,求、的值.27.如图,已知长方形的边长为a,边长为b,正方形的边长为c,点G在上,用a、b、c表示下列图形的面积.(1)求的面积;(2)以G为圆心,以c为半径画弧,求图中虚线所围图形的面积(结果保留)28.阅读理解:条件①:无论代数式A中的字母取什么值,A都不小于常数M;条件②:代数式A中的字母存在某个取值,使得A等于常数M;我们把同时满足上述两个条件的常数M叫做代数式A的下确界.例如:,,(满足条件①)当时,(满足条件②)4是的下确界.又例如:,由于,所以,(不满足条件②)故4不是的下确界.请根据上述材料,解答下列问题:(1)求的下确界.(2)若代数式的下确界是1,求m的值.(3)求代数式的下确界.。

2013-2014学年七年级(上)期中数学试卷答案

2013-2014学年七年级(上)期中数学试卷答案

2013-2014学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.解:﹣的倒数等于﹣.故选D.点评:主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.2.解:∵﹣1<0,2>0,0=0,﹣(﹣3)>0,>0,∴正数有3个,故选:B.点评:本题考查了正数和负数,大于0是判断数是正数的标准,不能只看符号.3.解:67万=670 000=6.7×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.解:A、所含字母不同,不是同类项,选项错误;B、所含字母不同,不是同类项,选项错误;C、相同字母的指数不同,不是同类项,选项错误;D、正确.故选D.点评:本题考查了同类项定义,定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.5.解:A、2a+3b不属于同类项,不能合并,此选项错误;B、﹣a﹣a=﹣2a,原题计算错误,此选项错误;C、ab﹣ba=0,计算正确,此选项正确;D、5a3﹣4a3=a3,原题计算错误,此选项错误.故选:C.点评:此题考查合并同类项,注意正确判定和运算.6.解:近似数8.6的准确值a的取值范围是8.55≤a<8.65.故选C.点评:本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所有这些数字都叫这个近似数的有效数字.7.解:设另一边为y,则2(x+y)=30,∴y=15﹣x,该模具的面积=x(15﹣x).故选A.点评:本题考查了列代数式,主要利用了长方形的周长与面积,是基础题.8.解:∵a<﹣1,∴a<﹣1<1<﹣a.故选D.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.也考查了数轴.9.解:a2+1一定是正数,所以①正确;近似数5.20精确到百分位,而5.2的精确到十分位,所以②错误;若ab>0,a+b<0,则a<0,b<0,所以③正确;代数式、是整式,是分式,所以④错误;若a<0,则|a|=﹣a,所以⑤正确.故选C.点评:本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.也考查了绝对值、有理数的运算和整式.10.解:根据题意得:A1=﹣1,A2=1,A3=﹣2,A4=2,…,当n为奇数时,An=﹣,当n为偶数时,An=,∴A2013=﹣=﹣1007,A2014==1007.故选:D.点评:此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题:(每题3分,共30分)11.解:以4.00米为标准,若小东跳出了3.85米,记作﹣0.15米,那么小东跳了4.22米,可记作0.22米,故答案为:0.22米.点评:本题考查了正数和负数,理解正负数表示相反意义的量是解题关键.12.解:∵(﹣1)3=﹣1,(﹣0.5)2=0.25,而|﹣1|=1,|﹣2|=2,∴﹣1>﹣2,∴﹣2<(﹣1)3<(﹣0.5)2.故答案为﹣2<(﹣1)3<(﹣0.5)2.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.解:∵单项式﹣0.25a3b的数字因数是﹣0.25,所有字母指数的和=3+1=4,∴此单项式的系数为﹣0.25,次数为4,∴(﹣0.25)×4=﹣1.故答案为:﹣1.点评:本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.14.解:∵单项式﹣5x m y3与7x2y n是同类项,∴m=2,n=3,则(m﹣n)2012=(﹣1)2012=1.故答案为:1.点评:本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.解:∵个位数字为m,十位数字为n,∴这个两位数是10n+m;故答案为:10n+m.点评:此题考查了列代数式,要能读懂题意,找到所求的量的等量关系,关键是掌握两位数=十位数字×10+个位数字.16.解:多项式a3+5﹣3ab2+b3﹣3a2b的各项分别为a3、5、﹣3ab2、b3、3a2b;按照字母a的降幂排列为:a3﹣3a2b﹣3ab2+b3+5,则第三项为:﹣3ab2;故答案是:﹣3ab2.点评:本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.17.解:∵多项式3x3﹣2x2+x+|k|x2﹣5中不含x2的项,∴﹣2+|k|=0,解得:k=±2,故答案为:±2.点评:本题考查了对多项式的应用,关键是能根据题意得出算式﹣2+|k|=0.18.解:由题意得:1﹣m+2m﹣3=0,解得:m=2.故填2.点评:本题考查相反数及解方程的知识,比较简单,注意细心运算.19.解:∵a+b=﹣3,c+2b=﹣5,∴原式=a+2c﹣c+3b=a+c+b+2b=(a+b)+(c+2b)=﹣3﹣5=﹣8.故答案为:﹣8点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.解:∵==×(1﹣),==×(﹣),==×(﹣),==×(﹣),…,∴前20个数的和=×(1﹣)+×(﹣)+×(﹣)+×(﹣)+…+×(﹣),=×(1﹣+﹣+﹣+﹣+…+﹣),=×(1﹣),=.故答案为:.点评:本题是对数字变化规律的考查,根据分母的特点写出乘积的形式并裂项是解题的关键,也是本题的难点.三、解答题(共90分)21.解:(1)原式=﹣4﹣6=﹣10;(2)原式=4×5+8÷4=20+2=22 ;(3)原式=﹣(﹣2)+9×(﹣2)=2﹣18=﹣16;(4)原式=﹣1﹣×(9+1)=﹣1﹣×10=﹣1﹣2=﹣3.点评:本题考查的是有理数的运算与整式的加减运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.绝对值符号有括号的作用.22.解:(1)2a﹣5b﹣3a+b=﹣a﹣4b;(2)﹣2(2x2﹣xy)+4(x2+xy﹣1),=﹣4x2+2xy+4x2+4xy﹣4,=6xy﹣4.点评:本题考查了合并同类项法则,单项式乘多项式,整式化简一般先去括号,然后合并同类项,细心运算即可.23.解:原式=x﹣2×+2×y2﹣x+y2,=x﹣x,=﹣x+y2,当x=,y=﹣2时,原式=﹣+(﹣2)2=﹣+4=.点评:本题考查了整式的加减﹣化简求值;做题时要按照题目的要求进行,注意格式及符号的处理是正确解答本题的关键.24.解:(1)移项合并得:3x=﹣12,解得:x=﹣4;(2)去括号得:6x﹣3=2﹣2x﹣1,移项合并得:8x=4,解得:x=;(3)去分母得:12﹣2(2x﹣5)=3(3﹣x),去括号得:12﹣4x+10=9﹣3x,移项合并得:x=13.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.25.解:(1)根据题意得:A=(5x2﹣2x+7)﹣(x2+3x﹣2)=5x2﹣2x+7﹣x2﹣3x+2=4x2﹣5x+9;(2)∵(x﹣2)2=0,∴x﹣2=0,即x=2,则原式=16﹣10+9=15.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.26.解:(1).(2)C村与A村相距10+(﹣5)﹣(﹣3)=8(千米).(3)3+2+10=15(千米),答:邮递员一共骑车15千米.点评:本题考查了数轴和有理数的计算的应用,关键是能根据题意列出算式.27.解:解方程5(x﹣5)+2x=﹣4得,x=3;解方程2x+m﹣1=0得,x=,∵两方程有相同的解,∴=3,解得m=﹣5.点评:本题考查的是同解方程,熟知如果两个方程的解相同,那么这两个方程叫做同解方程是解答此题的关键.28.解:(1)如图:;(2)原式=﹣(2a﹣b)﹣(b﹣c)﹣2(c﹣a)=﹣2a+b﹣b+c﹣2c+2a=﹣c.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.也考查了数轴.29.(10分)某校七年级四个班的学生去植树,一班植a棵,二班植的棵树比一班的2倍少40棵,三班植的棵树比二班植的一半多30 棵,四班植的棵树比三班的一半多30棵(1)用a的代数式表示三班植树多少棵?(2)用a的代数式表示四个班共植树多少棵?(3)求a=80时,四个班中哪个班植的树最少?考点:列代数式;代数式求值.分析:(1)根据一班植树a棵,二班植树的棵数比一班的2倍少40棵得出二班植树(2a﹣40)棵,三班植树的棵数比二班的一半多30棵,得出三班植树=(2a﹣40)+30=(a+10)棵;(2)利用四班植树的棵数比三班的一半多30棵,得出四班植树=(a+10)+30=(a+35)棵,进而得出答案.(3)把a=80代入分别计算出四个班植树棵树即可.解答:解:(1)∵一班植树a棵,∴二班植树(2a﹣40)棵,三班植树=(2a﹣40)+30=(a+10)棵;四班植树=(a+10)+30=(a+35)棵,(2)四个班共植树:a+(2a﹣40)+(a+10)+(a+35)=(a+5)棵;(3)把a=80时,一班植树80棵,二班植树:2×80﹣40=120(棵),三班植树:80+10=90(棵),四班植树:80+35=75(棵),故三班植树最少.点评:本题主要考查了用字母列式表示数量关系及整式的化简和求值,分别表示出各班植树棵数是解题关键.30.(10分)如图,从左到右,在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.8 &# x ﹣5 2 …(1)可求得x=8,第2006个格子中的数为﹣5;(2)判断:前m个格子中所填整数之和是否可能为2008?若能,求m的值;若不能,请说出理由;(3)如果a、b为前三个格子中的任意两个数,那么所有的|a﹣b|的和可以通过计算|8﹣&|+|8﹣#|+|&﹣#|+|#﹣&|+|&﹣8|+|8﹣&|得到,若a、b为前19个格子中的任意两个数,则所有的|a﹣b|的和为2436.考点:一元一次方程的应用;绝对值;有理数的加法.分析:(1)根据三个相邻格子的整数的和相等列式求出、x的值,再根据第9个数是2可得#=2,然后找出格子中的数每3个为一个循环组依次循环,在用2006除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.解答:解:∵任意三个相邻格子中所填整数之和都相等,∴8+*+#=+#+x,解得x=8,+#+x=#+x﹣5,∴=﹣5,所以,数据从左到右依次为8、﹣5、#、8、﹣5、#、,第9个数与第三个数相同,即#=2,所以,每3个数“8、﹣5、2”为一个循环组依次循环,∵2006÷3=668…2,∴第2006个格子中的整数与第2个格子中的数相同,为﹣5.故答案为:8,﹣5.(2)8﹣5+2=5,2008÷5=401…3,且8﹣5=3,故前m个格子中所填整数之和可能为2008;m的值为:401×3+2=1205.(3)由于是三个数重复出现,那么前19个格子中,这三个数中,8出现了七次,﹣5和2都出现了6次.故代入式子可得:(|8+5|×6+|8﹣2|×6)×7+(|﹣5﹣2|×7+|2+5|×6)×6+(|﹣5﹣8|×7+|8+5|×7)×6=2436.故答案为2436.点评:本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.。

2013-2014学年七年级上册数学期中试卷及答案【苏州市高新区】(精编文档).doc

2013-2014学年七年级上册数学期中试卷及答案【苏州市高新区】(精编文档).doc

【最新整理,下载后即可编辑】苏州市高新区2013-2014学年度第一学期期中测试七年级数学试卷2013年11月(满分:100分考试时间:100分钟)一、选择题(每小题2分,共20分,请将正确答案填写在下面表格里)1.-3的相反数是A.3 B.-3 C.13D.-132.下列比较大小的式子中,正确的是A.2<-(+5) B.-1>-0.01 C.33-<+D.-(-5)>+(-7)3.下列运算正确的是A、3a+2b=5abB、3a2b-3ba2=0C、3x2+2x3=5x5D、3m4-2m4=14.在-227,-π,0,3.14,0.1010010001,-313中,无理数的个数有A、1个B、2个C、3个D、4个5.下列说法不正确的是A.任何一个有理数的绝对值都是正数B.0既不是正数也不是负数C.有理数可以分为正有理数,负有理数和零D.0的绝对值等于它的相反数6.如图,数轴的单位长度为1.如果点B、C表示的数的绝对值相等,那么点A表示的数是A.-2 B.-5 C.-4 D.-6 7.数a、b、c在数轴上对应的位置如下图,化简a b c b+--的结果是A .a +cB .c -aC .-c -aD .a +2b -c8.若m -n =-1,则(m -n)2-2m +2n 的值是A .3B .2C .1D .-19.若a =2,b =a ,则a +b 为A .±4B .0C .0、±4D .以上都不对10.今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a 元,则去年的价格是每千克( )元A .(1+20%) aB .(1-20%)aC .120%a - D .120%a + 二、填空题(每小题2分,共20分)11.如果“+200元”表示收入200元,那么“-100元”的实际意义是_______.12.我国南海面积约为350万平方千米,“350万”这个数用科学记数法表示为_______13.写出在-212和1之间的负整数:_______. 14.已知(b +3)2+2a -=0,则b a 的值是_______.15.在数轴上,点A 表示数-1,距A 点2.5个单位长度的点表示的数是_______.16.如图,是一个简单的数值运算程序,当输入x 的值为-4时,则输出的数值为_______.17.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,则2a b m cd m ++-的值是_______.18.当k =_______时,多项式x 2+(k -1)xy -3y 2-2xy -5中不含xy 项.19.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第n 个图形中有_______个实心圆.20.设[x)表示大于x 的最小整数,如[3)=4,[-1.2)=-1,则下列结论中正确的是_______.(填写所有正确结论的序号)①[0)=0;②[x)-x 的最小值是0;③[x)-x 的最大值是0;④存在实数x ,使[x)-x =0.5成立。

成都西南交通大学附属中学初中数学七年级上期中经典练习卷

成都西南交通大学附属中学初中数学七年级上期中经典练习卷

一、选择题1.甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样的商品最合算( )A .甲B .乙C .相同D .和商品的价格有关2.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 2 3.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF=600,那么∠DAE 等于( )A .45°B .30 °C .15°D .60°4.如图,从左面看该几何体得到的形状是( )A .B .C .D .5.下列运用等式的性质,变形正确的是( )A .若x=y ,则x-5=y+5B .若a=b ,则ac=bcC .若23a b c c =,则2a=3bD .若x=y ,则x y a b= 6.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A.B.C.D.7.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元8.一个多项式加上3y2-2y-5得到多项式5y3-4y-6,则原来的多项式为().A.5y3+3y2+2y-1B.5y3-3y2-2y-6C.5y3+3y2-2y-1D.5y3-3y2-2y-1 9.已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为()A.﹣1 B.0 C.1 D.210.已知|m+3|与(n﹣2)2互为相反数,那么m n等于()A.6 B.﹣6 C.9 D.﹣911.有理数a、b、c在数轴上的对应点如图,下列结论中,正确的是()A.a>c>b B.a>b>c C.a<c<b D.a<b<c12.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>013.一周时间有604800秒,604800用科学记数法表示为()A.2⨯D.66.048100.604810⨯6.04810604810⨯B.5⨯C.614.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km.用科学记数法表示1.496亿是()A.7⨯D.80.1496101.49610⨯14.9610⨯C.81.49610⨯B.715.周长为68的长方形ABCD被分成7个全等的长方形,如图所示,则长方形ABCD的面积为()A.98 B.196 C.280 D.284二、填空题16.A ∠与B 的两边分别平行,且A ∠比B 的2倍少45°,则A ∠=__________.17.一个角与它的补角之差是20°,则这个角的大小是____. 18.如图,半径为1个单位长度的圆从点A 沿数轴向右滚动(无滑动)一周到达点B ,若点A 对应的数是-1,则点B 对应的数是______.19.观察以下一列数:3,54,79,916,1125,…则第20个数是_____. 20.如图,依次用火柴棒拼三角形:照这样的规律拼下去,拼n 个这样的三角形需要火柴棒______________根.21.若x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于2,则201820182()()2x y ab c +--+=_____. 22.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为_____米.23.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =80°,则∠F AG =_____.24.已知实数x ,y 满足150x y ++-=,则y x 的值是____.25.有理数a 、b 、c 在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|= ________.三、解答题26.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250米/分钟,那么小明跑步一共用了多长时间?27.如图,已知A ,B 两点在数轴上,点A 表示的数为-10,点B 到点O 的距离是点A到点O 距离的3倍,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动(点M 、N 同时出发)(1)数轴上点B 对应的数是______.(2)经过几秒,点M 、点N 分别到原点O 的距离相等.28.阅读理解与计算:(1)用“⊕”定义新运算:对于任意有理数,a b ,都有21a b b ⊕=+.例如:2744117⊕=+=.则①填空:53⊕= ; ②当m 为有理数时,求()2m m ⊕⊕的值;(2)已知,m n 互为相反数,,x y 互为倒数,1=a ,试求()()201220122a m n xy -++-的值.29.把下列各数填在相应的集合里:1,﹣1,﹣2013,0.5,110,﹣13,﹣0.75,0,2014,20%,π. 正数集合:{ …}负数集合:{ …}整数集合:{ …}正分数集合:{ …}.30.将一副三角板中的两块直角板中的两个直角顶点重合在一起,即按如图所示的方式叠放在一起,其中∠A =60°,∠B =30,∠D =45°.(1)若∠BCD =45°,求∠ACE 的度数.(2)若∠ACE =150°,求∠BCD 的度数.(3)由(1)、(2)猜想∠ACE 与∠BCD 存在什么样的数量关系并说明理由.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题二、填空题16.或【解析】【分析】由∠A与∠B的两边分别平行可得到∠A=∠B或者∠A与∠B互补再结合已知条件即可求出∠A的度数【详解】∵∠A和∠B的两边分别平行∴∠A=∠B或∠A+∠B=180°当∠A=∠B时∠A=17.100°【解析】【分析】设这个角为α根据互为补角的两个角的和等于180°表示出它的补角然后列出方程求出α即可【详解】设这个角为α则它的补角180°-α根据题意得α-(180°-α)=20°解得:α=18.-1+2π【解析】试题解析:由圆的周长计算公式得:AB的长度为:C=2πd=2π点B对应的数是2π﹣119.【解析】【分析】观察已知数列得到一般性规律写出第20个数即可【详解】解:观察数列得:第n个数为则第20个数是故答案为【点睛】本题考查了规律型:数字的变化类弄清题中的规律是解答本题的关键20.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是321.3【解析】【分析】根据xy互为相反数ab互为倒数c的绝对值等于2得出x+y=0ab=1c=±2代入计算即可【详解】由题意知或则所以原式=0﹣1+4=3故答案为:3【点睛】本题主要考查相反数倒数及绝对22.【解析】【分析】【详解】解:第一次截后剩下米;第二次截后剩下米;第三次截后剩下米;则第六次截后剩下=米故答案为:23.140°【解析】【分析】根据平行线的性质求出∠BAC求出∠BAF和∠BAG即可得出答案【详解】∵AB∥ED∠ECF=80°∴∠BAC=∠FCE=80°∴∠BAF=180°﹣80°=100°∵AG平分24.【解析】∵∴且∴∴点睛:(1)两个非负数的和为0则这两个数都为0;(2)的奇数次方仍为25.b+2c【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题16.或【解析】【分析】由∠A与∠B的两边分别平行可得到∠A=∠B或者∠A与∠B互补再结合已知条件即可求出∠A的度数【详解】∵∠A和∠B的两边分别平行∴∠A=∠B或∠A+∠B=180°当∠A=∠B时∠A=解析:45︒或105︒【解析】【分析】由∠A与∠B的两边分别平行,可得到∠A=∠B或者∠A与∠B互补,再结合已知条件即可求出∠A的度数.【详解】∵∠A和∠B的两边分别平行∴∠A=∠B或∠A+∠B=180°,当∠A=∠B时,∠A=45°当∠A+∠B=180°时∵∠A比∠B的两倍少45°,∴∠A=2∠B-45°,∵∠A=2∠B-45°,∠A+∠B=180°∴∠A=105︒.综上可知∠A的度数为45︒或105︒故答案为:45︒或105︒.【点睛】此题考查了平行线的性质与方程组的解法.此题难度不大,解题的关键是由∠A和∠B的两边分别平行,即可得∠A=∠B或∠A+∠B=180°,注意分类讨论思想的应用.17.100°【解析】【分析】设这个角为α根据互为补角的两个角的和等于180°表示出它的补角然后列出方程求出α即可【详解】设这个角为α则它的补角180°-α根据题意得α-(180°-α)=20°解得:α=解析:100°【解析】【分析】设这个角为α,根据互为补角的两个角的和等于180°表示出它的补角,然后列出方程求出α即可.【详解】设这个角为α,则它的补角180°-α,根据题意得,α-(180°-α)=20°,解得:α=100°,故答案为100°.【点睛】本题考查了余角和补角的概念,是基础题,设出这个角并表示出它的补角是解题的关键.18.-1+2π【解析】试题解析:由圆的周长计算公式得:AB的长度为:C=2πd=2π点B对应的数是2π﹣1【解析】试题解析:由圆的周长计算公式得:AB 的长度为:C=2πd=2π,点B 对应的数是2π﹣1.19.【解析】【分析】观察已知数列得到一般性规律写出第20个数即可【详解】解:观察数列得:第n 个数为则第20个数是故答案为【点睛】本题考查了规律型:数字的变化类弄清题中的规律是解答本题的关键 解析:41400【解析】【分析】 观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n 个数为221n n ,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键. 20.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是3解析:21n【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴, 依次多2个,可推出第n个这样的三角形需要多少根火柴.【详解】∵第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴,发现依次多2个,即可推出第n个这样的三角形需要2n+1根火柴.【点睛】本题考查图形的变换规律,得到每个图形中火柴的根数与图形的个数的关系式解决本题的关键.21.3【解析】【分析】根据xy 互为相反数ab 互为倒数c 的绝对值等于2得出x+y=0ab=1c=±2代入计算即可【详解】由题意知或则所以原式=0﹣1+4=3故答案为:3【点睛】本题主要考查相反数倒数及绝对解析:3【解析】根据x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于2得出x+y=0、ab=1,c=±2,代入计算即可.【详解】由题意知x y 0+=,ab 1=,c 2=或c 2=-,则2c 4=,所以原式()20182018014--+=0﹣1+4=3,故答案为:3.【点睛】本题主要考查相反数、倒数及绝对值的计算,掌握互为相反数的两数和为0、互为倒数的两数积为1是解题的关键. 22.【解析】【分析】【详解】解:第一次截后剩下米;第二次截后剩下米;第三次截后剩下米;则第六次截后剩下=米故答案为: 解析:164【解析】【分析】【详解】 解:第一次截后剩下12米; 第二次截后剩下212⎛⎫ ⎪⎝⎭米; 第三次截后剩下312⎛⎫ ⎪⎝⎭米; 则第六次截后剩下612⎛⎫ ⎪⎝⎭= 164米. 故答案为:164. 23.140°【解析】【分析】根据平行线的性质求出∠BAC 求出∠BAF 和∠BAG 即可得出答案【详解】∵AB∥ED∠ECF=80°∴∠BAC=∠FCE=80°∴∠BAF=180°﹣80°=100°∵AG 平分解析:140°.【解析】【分析】根据平行线的性质求出∠BAC ,求出∠BAF 和∠BAG ,即可得出答案.∵AB ∥ED ,∠ECF =80°,∴∠BAC =∠FCE =80°,∴∠BAF =180°﹣80°=100°,∵AG 平分∠BAC ,∴∠BAG =12∠BAC =40°, ∴∠F AG =∠BAF +∠BAG =100°+40°=140°,故答案为140°.【点睛】本题考查了平行线的性质和角平分线定义,能正确根据平行线的性质求出∠BAC 是解此题的关键,注意:两直线平行,内错角相等.24.【解析】∵∴且∴∴点睛:(1)两个非负数的和为0则这两个数都为0;(2)的奇数次方仍为解析:1-【解析】50y -=,∴10x +=且50y -=,∴1?5x y =-=,, ∴5(1)1y x =-=-.点睛:(1)两个非负数的和为0,则这两个数都为0;(2)1-的奇数次方仍为1-. 25.b+2c 【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a <b 则c-a<0原式=解析:b+2c【解析】【分析】由图可知, c-a<0,根据正数的绝对值等于它本身,负数的绝对值等于它的相反数,分别求出绝对值,再根据整式的加减运算,去括号,合并同类项即可.【详解】由图可知c<0,0<a <b ,则c-a<0,原式=(c-a )+b+a-(-c)=c-a+b+a+c=b+2c .【点睛】本题考查的知识点是整式的加减和绝对值,解题关键是熟记整式的加减运算实际上就是去括号、合并同类项.三、解答题26.(1)画图见解析;(2)小彬家与学校之间的距离是3km ;(3)小明跑步共用了36分钟.【解析】试题分析:(1)根据题意画出即可;(2)计算 2﹣(﹣1)即可求出答案;(3)求出每个数的绝对值,相加可求小明一共跑了的路程,再根据时间=÷速 度即可求出答案.试题解析:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km ).故小彬家与学校之间的距离是 3km ;(3)小明一共跑了(2+1.5+1)×2=9(km ), 小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了 36 分钟长时间.27.(1)30(2)2秒或10秒【解析】【分析】(1)根据点A 表示的数为-10,OB=3OA ,可得点B 对应的数;(2)分①点M 、点N 在点O 两侧;②点M 、点N 重合两种情况讨论求解;【详解】(1)∵OB=3OA=30.故B 对应的数是30;(2)设经过x 秒,点M 、点N 分别到原点O 的距离相等;①点M 、点N 在点O 两侧,则10-3x=2x ,解得x=2;②点M 、点N 重合,则3x-10=2x ,解得x=10.所以经过2秒或10秒,点M 、点N 分别到原点O 的距离相等.【点睛】此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.28.(1)①10;②26;(2)2【解析】【分析】(1)根据新定义运算法则可得:①53⊕=32+1;②()2221551m m ⊕+=⊕=+;(2)根据互为相反数和互为倒数的两个数的关系,和绝对值定义可得:m+n=0,xy=1,a 2=1,代入式子可得.【详解】解:(1)根据新定义运算法则可得:①53⊕=32+1=10故答案为:10②()222155126m m ⊕+=⊕=+=(2)因为,m n 互为相反数,,x y 互为倒数,1=a ,所以m+n=0,xy=1,a 2=1所以()()201220122a m n xy -++-=1-0+1=2【点睛】考核知识点:新定义运算,有理数运算.理解新定义运算法则,掌握有理数运算法则是关键. 29.见解析.【解析】【分析】根据有理数的分类,可得答案.【详解】正数集合:{ 1,0.5,110,2014,20%,π…} 负数集合:{﹣1,﹣2013,13-,﹣0.75…}整数集合:{1,﹣1,﹣2013,0,2014…}正分数集合:{0.5,110,20%…}, 故答案为1,0.5,110,2014,20%,π;﹣1,﹣2013,13-,﹣0.75;1,﹣1,﹣2013,0,2014;0.5,110,20%. 【点睛】本题考查了有理数,利用有理数的分类是解题关键. 30.(1)∠ACE =135°;(2)∠BCD =30°;(3)∠ACE 与∠BCD 互补.理由见解析.【解析】【分析】(1)先求得∠ACD的度数,即可得到∠ACE的度数;(2)先求得∠ACD的度数,即可得到∠BCD的度数;(3)依据∠BCD=∠ACB﹣∠ACD=90°﹣∠ACD,∠ACE=∠DCE+∠ACD=90°+∠ACD,即可得到∠ACE与∠BCD互补.【详解】解:(1)∵∠BCD=45°,∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB=45°,又∵∠DCE=90°,∴∠ACE=∠ACD+∠DCE=45°+90°=135°;(2)∵∠ACE=150°,∠DCE=90°,∴∠ACD=∠ACE﹣∠DCE=150°﹣90°=60°,又∵∠ACB=90°,∴∠BCD=∠ACB﹣∠ACD=90°﹣60°=30°;(3)由(1)、(2)猜想∠ACE与∠BCD互补.理由:∵∠BCD=∠ACB﹣∠ACD=90°﹣∠ACD,∠ACE=∠DCE+∠ACD=90°+∠ACD,∴∠BCD+∠ACE=90°﹣∠ACD+90°+∠ACD=180°,∴∠ACE与∠BCD互补.【点睛】此题主要考查了角的计算,关键是理清图中角的和差关系.。

2013-2014学年度第一学期七年级数学期中试卷( 沪科版)

2013-2014学年度第一学期七年级数学期中试卷( 沪科版)

2013-2014学年度第一学期七年级数学期中试卷亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 我们一直投给你信任的目光.请认真审题,看清要求,仔细答题. 预祝你取得好成绩!一、选择题(每题3分,共30分)1.在-1,0,2,-3这四个数中,绝对值最小的数是 ………………………………【 ▲ 】 A.-1 B.0 C.2 D.-32.多项式2321xy xy -+的次数及最高次项的系数分别是…………………………【 ▲ 】A .3 3-,B .3 2-,C .3 5-,D .3 2, 3.下列各对数中,互为相反数的是 …………………………………………………【 ▲ 】 A.()2--和2 B. )(和3)3(+--+ C. 221-和 D. ()55----和 4.化简()()2x y y x --+得到的最后结果等于 ……………………………………【 ▲ 】 A.2x y - B.x y - C.2x y -- D.x y -+5.由四舍五入法得到的近似数6.50×104是精确到 …………………………………【 ▲ 】 A.百分位 B.百位 C.十位 D.个位6.已知关于x 的方程290x a +-=的解是2x =,则a 的值为…………………【 ▲ 】 A.2 B.3 C.4 D.57.下列式子中,正确的是 ……………………………………………………………【 ▲ 】 A.4657-<- B.10.42-<- C.()()4334->- D.()()3432->-学校 班级 姓名 考号_8.若()b a b a 则,032122=-+-等于………………………………………………【 ▲ 】A.18 B. 21- C. 6 D. 16 9.某商店积压了一批商品,为尽快售出,该商店采取如下销售方案:将原价每件m 元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%.经过两次降价后的价格n 元与原价m 元比较 ……………………………………………………………………………………【 ▲ 】 A.原价m 高B.两次降价后的价格n 高C.两个价格相同D.不能确定10.把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长10米,使钢丝圈沿赤道处处高出球面,留出一些缝隙,那么这个缝隙可以通过最大的是 ………………………………………………………………………………………【 ▲ 】 A.一只蚂蚁 B.一只高0.4米狗 C.一个高1.5米的人 D.一辆高4米的客车二、填空题(每题3分,共18分)11.某种零件设计图形上标明的要求是Φ20±0.02(Φ表示直径,单位:mm).某质检员检查一个这种零件的直径是19.9mm ,则该零件 .(填“合格”,或“不合格”) 12.若53mx y 与1234nxy --是同类项,则m n += . 13.下面是一个简单的数值运算程序,当输入x 的值为-3时,则输出的数值是 .14.某种型号的纸100张厚度约为lcm ,那么这种型号的纸13亿张厚度约为 m (用科学记数法表示).15.若22P y =-,23Q y =+,21P Q -=,则y 的值等于 .16.汪老师与学生们做“同时猜两数”游戏,他说:同座的两位同学在1—9之间各选取一个幸运数字,第一个同学将自己选定的幸运数字减去1后乘以5,再减去2后乘以2,再将得到的结果再加上第二个同学的幸运数字,只要将最后的结果告诉他,他就能同时猜出这两位同学的幸运数字各是多少.如果按照以上的规则得到的最后结果是44,那么第一、二位同学选定的幸运数字之和..是 .三、(本题共3小题,共24分) 17. 计算:(每小题5分,共10分) (1) ()2243033⎛⎫-÷+-⨯- ⎪⎝⎭; (2)()313248522⨯-÷+-+-.18.(7分)先化简,再求值:()()()2225325232a a a a a +-+---,其中2a =-.19.(7分)解方程: 2151164x x -+-=四、(本题共8分) 20.观察与探究:同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2013颗棋子?说明理由.第1个 第2个 第3个 第4个五、(本题共10分)21.理解与应用:某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):六、(本题共10分)22.理解与思考:(1)求出下列每对数在数轴上的对应点间的距离:①3与-2在数轴上对应点间的距离是,②-7与-3在数轴上对应点间的距离是,③4与6在数轴上对应点间的距离是,④-3与2在数轴上对应点间的距离是 . (2)若数轴上的点A表示的数为x,点B表示的数为-1,则A与B两点间的距离可以表示为 .(3)结合数轴直接写出x -3+x +2的最小值,并写出取得最小值时x的取值范围.。

七年级上册西安交通大学附属中学数学期末试卷专题练习(解析版)

七年级上册西安交通大学附属中学数学期末试卷专题练习(解析版)

七年级上册西安交通大学附属中学数学期末试卷专题练习(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:⑴如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|⑵如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|⑶如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA=|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=________.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=________.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=________,如果AB=2,则x的值为________.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为________.【答案】(1)(2)6(3);0或-4(4)5【解析】【解答】(1)综上所述,数轴上A、B两点之间的距离 (2)数轴上表示2和-4的两点A和B之间的距离 (3)数轴上表示和-2的两点A和B之间的距离如果,则的值为或由题意可知:当x在−2与3之间时,此时,代数式|x+2|+|x−3|取最小值,最小值为故答案为:(1);(2)6;(3),0或-4;(4)5.【分析】(1)发现规律:在数轴上两点之间的距离为这两点所表示的数的差的绝对值,故可求解;(2)根据(1),即可直接求出结果;(3)先根据(1)即可表示出AB;当AB=2时,得到方程,解出x的值即可;(4)|x+2|+|x-3|表示数轴上一点到-2与3两点的距离的和,当这点是-2或5或在它们之间时和最小,最小距离是-2与3之间的距离。

2013-2014年陕西省西安交大附中七年级(下)期中数学试卷(解析版)

2013-2014年陕西省西安交大附中七年级(下)期中数学试卷(解析版)

2013-2014学年陕西省西安交大附中七年级(下)期中数学试卷一、选择题.1.(3分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a62.(3分)下列各式计算正确的是()A.x4+x4=2x8B.(x2y)3=x6yC.(x2)3=x5D.﹣x3•(﹣x)5=x83.(3分)如图,AB∥CD,下列结论中错误的是()A.∠1=∠2B.∠5+∠2=180°C.∠3+∠4=180°D.∠3+∠2=180°4.(3分)在电子显微镜下测得一个圆球体细胞的直径是5×10﹣5cm,2×103个这样的细胞排成的细胞链的长是()A.10﹣2cm B.10﹣1cm C.10﹣3cm D.10﹣4cm 5.(3分)下列各式可以用平方差公式计算的是()A.(m+n)﹣(m﹣n)B.(2x+3)(3x﹣2)C.(﹣4x﹣3)(4x﹣3)D.(a2﹣2bc2)(a2+2b2c)6.(3分)下列计算中错误的有()①4a3b÷2a2=2a,②﹣12x4y3÷2x2y=6x2y2,③﹣16a2bc÷a2b=﹣4c,④(﹣ab2)3÷(﹣ab2)=a2b4.A.1个B.2个C.3个D.4个7.(3分)若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b8.(3分)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°9.(3分)如图表示某加工厂今年前5个月每月生产某种产品的产量c(件)与时间t(月)之间的关系,则对这种产品来说,该厂()A.1月至3月每月产量逐月增加,4,5两月产量逐月减小B.1月至3月每月产量逐月增加,4,5两月产量与3月持平C.1月至3月每月产量逐月增加,4,5两月产量均停止生产D.1月至3月每月产量不变,4,5两月均停止生产10.(3分)小强和小敏练短跑,小敏在小强前面12米.如图,OA、BA分别表示小强、小敏在短跑中的距离S(单位:米)与时间t(单位:秒)的变量关系的图象.根据图象判断小强的速度比小敏的速度每秒快()A.2.5米B.2米C.1.5D.1米二、填空题.11.(3分)如图,若AB∥CD,∠C=50°,则∠A+∠E=.12.(3分)正方形的边长是3,若边长增加x,则面积增加y的函数关系式为.13.(3分)2﹣2﹣(π﹣3)0=.14.(3分)任意给定一个非零数,按下列程序计算,最后输出的结果是(用含m的代数式表示).15.(3分)如图,∠1=∠2=35°,则AB∥CD,理由是.16.(3分)在式子①(﹣2y﹣1)2;②(﹣2y﹣1)(﹣2y+1);③(﹣2y+1)(2y+1);④(2y﹣1)2;⑤(2y+1)2中相等的是.三、解答题:17.(16分)计算:(1)2(y6)2﹣(y4)3(2)(2b+3b)2﹣(2a﹣b)(2a+b)(3)(x+7)(x﹣6)﹣(x﹣2)(x+1)(4)(3x2)2•(﹣4y3)÷(6xy)2.18.(4分)化简求值:(a+b)2﹣2a(b﹣1)﹣a2b÷b,其中a=﹣2,b=2.19.(6分)如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D,试说明:AC∥DF,将过程补充完整.解:∵∠1=∠2(已知)∠1=∠3()∴∠2=∠3(等量代换)∴EC∥DB()∴∠C=∠ABD()又∵∠C=∠D(已知)∴∠D=∠ABD()∴AC∥DF()20.(6分)如图,∠2=∠CFE,直线EF别交AB、CD于点E、F,∠AEG=∠FEG,交CD于G,已知∠1=40°,求∠2的度数.21.(6分)(1)已知2x+3y﹣4=0,求9x•27y的值;(2)若102a=200,10b=5﹣1,求9a÷3b的值.22.(4分)一个角的余角比它的补角的还少20°,求这个角.23.(10分)小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图所示)(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?2013-2014学年陕西省西安交大附中七年级(下)期中数学试卷参考答案与试题解析一、选择题.1.(3分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6【解答】解:(﹣a2)3=﹣a2×3=﹣a6.故选:D.2.(3分)下列各式计算正确的是()A.x4+x4=2x8B.(x2y)3=x6yC.(x2)3=x5D.﹣x3•(﹣x)5=x8【解答】解:A、x4+x4=2x4,故本选项错误;B、(x2y)3=x6y3,故本选项错误;C、(x2)3=x6,故本选项错误;D、﹣x3•(﹣x)5=x8,故本选项正确;故选:D.3.(3分)如图,AB∥CD,下列结论中错误的是()A.∠1=∠2B.∠5+∠2=180°C.∠3+∠4=180°D.∠3+∠2=180°【解答】解:此题主要根据平行线的性质进行推理证明.因为该题只指明了AB ∥CD,A、根据两条直线平行,内错角相等,即可得到∠1=∠2是正确的;B、根据A的结论结合平角的定义,即可得到∠5+∠2=180°是正确的;C、根据两条直线平行,同旁内角互补,即可得到∠3+∠4=180°是正确的;D、因为EF和GH的位置不确定,故结论不一定成立.故选:D.4.(3分)在电子显微镜下测得一个圆球体细胞的直径是5×10﹣5cm,2×103个这样的细胞排成的细胞链的长是()A.10﹣2cm B.10﹣1cm C.10﹣3cm D.10﹣4cm【解答】解:5×10﹣5×2×103=10﹣1cm.故选B.5.(3分)下列各式可以用平方差公式计算的是()A.(m+n)﹣(m﹣n)B.(2x+3)(3x﹣2)C.(﹣4x﹣3)(4x﹣3)D.(a2﹣2bc2)(a2+2b2c)【解答】解:A、(m+n)﹣(m﹣n)=m+n﹣m+n=2n,不符合平方差公式;B、(2x+3)(3x﹣2)=6x2+5x﹣6,不符合平方差公式;C、(﹣4x﹣3)(4x﹣3)=﹣(4x+3)(4x﹣3)=﹣[(4x)2﹣32],符合平方差公式;D、(a2﹣2bc2)(a2+2b2c)=a4+2a2bc2﹣2a2b2c﹣4b3c3,不符合平方差公式.故选:C.6.(3分)下列计算中错误的有()①4a3b÷2a2=2a,②﹣12x4y3÷2x2y=6x2y2,③﹣16a2bc÷a2b=﹣4c,④(﹣ab2)3÷(﹣ab2)=a2b4.A.1个B.2个C.3个D.4个【解答】解:①4a3b÷2a2=2ab,原式计算错误,故本项正确;②﹣12x4y3÷2x2y=﹣6x2y2,原式计算错误,故本项正确;③﹣16a2bc÷a2b=﹣64c,原式计算错误,故本项正确;④(﹣ab2)3÷(﹣ab2)=a2b4,计算正确,故本项错误.则错误的有:①②③,共3个.故选:C.7.(3分)若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b 【解答】解:a=0.32=0.09,b=﹣3﹣2=﹣()2=﹣;c=(﹣)﹣2=(﹣3)2=9,d=(﹣)0=1,∵﹣<0.09<1<9,∴b<a<d<c,故选:B.8.(3分)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°【解答】解:A、∠3=∠A,无法得到,AB∥CD,故此选项错误;B、∠1=∠2,根据内错角相等,两直线平行可得:AB∥CD,故此选项正确;C、∠D=∠DCE,根据内错角相等,两直线平行可得:BD∥AC,故此选项错误;D、∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得:BD∥AC,故此选项错误;故选:B.9.(3分)如图表示某加工厂今年前5个月每月生产某种产品的产量c(件)与时间t(月)之间的关系,则对这种产品来说,该厂()A.1月至3月每月产量逐月增加,4,5两月产量逐月减小B.1月至3月每月产量逐月增加,4,5两月产量与3月持平C.1月至3月每月产量逐月增加,4,5两月产量均停止生产D.1月至3月每月产量不变,4,5两月均停止生产【解答】解:由图中可以看出,函数图象在1月至3月,图象由低到高,说明随着月份的增加,产量不断提高,从3月份开始,函数图象的高度不再变化,说明产量不再变化,和3月份是持平的.故选:B.10.(3分)小强和小敏练短跑,小敏在小强前面12米.如图,OA、BA分别表示小强、小敏在短跑中的距离S(单位:米)与时间t(单位:秒)的变量关系的图象.根据图象判断小强的速度比小敏的速度每秒快()A.2.5米B.2米C.1.5D.1米【解答】解:根据图象得小强跑64米用了8秒,所以小强的速度==8米/秒,小敏跑了(64﹣12)米用了8秒,所以小敏的速度==6.5米/秒,所以强的速度比小敏的速度每秒快8米/秒﹣6.5米/秒=1.5米/秒.故选:C.二、填空题.11.(3分)如图,若AB∥CD,∠C=50°,则∠A+∠E=50°.【解答】解:如图,∵AB∥CD,∠C=50°,∴∠1=∠C=50°,∴∠A+∠E=∠1=50°.故答案为:50°.12.(3分)正方形的边长是3,若边长增加x,则面积增加y的函数关系式为y=x2+6x.【解答】解:新正方形的边长是(x+3),则y=(x+3)2﹣32=x2+6x.13.(3分)2﹣2﹣(π﹣3)0=﹣.【解答】解:原式=()2﹣1=﹣,故答案为:﹣.14.(3分)任意给定一个非零数,按下列程序计算,最后输出的结果是m+1(用含m的代数式表示).【解答】解:(m2﹣m)÷m+2=m﹣1+2=m+1.15.(3分)如图,∠1=∠2=35°,则AB∥CD,理由是同位角相等,两直线平行.【解答】解:∵∠2与∠3是对顶角,∴∠3=∠2.∵∠1=∠2=35°,∴∠1=∠3=35°,∴AB∥CD.故答案为:同位角相等,两条直线平行.16.(3分)在式子①(﹣2y﹣1)2;②(﹣2y﹣1)(﹣2y+1);③(﹣2y+1)(2y+1);④(2y﹣1)2;⑤(2y+1)2中相等的是①⑤.【解答】解:由题意,①(﹣2y﹣1)2=4y2+4y+1,②(﹣2y﹣1)(﹣2y+1)=﹣(2y+1)(1﹣2y)=4y2﹣1,③(﹣2y+1)(2y+1)=1﹣4y2,④(2y﹣1)2=4y2﹣4y+1,⑤(2y+1)2=4y2+4y+1,所以①⑤相等.故答案为:①⑤.三、解答题:17.(16分)计算:(1)2(y6)2﹣(y4)3(2)(2b+3b)2﹣(2a﹣b)(2a+b)(3)(x+7)(x﹣6)﹣(x﹣2)(x+1)(4)(3x2)2•(﹣4y3)÷(6xy)2.【解答】解:(1)原式=2y12﹣y12=y12;(2)原式=25b2﹣(4a2﹣b2)=26b2﹣4a2;(3)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40;(4)原式=9x4•(﹣4y3)÷(36x2y2)=﹣x2y.18.(4分)化简求值:(a+b)2﹣2a(b﹣1)﹣a2b÷b,其中a=﹣2,b=2.【解答】解:原式=a2+2ab+b2﹣2ab+2a﹣a2=b2+2a,当a=﹣2,b=2时,原式=0.19.(6分)如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D,试说明:AC∥DF,将过程补充完整.解:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴EC∥DB(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴AC∥DF(内错角相等,两直线平行)【解答】解:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴EC∥DB(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴AC∥DF(内错角相等,两直线平行)故答案为:对顶角相等;同位角相等,两条直线平行;两条直线平行,同位角相等;等量代换;内错角相等,两条直线平行.20.(6分)如图,∠2=∠CFE,直线EF别交AB、CD于点E、F,∠AEG=∠FEG,交CD于G,已知∠1=40°,求∠2的度数.【解答】解:∵∠2=∠CFE,∴AB∥CD,∴∠AEG=∠1=∠FEG,∵∠AEF+∠2=180°,∴2∠1+∠2=180°,∴∠2=180°﹣2∠1=180°﹣80°=100°.21.(6分)(1)已知2x+3y﹣4=0,求9x•27y的值;(2)若102a=200,10b=5﹣1,求9a÷3b的值.【解答】解:(1)∵2x+3y﹣4=0,∴2x+3y=4,则9x•27y=32x•33y=32x+3y=34=81;(2)102a÷10b=200÷5﹣1=1000=103,即2a﹣b=3,则9a÷3b=32a﹣b=33=27.22.(4分)一个角的余角比它的补角的还少20°,求这个角.【解答】解:设这个角为α,由题意得,(180°﹣α)﹣(90°﹣α)=20°,解得:α=40°.23.(10分)小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图所示)(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?【解答】解:(1)由函数图象,得图象表示了时间、距离的关系,自变量是时间,因变量是距离;(2)由纵坐标看出10时他距家15千米,13时他距家30千米;(3)由横坐标看出12:00时离家最远,由纵坐标看出离家30千米;(4)由纵坐标看出11时距家19千米,12时距家30千米,11时到12时他行驶了30﹣19=11(千米);(5)由纵坐标看出12:00﹣13:00时距离没变且时间较长,得12:00﹣13:00休息并吃午饭;(6)由横坐标看出回家时用了2两小时,由纵坐标看出路程是30千米,回家的速度是30÷2=15(千米/小时).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档