《相似》单元检测(word版,含答案)
(完整word版)相似三角形单元测试卷(含答案)

相似三角形单元测试卷(共100分)一、填空题:(每题5分,共35分)1、已知a =4,b =9,c 是a b 、的比例中项,则c = .2、一本书的长与宽之比为黄金比,若它的长为20cm ,则它的宽 是 cm (保留根号).3、如图1,在ΔABC 中,DE ∥BC ,且AD ∶BD =1∶2,则S S ADE ∆=四边形DBCE : .图1 图2 图34、如图2,要使ΔABC ∽ΔACD ,需补充的条件是 .(只要写出一种)5、如图3,点P 是RtΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条.图4 图5 图66、如图4,四边形BDEF 是RtΔABC 的内接正方形,若AB =6,BC =4,则DE = .7、如图5,ΔABC 与ΔDEF 是位似三角形,且AC =2DF ,则OE ∶OB = . 二、选择题: (每题5分,共35分)8、若k bac a c b c b a =+=+=+,则k 的值为( ) A 、2 B 、-1 C 、2或-1 D 、不存在9、如图6,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( )A 、21 B 、31 C 、32 D 、41 图7 图8 图910、如图7,△ABC 中,DE ∥FG ∥BC ,且DE 、FG 将△ABC 的面积三等分,若BC=12cm ,则FG 的长为( )A 、8cmB 、6cmC 、64cmD 、26cm 11、下列说法中不正确的是( )A .有一个角是30°的两个等腰三角形相似;B .有一个角是60°的两个等腰三角形相似;C .有一个角是90°的两个等腰三角形相似;D .有一个角是120°的两个等腰三角形相似.12、如图9, D 、E 是AB 的三等分点, DF∥EG∥BC , 图中三部分的面积分别为S 1,S 2,S 3, 则S 1:S 2:S 3( ) A.1:2:3 B.1:2:4 C.1:3:5 D.2:3:413、两个相似多边形的面积之比为1∶3,则它们周长之比为( )A .1∶3B .1∶9C .1D .2∶314、下列3个图形中是位似图形的有( )A 、0个B 、1个C 、2个D 、3个 三、解答题(15题8分,16题10分,17题12分,共30分) 15、如图,已知AD 、BE 是△ABC 的两条高,试说明AD ·BC=BE ·AC16、如图所示,小华在晚上由路灯A 走向路灯B,当他走到点P 时, 发现他身后影子的顶部刚好接触到路灯A 的底部,当他向前再步行12m 到达点Q 时, 发现他身前影子的顶部刚好接触到路灯B 的底部,已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB. (1)求两个路灯之间的距离;(2)当小华走到路灯B时,他在路灯A 下的影长是多少?17.如图,在矩形ABCD 中,AB=12cm ,BC=8cm .点E 、F 、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动.点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EFG 的面积为S (cm 2) (1)当t=1秒时,S 的值是多少?(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E 、B 、F 为顶点的三角形与以点F 、C 、G 为顶点的三角形相似?请说明理由.AB C ED参考答案一、 填空题:(1)、1或4或16;(2)、±6;(3)、-94;(4)、1.6或2.5;(5)、)15(10 ; (6)、1:8;(7)、∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB ;(8)、31.5; (9)、0.2;(10)、3;(11)、2.4;(12)、1:2三、作图题: 23、(略) 四、解答题:24、证明:∵AD 、BE 是△ABC 的高 ∴∠ADC=∠BEC ∵∠C=∠C∴△ADC ∽△BEC ∴AD :BE=AC :BC ∴AD ×BC=BE ×AC25、解:由图得,AB=5,AC=25,BC=5,EF=2,ED=22,DF=10, ∴AB :EF=AC :ED=BC :DF=5:2∴△ABC ∽△DEF26、解:过点C 作C E ∥AD 交AB 于点E ,则CD=AE=2m ,△BCE ∽△B /BA / ∴A / B /:B /B=BE :BC 即,1.2:2= BE :4 ∴BE=2.4∴AB=2.4+2=4.4答:这棵树高4.4m 。
(试题4)《相似》单元测试以及答案

九年级(下)相似整章水平测试一、选择题(每小题3分,共24分)1.下列各组线段中,能成比例的是( ) A .3,6,7,9 B .2,5,6,8 C .3,6,9,18 D .11,12,13,142.如图1,△ABC 中,P 为AB 上一点,在下列四个条件中: (1)∠ACP =∠B ; (2)∠APC =∠ACB ; (3)AC 2=AP ·AB ; (4)AB ·CP =AP ·CB .能使△APC 与△ACB 相似的条件是( ) A .(1)(2)(3) B .(1)(3)(4) C .(2)(3)(4) D .(1)(2)(4)3.一个运动场的实际面积是6 400m 2,那么它在比例尺1∶1 000的地图上的实际面积是( ) A .6.4m 2 B .640cm 2 C .64cm 2 D .8cm 2 4.若两个图形成位似关系,则下列说法不正确的是( ) A .每对对应点所在的直线都相交于同一点 B .两个图形上的对应线段必定平行C .两个图形上的对应线段之比等于位似比D .两个图形的面积比等于位似比5.下列四组图形中不一定相似的是( ) A .有一个角等于40°的两个等腰三角形 B .有一个角为50°的两个直角三角形C .直角三角形被斜边上的高分成的两个直角三角形D .有一个角是60°的两个等腰三角形6.能判定△ABC 与△A ′B ′C ′相似的条件是( )A .ABACA B A C ='''' B .AB A B AC A C ''='',且∠A =∠C ′ C .ABBCA B A C ='''',且∠B =∠A ′ D .AB ACA B A C ='''',且∠B =∠B ′ 7.如图2,已知四边形ABCD 是梯形,若S △AOD ∶S △ACD =1∶3,则S △AOD ∶S △BOC 等于( ) A .1∶2 B .1∶3 C .1∶4 D .1∶98.如图3,是巴西FURNAS 电力公司的标志及结构图,作者用一大一小两颗星巧妙地重叠组合,自然地把高压输电塔与五角星—这一光明的象征联系在一起,那么结构图中的两个阴影三角形的面积之比S S 小大为( )A.13B.12C.512-D.352-二、填空题(每小题3分,共24分)9.三角形三边中点的连线所构成的三角形的面积与原三角形面积的比是.10.如图4,AC、BD相交于点O,要使△AOB∽△DOC,则要补充的条件可以是.11.如图5表示△COD和它放大后得到的△AOB,则它们的相似比是.12.雨后初晴,一学生在运动场上玩耍,从他前面2m远一块小积水处,他看到了旗杆顶端的倒影.如果旗杆底端到积水的距离为40m,该生的眼部高度是1.5m,那么旗杆的高度是m.13.矩形的半张纸和整张纸相似,那么整张纸的长是宽的倍.14.如图6,AF⊥BD,DE⊥AB,则图中相似的三角形有对.15.如图7,测量小玻璃管的口径的量具ABC上,AB的长为10mm,AC被分为60等份.如果小管口DE正好对着量具上30份处(DE∥AB),那么小管口径DE的长是mm.16.如图8,将正三角形的每一边三等分,而以其居中的那一条线段为底边再作等边三角形,然后以其代替底边,再将六角形的每边三等分,重复上述的作法,如此继续下去,就得到雪花曲线.如图8第一个三角形的边长为6,则第一个图形的周长是,第二个图形的周长是,第n个图形的周长是.三、解答题(本大题共52分)17.(本题6分)如图9,已知∠ABC=∠ACD,若AD=3cm,AB=7cm,试求AC的长.18.(本题6分)画出图10(1)、10(2)中的位似中心.19.(本题8分)如图11,△ABC ∽△DEF ,23AB DE ,BG 、EH 分别是∠ABC 、∠DEF 的角平分线,求△ABG 与△DEH 的周长比和面积比.20.(本题8分)如图12所示,在台球赛中,一球在A 点处,要从 A 射出,经球台边挡板 CD 反射,击中球B ,已知AC =10厘米,BD =15厘米,CD =50厘米,问反射点E 距点C 多远才能击中球B ?21.(本题10分)张华同学想利用树影测量树高,他在某一时刻测得长为1米的竹竿影长0.9米,但当他马上测量树影时,因树靠近一幢建筑物.影子不全落在地面上,有一部分影子在墙上,如图13,他先测得墙上的影高1.2米,又测得地面部分的影长2.7米,求得树高是多少?22.(本题14分)如图14,在平面直角坐标系内,已知点A (0,6),点B (8,0),AB =10.动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1)求直线AB 的解析式;(2)当t 为何值时,△APQ 与△AOB 相似,并求出此时点P 与点Q 的坐标.附加题:(本题20分,不计入总分)23.小胖和小瘦去公园玩标准的跷跷板游戏(如图15),两同学越玩越开心,小胖对小瘦说:“真可惜!我只能将你最高翘到1米高,如果我俩各边的跷跷板都再伸长相同的一段长度,那么我就能将你翘到1米25,甚至更高!” (1)你认为小胖的话对吗?请你作图分析说明;(2)你能否找出将小瘦翘到1米25高的方法?试说明.参考答案:一、1~8.CACDA CCD 二、9.1:410.答案不惟一,如A D =∠∠11.3512.3013.214.6 15.516.18,24,14183n -⎛⎫⨯ ⎪⎝⎭三、17.21cm .18.略.19.ABC △与DEH △的面积比4:9=.20.反射点E 在距点C 20厘米处才能击中球B . 21.树高是4.2米.22.(1)直线AB 的解析式为364y x =-+. (2)由题意,知AP t =,102AQ t =-.可分两种情况讨论:①当APQ AOB =∠∠时,有APQ AOB △∽△,此时3011t =(秒),36011P ⎛⎫⎪⎝⎭,,40361111Q ⎛⎫⎪⎝⎭,. ②当AQP AOB =∠∠时,有APQ AOB △∽△,如图2,此时5013t =(秒),28013P ⎛⎫ ⎪⎝⎭,,24601313Q ⎛⎫⎪⎝⎭,. 23.解:(1)小胖的话不对,理由略.(2)方案一:保持BO 长度不变,将OA 延长一半至E ,即只将小瘦一边伸长一半. 方案二:理由略,只将支架升高0.125米.。
相似的单元测试题及答案

相似的单元测试题及答案一、选择题(本题共10分,每题1分)1. 下列哪个选项是相似三角形的定义?A. 面积相等的三角形B. 形状相同的三角形C. 边长成比例的三角形D. 角度相同的三角形2. 相似三角形的对应角相等,对应边成比例,这个性质称为:A. 相似性质B. 等角性质C. 比例性质D. 角度比例性质3. 如果两个三角形的对应边长比为2:3,那么它们的面积比是:A. 2:3B. 4:9C. 6:9D. 8:274. 在相似三角形中,如果一个角是30°,那么它的对应角也是:A. 30°B. 60°C. 90°D. 120°5. 相似三角形的判定定理中,SAS相似准则指的是:A. 两边及其夹角相等B. 三边对应成比例C. 两角对应相等D. 一边对应成比例,其余两边及其夹角相等二、填空题(本题共10分,每空1分)6. 相似三角形的判定定理包括AA准则、SAS准则和______准则。
7. 如果三角形ABC与三角形DEF相似,那么AB:DE=______,∠A=______。
8. 相似三角形的面积比等于它们对应边长的______。
9. 根据相似三角形的性质,如果三角形ABC与三角形DEF相似,且AB=2DE,则三角形ABC的面积是三角形DEF面积的______倍。
10. 在相似三角形中,如果∠BAC=45°,那么∠EDF=______。
三、简答题(本题共20分,每题5分)11. 解释什么是相似三角形,并给出两个相似三角形的例子。
12. 描述如何使用AA准则判定两个三角形是否相似。
13. 说明为什么相似三角形的面积比等于它们对应边长的平方比。
14. 如果一个三角形的边长扩大到原来的两倍,它的面积会如何变化?15. 给出一个实际生活中使用相似三角形性质的例子。
四、计算题(本题共30分,每题10分)16. 已知三角形ABC与三角形DEF相似,AB=6cm,DE=9cm,求BC:EF的比值。
(试题3)《相似》单元测试以及答案

九年级数学(下)第27章水平测试课堂跟踪测试一、填空题(每小题4分,共32分)1.若线段a b c d ,,,成比例,其中3cm 6cm 2cm a b c ===,,,则_____d =.2.要在半径为4cm 的圆形主水管的出水口接上几根半径为2cm 圆形分水管,为了尽量利用主水管的出水量,则可以接上 根分水管.3.已知矩形ABCD 是黄金矩形,较短边2AB =,则较长边_____BC =.4.若235x y y z +==,则______x y z x++=. 5.已知D 是ABC △的BC 边上一点,如果ABD △的面积是ACD △面积的2倍,则:_____BD DC =.6.在四边形ABCD 中,AD BC AC ∥,和BD 相交于点O ,51512AD BC AC ===,,,则_____OA =.7.已知坐标平面内,ABC △的各顶点坐标分别是(01)(23)(20)A B C --,,,,,,DEF △各顶点坐标分别是(02)(46)(40)D E F --,,,,,,则ABC △与DEF △的面积之比是 .8.旗杆的影长为6米,相同时刻身高为170cm 的人的影长为85cm ,那么旗杆的高是 .二、选择题(每小题4分,共32分)9.若560a b =≠,则a b a b +-的值是( ) A.11 B.11- C.111 D.111- 10.若ABC DEF △∽△,且它们的面积比为94,则周长比是( )A.8116 B.32 C.94 D.2311.如图1,在Rt ABC △中,CD 是斜边上的高,DE BC ⊥, 垂足为E ,则图中与ABC △相似的三角形(不包括ABC △)共有( )A.5个 B.4个 C.3个 D.2个12.在1:1000000 地图上,A B ,两点之间的距离是5cm ,则A B ,两地的实际距离是( )A.5千米 B.50千米 C.500千米 D.5000千米13.把矩形的长扩大2倍,宽缩小2倍,则矩形的面积( )A.不变 B.扩大2倍 C.缩小2倍 D.扩大4倍14.如图2,在矩形ADBC 中,1216AC BC ==,,将此矩形折叠,使点A 与点B 重合,则折痕EF 的长是( )A.13 B.14 C.15 D.1615.AD 是ABC △的高,且2AD BD DC =,则BAC ∠的度数为( )A.小于90 B.大于90 C.等于90 D.不能确定16.一个矩形的长为a ,宽为()b a b >,如果把这个矩形截去一个正方形后所余下的矩形与原矩形相似,那么a b ,应满足的关系式是( )A.220a ab b +-=B.220a ab b ++= C.220a ab b --= D.220a ab b -+= 三、训练平台(本题共20分)17.(本小题10分)如图3,在Rt ABC △中,CD 是斜边上的中线,DF AB ⊥,交BC 的延长线于点F ,且69CD DF ==,.求DE 的长.18.(本小题10分)如图4,ABC △是等边三角形,D E ,在BC 所在的直线上,且AB AC BD CE =.试说明:ABD ECA △∽△.综合创新测试四、能力达标(本题共22分)19.(本小题10分)以点O 为位似中心,把如图5所示的图形放大2倍.20.(本小题12分)如图6,两根电线杆相距m l,分别在高10m的A处和高15m的C处用的钢索将两杆固定,请你求出钢索AD与钢索BC的交点M处离地面的高度.五、自主探索(本题14分)21.如图7,为了测量河宽,小华采用的办法是:在河的对岸选取一点A,在河的这岸选一BC=米;然点B,使AB与河的边沿垂直,然后在AB的延长线上取一点C,并量得30BD=米;最后在射线AD上取一点E,使得后又在河的这边取一点D,并量得20CE BDDE=米.小华这种做法,她能根据已有的数据求出河宽AB吗?∥,并分别量得40若能,请求出河宽AB;若不能,她还必须测量哪一条线段的长?假设这条线段的长是m米,请你用含m的代数式表示河宽AB.参考答案一、1.4cm 2.4 3.51+ 4.72 5.2:1 6.3 7.148.12米 二、9.A 10.B 11.B 12.B 13.A 14.C 15.D 16.C 三、17.提示:设法找出有关线段DE 的比例式.注意到CD 是斜边中线,CD DA =,从而DCE A =∠∠,易得A F =∠∠.又CDE ∠为公共角,故CDE FDC △∽△,所以24DE DC DC DE DC DF DF===,. 18.提示:注意到AB BC AC ==,因此120ABD ACE ==∠∠,已知式可化为AB BD CE AC=,所以ABD ECA △∽△. 四、19.略.20.过点M 作MH EF ⊥,垂足为H .设m m m MH xBH p DH q ===,,,由B M H B C D △∽△,得:15:x p l =;由D M H D A B △∽△,得:10:x q l =,6m 1510x x p q l l l x +==+=,. 五、21.根据已有的数据不能求出河宽AB ,还需要测量CE 的长. 设CE m =米,则由CE BD ∥可得ABD ACE △∽△,设AB x =米,则有BD AB CE AC =即2030x m x =+.解得60020x m =-.。
人教版九年级数学下册第27章《相似》单元检测及答案【精选】

人教版数学九年级下学期第27章《相似》单元测试卷(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分) 1.已知2x=5y (y ≠0),则下列比例式成立的是( )A .x y 25=B .x y52= C .x 2y 5= D .x 52y =2.若a b c 234==,则a 2b 3c a ++等于( )A .8B .9C .10D .113.下列各组条件中,一定能推得△ABC 与△DEF 相似的是( ) A .∠A=∠E 且∠D=∠F B .∠A=∠B 且∠D=∠FC .∠A=∠E 且AB EF AC ED = D .∠A=∠E 且AB DFBC ED=4.如图,正方形ABCD 的边长为2,BE=CE ,MN=1,线段MN 的两端点在CD 、AD 上滑动,当DM 为( )时,△ABE 与以D 、M 、N 为顶点的三角形相似.NMED CBAABCD5.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )FEDCB AA .AD DEDB BC=B .BF EFBC AD=CAE BFEC FC=. D .EF DEAB BC=6.如图,在△ABC 中,DE ∥BC ,AD 1DB 2=,DE=4,则BC 的长是( ) EDCBAA .8B .10C .11D .127.如图,四边形ABCD ∽四边形A 1B 1C 1D 1,AB=12,CD=15,A 1B 1=9,则边C 1D 1的长是( )D 1C 1B 1A 1DCBAA .10B .12C .454 D.3658.已知△ABC ∽△A ′B ′C ′且AB 1A B 2='',则S △ABC :S △A'B'C ′为( ) A .1:2 B .2:1 C .1:4 D .4:19.如图,铁路道口的栏杆短臂长1m ,长臂长16m .当短臂端点下降0.5m 时,长臂端点升高(杆的宽度忽略不计)( ) 0.5m16m?A .4mB .6mC .8mD .12m10.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,如果AC=3,AB=6,那么AD 的值为( )D CBAA .32 B .92CD .二、填空题(共6小题,每小题3分,共18分)11.在直角△ABC 中,AD 是斜边BC 上的高,BD=4,CD=9,则AD= .12.如图,直线AD ∥BE ∥CF ,BC=13AC ,DE=4,那么EF 的值是 .FEDCB A13.已知△ABC ∽△DEF ,且它们的面积之比为4:9,则它们的相似比为 .14.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为.OD C15.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).C16.如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN 与AC边交于点N,使截得的三角形与原三角形相似,则MN=.CBA三、解答题(共8题,共72分)17.(本题8分)如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求DEBC的值.ECB18.(本题8分)已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.DB19.(本题8分)如图,在△ABC 中,AB=AC ,∠A=36°,BD 为角平分线,DE ⊥AB ,垂足为E . (1)写出图中一对全等三角形和一对相似比不为1的相似三角形; (2)选择(1)中一对加以证明.EDCB A20.(本题8分)如图,已知A (﹣4,2),B (﹣2,6),C (0,4)是直角坐标系平面上三点. (1)把△ABC 向右平移4个单位再向下平移1个单位,得到△A 1B 1C 1.画出平移后的图形,并写出点A 的对应点A 1的坐标;(2)以原点O 为位似中心,将△ABC 缩小为原来的一半,得到△A 2B 2C 2,请在所给的坐标系中作出所有满足条件的图形.21.(本题8分)在△ABC 中,点D 为BC 上一点,连接AD ,点E 在BD 上,且DE=CD ,过点E 作AB 的平行线交AD 于F ,且EF=AC .如图,求证:∠BAD=∠CAD ;CBAFED22.(本题10分)如图,在梯形ABCD 中,已知AD ∥BC ,∠B=90°,AB=7,AD=9,BC=12,在线段BC 上任取一点E ,连接DE ,作EF ⊥DE ,交直线AB 于点F . (1)若点F 与B 重合,求CE 的长;(2)若点F 在线段AB 上,且AF=CE ,求CE 的长.CBA F ED23.(本题10分)如图,已知△ABC ∽△ADE ,AB=30cm ,AD=18cm ,BC=20cm ,∠BAC=75°,∠ABC=40°.(1)求∠ADE 和∠AED 的度数; (2)求DE 的长.D EBCA24.(本题12分)在Rt △ABC 中,∠C=90°,AC=20cm ,BC=15cm ,现有动点P 从点A 出发,沿AC 向点C 方向运动,动点Q 从点C 出发,沿线段CB 也向点B 方向运动,如果点P 的速度是4cm/秒,点Q 的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t 秒.求:(1)当t=3秒时,这时,P ,Q 两点之间的距离是多少? (2)若△CPQ 的面积为S ,求S 关于t 的函数关系式.(3)当t 为多少秒时,以点C ,P ,Q 为顶点的三角形与△ABC 相似?BCA第27章《相似》单元测试卷解析一、选择题1. 【答案】∵2x=5y ,∴x y52=.故选B . 2.【答案】设a b c234===k , 则a=2k ,b=3k ,c=4k ,即a 2b 3c a ++=2k 23k 34k 2k+⨯+⨯=10,故选C .3. 【答案】A 、∠D 和∠F 不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误; B 、∠A=∠B ,∠D=∠F 不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;C 、由AB EF AC ED=可以根据两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出△ABC 与△DEF 相似,故此选项正确;D 、∠A=∠E 且AB DFBC ED=不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误; 故选:C .FEDC B A4. 【答案】∵四边形ABCD 是正方形,∴AB=BC , ∵BE=CE ,∴AB=2BE ,又∵△ABE 与以D 、M 、N 为顶点的三角形相似,∴①DM 与AB 是对应边时,DM=2DN∴DM 2+DN 2=MN 2=1∴DM 2+14DM 2=1,解得;②DM 与BE 是对应边时,DM=1DN ,∴DM 2+DN 2=MN 2=1,即DM 2+4DM 2=1,解得DM 时,△ABE 与以D 、M 、N 为顶点的三角形相似. 故选C .5. 【答案】∵DE ∥BC ,EF ∥AB ,∴四边形DEFB 是平行四边形,∴DE=BF ,BD=EF ;∵DE ∥BC ,∴AD AE BF AB AC BC ==,EF CE BCAB AC DE ==, ∵EF ∥AB ,∴AE BFEC FC=故选C .6.【答案】∵AD 1DB 2=,∴AD 1AB 3=, ∵在△ABC 中,DE ∥BC ,∴DE AD 1BC AB 3==,∵DE=4,∴BC=3DE=12.故选D . 7. 【答案】∵四边形ABCD ∽四边形A 1B 1C 1D 1,∴1111AB CDA B C D =, ∵AB=12,CD=15,A 1B 1=9,∴C 1D 1=454. 故选C .8.【答案】∵△ABC ∽△A ′B ′C ′,AB 1A B 2='',∴S △ABC :S △A'B'C ′==(AB A B '')2=14,故选C . 9.【答案】设长臂端点升高x 米,则0.5:x=1:16,∴解得:x=8.故选;C . 10. 【答案】∵在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,∴AC 2=AD •AB ,又∵AC=3,AB=6,∴32=6AD ,则AD=32.故选:A .二、填空题11.【答案】∵△ABC 是直角三角形,AD 是斜边BC 上的高,∴AD 2=BD •CD (射影定理), ∵BD=4,CD=9,∴AD=6. DCBA12.【答案】∵BC=13AC ,∴AB 2BC 1=,∵AD ∥BE ∥CF ,∴AB DE BC EF =,∵DE=4,∴EF=2.故答案为:2.13.【答案】因为△ABC ∽△DEF ,所以△ABC 与△DEF 的面积比等于相似比的平方, 因为S △ABC :S △DEF =2:9=(2:3)2, 所以△ABC 与△DEF 的相似比为2:3, 故答案为:2:3.14.【答案】∵以点O 为位似中心,将△ABC 放大得到△DEF ,AD=OA , ∴AB :DE=OA :OD=1:2,∴△ABC 与△DEF 的面积之比为:1:4. 故答案为:1:4.15.【答案】由题意知:光线AP 与光线PC ,∠APB=∠CPD ,∴Rt △ABP ∽Rt △CDP , ∴AB:BP=CD:PD,,∴CD=1.2×12÷1.8=8(米). 故答案为:8.16.【答案】如图1,当MN ∥BC 时,则△AMN ∽△ABC ,故AM:AB=AN:AC=MN:BC , 则3:9=MN:12,解得:MN=4, 如图2所示:当∠ANM=∠B 时,又∵∠A=∠A ,∴△ANM ∽△ABC ,∴AM:AC=MN:BC ,即3:6=MN:12, 解得:MN=6, 故答案为:4或6.图2图1ABCCBA三、解答题17.【解答】∵DE ∥BC ,∴AD:AB=DE:BC ,∵AD=3,AB=5,∴DE BC =35. 18.【解答】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD , ∴GF:CF=DF:BF ,CF:EF=DF:BF ,∴GF:CF=CF:EF , 即CF 2=GF •EF . 19.【解答】(1)△ADE ≌△BDE ,△ABC ∽△BCD ; (2)证明:∵AB=AC ,∠A=36°,∴∠ABC=∠C=72°,∵BD 为角平分线,∴∠ABD=12∠ABC=36°=∠A ,在△ADE 和△BDE 中, ∠A=∠DBA,∠AED=∠BED,ED=ED , ∴△ADE ≌△BDE (AAS );∵AB=AC ,∠A=36°,∴∠ABC=∠C=72°,∵BD 为角平分线,∴∠DBC=12∠ABC=36°=∠A ,∵∠C=∠C ,∴△ABC ∽△BCD . 20.【解答】(1)△A 1B 1C 1如图所示,其中A 1的坐标为:(0,1); (2)符合条件△A 2B 2C 2有两个,如图所示.A 1B 1C 1各点的坐标,继而画出图形; (2)利用位似的性质,可求得△A 2B 2C 2各点的坐标,继而画出图形. 21.【解答】延长FD 到点G ,过C 作CG ∥AB 交FD 的延长线于点M , 则EF ∥MC ,∴∠BAD=∠EFD=∠M ,在△EDF 和△CMD 中,∠EFD=∠M ,∠EDF=∠MDC ,ED=DC , ∴△EDF ≌△CMD (AAS ),∴MC=EF=AC ,∴∠M=∠CAD ,∴∠BAD=∠CAD ;BAM22.【解答】(1)当F和B重合时,∵EF⊥DE,∵DE⊥BC,∵∠B=90°,∴AB⊥BC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形,∴AD=EF=9,∴CE=BC﹣EF=12﹣9=3;(2)过D作DM⊥BC于M,∵∠B=90°,∴AB⊥BC,∴DM∥AB,∵AD∥BC,∴四边形ABMD是矩形,∴AD=BM=9,AB=DM=7,CM=12﹣9=3,设AF=CE=a,则BF=7﹣a,EM=a﹣3,BE=12﹣a,∵∠FEC=∠B=∠DMB=90°,∴∠FEB+∠DEM=90°,∠BFE+∠FEB=90°,∴∠BFE=∠DEM,∵∠B=∠DME,∴△FBE∽△EMD,∴BF:EM=BE:DM,∴(7-a):(a-3)=(12-a):7,a=5,a=17,∵点F在线段AB上,AB=7,∴AF=CE=17(舍去),即CE=5.EDF(F)D23.【解答】解:(1)∵∠BAC=75°,∠ABC=40°,∴∠C=180°﹣∠BAC﹣∠ABC=180°﹣75°﹣40°=65°,∵△ABC∽△ADE,∴∠ADE=∠ABC=40°,∠AED=∠C=65°;(2)∵△ABC∽△ADE,∴AB:AD=BC:DE,即30:18=20:DE,解得DE=12cm.24.【解答】由题意得AP=4t,CQ=2t,则CP=20﹣4t,(1)当t=3秒时,CP=20﹣4t=8cm,CQ=2t=6cm,由勾股定理得PQ=10cm;(2)由题意得AP=4t,CQ=2t,则CP=20﹣4t,因此Rt△CPQ的面积为S=12×(20-4t)×2t=(20t-4t2)cm2;(3)分两种情况:①当Rt△CPQ∽Rt△CAB时,CP:CA=CQ:CB,即(20-4t):20=2t:15,解得t=3秒;②当Rt△CPQ∽Rt△CBA时,CP:CB=CQ:CA,即(20-4t):15=2t:20,解得t=4011秒.因此t=3秒或t=4011秒时,以点C、P、Q为顶点的三角形与△ABC相似.。
《相似》单元复习题及答案

《相似》单元复习题及答案一、选择题1. 在相似三角形中,对应角相等的条件是()。
A. 边长成比例B. 面积相等C. 形状相同D. 角相等2. 如果两个三角形的对应边长比为2:3,那么它们的对应角的比是()。
A. 2:3B. 3:2C. 1:1D. 无法确定3. 相似三角形的性质不包括以下哪一项()。
A. 对应角相等B. 对应边成比例C. 面积比等于边长比的平方D. 周长比等于边长比二、填空题4. 若三角形ABC与三角形DEF相似,相似比为k,则三角形ABC的面积与三角形DEF的面积之比为_______。
5. 根据相似三角形的性质,若三角形ABC的边长分别为a, b, c,三角形DEF的边长分别为2a, 2b, 2c,则三角形ABC与三角形DEF的相似比为_______。
三、简答题6. 解释相似三角形的AA准则(角角相似)。
7. 给出一个实际生活中应用相似三角形的例子,并解释其原理。
四、计算题8. 若三角形ABC的边长分别为3, 4, 5,三角形DEF的边长分别为6, 8, 10,求三角形ABC与三角形DEF的相似比,并验证它们是否相似。
9. 已知三角形ABC的面积为24平方厘米,三角形DEF与三角形ABC相似,且相似比为1:2,求三角形DEF的面积。
《相似》单元复习题答案一、选择题1. 正确答案:A. 边长成比例2. 正确答案:C. 1:13. 正确答案:D. 周长比等于边长比二、填空题4. 答案:k²5. 答案:1:2三、简答题6. 相似三角形的AA准则(角角相似)指的是:如果两个三角形的两个角分别相等,则这两个三角形是相似的。
7. 例子:在建筑设计中,建筑师可能会使用相似三角形来确保建筑物的比例在不同尺寸下保持一致。
原理是,通过保持角度相同,即使边长不同,建筑物的形状和比例也会保持相似。
四、计算题8. 相似比为2:1,因为三角形ABC的边长与三角形DEF的边长成比例(3:6=4:8=5:10),且比例为2:1。
人教版九年级下册数学《相似》单元测试(Word版有答案)

人教版九年级下册数学《相似》单元测试(Word 版有答案)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为34,则△ABC 与△DEF 对应中线的比为( )A.34B.43C.916D.169 2.已知b a =513,则a -b a +b的值是( )A.23B.32C.94D.493.如图,在四边形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O.若AD =1,BC =3,则AO CO 的值为( )A.12B.13C.14D.194.如图,在△ABC 中,DE ∥BC ,DE 分别与AB ,AC 相交于点D ,E.若AD =12,DB =4,则DE ∶BC 的值为( )A.23B.12C.34D.355.如图,不能判定△AOB 和△DOC 相似的条件是( )A .AO ·CO =BO ·DO B.AO DO =ABCD C .∠A =∠D D .∠B =∠C6.如图,矩形ABCD ∽矩形ADFE ,AE =1,AB =4,则AD =( )A .2B .2.4C .2.5D .37.已知如图①,②中各有两个三角形,其边长和角的度数如图上标注,则对图①,②中的两个三角形,下列说法正确的是( )A .只有①相似B .只有②相似C .都不相似D .都相似8.如图,在8×4的矩形网格中,每个小正方形的边长都是1.若△ABC 的三个顶点在图中相应的格点上,图中点D ,E ,F 也都在格点上,则下列与△ABC 相似的三角形是( )A .△ACDB .△ADFC .△BDFD .△CDE9.如图,点M 在BC 上,点N 在AM 上,CM =CN ,AM AN =BMCM,下列结论正确的是( )A .△ABM ∽△ACB B .△ANC ∽△AMB C .△ANC ∽△ACMD .△CMN ∽△BCA10.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,EG ∥AB ,且AE ∶EC =3∶2.若BC =10,则FG 的长为( )A .1B .2C .3D .411.阳光通过窗口AB 照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC =8.7米,窗口高AB =1.8米,则窗口底边离地面的高BC 为( )A .4米B .3.8米C .3.6米D .3.4米12.在Rt △ABC 和Rt △DEF 中,已知∠C =∠F =90°,在下列条件中:①∠A =30°,∠E =60°;②AC =5,BC =4,DF =15,EF =12;③AB =5,AC =3,DE =10,DF =6;④AC ∶AB =1∶3,DF =a ,DE =3a.能够判断Rt △ABC ∽Rt △DEF 的有( )A .1个B .2个C .3个D .4个13.如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点重合.若AB =2,BC =3,则△FCB ′与△DGB ′的面积之比为( )A .9∶4B .16∶9C .4∶3D .3∶214.如图,将△ABC 的高AD 四等分,过每一个分点作底边的平行线,把三角形的面积分成四部分S 1,S 2,S 3,S 4,则S 1∶S 2∶S 3∶S 4等于( )A .1∶2∶3∶4B .2∶3∶4∶5C .1∶3∶5∶7D .3∶5∶7∶915.如图,在△ABC 中,AC =BC ,CD 是边AB 上的高线,且有2CD =3AB =6,CE =EF =DF ,则下列判断中不正确的是( )A .∠AFB =90° B .BE = 5C .△EFB ∽△BFCD .∠ACB +∠AEB =45°16.如图1,在Rt △ABC 中,∠ACB =90°,点P 以每秒1 cm 的速度从点A 出发,沿折线AC —CB 运动,到点B 停止,过点P 作PD ⊥AB ,垂足为D ,PD 的长y(cm)与点P 的运动时间x(秒)的函数图像如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5 cmB .1.2 cmC .1.8 cmD .2 cm二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.如图,已知AD ∥BE ∥CF ,且AB =4,BC =5 ,EF =4,则DE = .18.如图,已知△OAB 与△OA ′B ′是位似比为1∶2的位似图形,点O 为位似中心.若△OAB 内一点P(x ,y)与△OA ′B ′内一点P ′是一对对应点,则点P ′的坐标是 .19.如图,在△ABC 中,AB =AC =10,BC =16,点D 是边BC 上一动点(不与B ,C 重合),∠ADE =∠B =α,DE 交AC 于点E.则当BD =4时,CE = ;当∠AED =90°时,BD = . 三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)如图,矩形ABCD 中,AB =3,BC =6,点E 在对角线BD 上,且BE=1.8,连接AE 并延长交DC 于点F ,求CFCD的值.21.(本小题满分9分)如图,△ABC的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且位似比为2;(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M对应的点M′的坐标为.22.(本小题满分9分)已知:如图,在△ABC中,BC=10,BC边上的高h=5,点E在边AB 上,过点E作EF∥BC,交AC边于点F,点D为BC上一点,连接DE,DF,△DEF的面积为4,求点E到BC的距离.23.(本小题满分9分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于点E,交AC延长线于点F.求证:(1)△ADF∽△EDB;(2)CD2=DE·DF.24.(本小题满分10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2 m,CE =0.8 m,CA=30 m(点A,E,C在同一直线上).已知小明的身高EF是1.7 m,请你帮小明求出楼高AB.(结果精确到0.1 m)25.(本小题满分10分)如图,在△ABC中,BC=8 cm,AC=6 cm,点P从B出发,沿BC方向以2 cm/s的速度移动,点Q从C出发,沿CA方向以1 cm/s的速度移动,若P,Q分别从B,C同时出发,设运动的时间为t s,则△CPQ能否与△CBA相似?若能,求出t的值;若不能,请说明理由.26.(本小题满分11分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB·AD;(2)求证:CE ∥AD ;(3)若AD =4,AB =6,求ACAF的值.答案一、选择题二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上) 17.165.18.(-2x ,-2y).19.CE =4.8;当∠AED =90°时,BD =8. 三、解答题20.解:∵四边形ABCD 是矩形,∴∠BAD =90°.又∵AB =3,AD =BC =6,∴BD =AB 2+AD 2=3. ∵BE =1.8,∴DE =3-1.8=1.2.∵AB ∥CD ,∴DF AB =DE BE ,即DF 3=1.21.8.解得DF =233.∴CF =CD -DF =33.∴CF CD =333=13.21.点M ′的坐标为(2a ,2b)或(-2a ,-2b).解:如图,△DEF 和△D ′E ′F ′为所作. 22.解:设点E 到BC 的距离为x.∵EF ∥BC ,∴△AEF ∽△ABC. ∴EF BC =5-x 5.∴EF =10-2x. ∴S △DEF =12(10-2x)·x =4.解得x 1=4,x 2=1.∴点E 到BC 的距离为4或1.23.证明:(1)在Rt △ABC 中,∠B +∠A =90°. ∵DF ⊥AB ,∴∠BDE =∠ADF =90°. ∴∠A +∠F =90°.∴∠B =∠F. ∴△ADF ∽△EDB.(2)由(1)可知∠B =∠F ,∵CD 是Rt △ABC 斜边AB 上的中线,∴CD =AD =DB. ∴∠DCE =∠B.∴∠DCE =∠F.又∵∠CDE =∠FDC ,∴△CDE ∽△FDC. ∴CD DF =DE CD ,即CD 2=DE ·DF. 24.解:过点D 作DG ⊥AB ,分别交AB ,EF 于点G ,H ,则EH =AG =CD =1.2 m ,DH =CE =0.8 m ,DG =CA =30 m. ∵EF ∥AB ,∴FH BG =DHDG.由题意,知FH =EF -EH =1.7-1.2=0.5(m). ∴0.5BG =0.830,解得BG =18.75. ∴AB =BG +AG =18.75+1.2=19.95(m)≈20.0 m. 答:楼高AB 约为20.0 m. 25.解:设经过t s 时△CPQ 与△CBA 相似,此时BP =2t ,CQ =t ,CP =8-2t ,①当△CPQ ∽△CBA 时,CP CB =CQ CA ,即8-2t 8=t6,解得t =2.4;②当△CPQ ∽△CAB 时,CP CA =CQ CB ,即8-2t 6=t 8,解得t =3211.综上可知,经过2.4 s 或3211s 时,△CPQ 与△CBA 相似.26.解:(1)证明:∵AC 平分∠DAB ,∴∠DAC =∠CAB. 又∵∠ADC =∠ACB =90°, ∴△ADC ∽△ACB.∴AD AC =AC AB,即AC 2=AB ·AD. (2)证明:∵E 为AB 的中点,∴CE =12AB =AE.∴∠EAC =∠ECA.由(1)知∠DAC =∠CAB. ∴∠DAC =∠ECA.∴CE ∥AD. (3)∵CE ∥AD ,∴△AFD ∽△CFE.∴AD CE =AFCF .∵CE =12AB ,∴CE =12×6=3.∴43=AF CF. ∴AF AC =47,即AC AF =74.人教版九年级数学下册 第二十七章 相似 单元提优训练人教版九年级数学下册 第二十七章 相似 单元提优训练一、选择题1. 下列图形中,不是相似图形的有( B )A. 0组B. 1组C. 2组D. 3组2. 如图,点P 是▱ABCD 边AB 上的一点,射线CP 交DA 的延长线于点E ,则图中相似的三角形有( D )A .0对B .1对C .2对D .3对3. 下列各组中的四条线段成比例的是( D )A. 4 cm,2 cm,1 cm,3 cmB. 1 cm,2 cm,3 cm,5 cmC. 3 cm,4 cm,5 cm,6 cmD. 1 cm,2 cm,2 cm,4 cm 4.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式错误的是( C )A.B.C. D.5. 如图,在△ABC 中,DE ∥BC ,AD AB =13,BC =12,则DE 的长是( B )A .3B .4 C.5 D .66. 如果两个相似多边形的面积比为9∶4,那么这两个相似多边形的相似比为( C ) A. 9∶ 4 B. 2∶ 3 C. 3∶ 2 D. 81∶167. 位似图形的位似中心可以在( D )A.原图形外B.原图形内C.原图形上D.以上三种可能都有8. 下列说法正确的是( A )A. 位似图形一定是相似图形B. 相似图形一定是位似图形C. 两个位似图形一定在位似中心的同侧D. 位似图形中每对对应点所在的直线必互相平行9.如图,在△ABC中,DE∥BC,,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( C )A.6 B.8 C.10 D.1210. 若2a=3b=4c,且abc≠0,则的值是(B)A. 2B. -2C. 3D. -3二、填空题11.如图所示,C为线段AB上一点,且满足AC∶BC=2∶3,D为AB的中点,且CD=2 cm,则AB=________ cm.【答案】2012.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM交BC于E.当M为BD中点时,的值为【答案】13.在比例尺为1:6 000 000 的海南地图上,量得海口与三亚的距离约为3.7 厘米,则海口与三亚的实际距离约为千米.【答案】22214.两个相似多边形,如果它们对应顶点所在的直线______________________,那么这样的两个图形叫做位似图形.【答案】相交于一点15.在△ABC 中,AB =6 cm ,AC =5 cm ,点D 、E 分别在AB 、AC 上.若△ADE 与△ABC 相似,且S △ADE ∶S 四边形BCED =1∶8,则AD =__________ cm.【答案】2或16.若k =a -2b c =b -2c a =c -2ab ,且a +b +c ≠0,则k = .【答案】-1三、解答题17. 在平行四边形ABCD 中,E 为BC 边上的一点.连接AE.(1)若AB =AE ,求证:∠DAE =∠D ;(2)若点E 为BC 的中点,连接BD ,交AE 于F ,求EF ∶FA 的值.解:(1)证明:∵四边形ABCD 为平行四边形,∴∠B =∠D ,AD ∥BC ,∴∠AEB =∠EAD ,又∵AE =AB ,∴∠B =∠AEB ,∴∠B =∠EAD ,∴∠EAD =∠D ;(2)∵AD ∥BC ,∴∠FAD =∠FEB ,∠ADF =∠EBF ,∴△ADF ∽△EBF ,∴EF ∶FA =BE ∶AD =BE ∶BC =1∶2.18.在平面直角坐标系中,已知点A (-2,0),点B (0,4),点E 在OB 上,且∠OAE =∠OBA . (1)如图①,求点E 的坐标(2)如图②,将△AEO 沿x 轴向右平移得到△A ′E ′O ′,连接A ′B ,BE ′.①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).(1) 【答案】∵点A的坐标为(-2,0),点B的坐标为(0,4),∴OA=2,OB=4,∵∠OAE=∠OBA,∠EOA=∠AOB=90°,∴△OAE∽△OBA,有=,即=,解得OE=1.∴点E的坐标为(0,1).(2) 【答案】①如图,连接EE′,由题设AA′=m,则A′O=2-m.19. 已知四条线段a,b,c,d的长度,试判断它们是否成比例:(1)a=16 cm,b=8 cm,c=5 cm,d=10 cm;(2)a=8 cm,b=5 cm,c=6 cm,d=10 cm.(1) 【答案】∵8×10=80,16×5=80,∴bd=ac.∴能够成比例.(2) 【答案】∵8×6=48,10×5=50,∴不能够成比例.20.如图,AC是圆O的直径,AB、AD是圆O的弦,且AB=AD,连接BC、D C.(1)求证:△ABC≌△ADC;(2)延长AB、DC交于点E,若EC=5 cm,BC=3 cm,求四边形ABCD的面积.【答案】(1)证明∵AC是圆O的直径,∴∠ABC=∠D=90°,在Rt △ABC 与Rt △ADC 中,,∴Rt △ABC ≌Rt △ADC ;(2)解 由(1)知Rt △ABC ≌Rt △ADC , ∴CD =BC =3,AD =AB , ∴DE =5+3=8,∵∠EAD =∠ECB ,∠D =∠EBC =90°, ∴△EAD ∽△ECB , ∴=,∵BE ==4,∴=,∴AD =6,∴四边形ABCD 的面积=S △ABC +S △ACD =2××3×6=18 cm 221.如图,梯形ABCD 中,AB ∥CD ,点F 在BC 上,DF 与AB 的延长线交于点G.(1)求证:△CDF ∽△BGF ;(2)当点F 是BC 的中点时,过F 作EF ∥CD 交AD 于点E ,若AB =6cm ,EF =4cm ,求CD 的长. 解:(1)证明:∵梯形ABCD 中,AB ∥CD ,即CD ∥BG ,∴△CDF ∽△BGF ;(2)由(1)得△CDF ∽△BGF ,且F 是BC 中点,∴DF =FG ,CD =BG.又∵EF ∥CD ,AB ∥CD ,∴EF ∥AG ,∴△DEF ∽△DAG.∴EF AG =DF DG =12,∴AG =8cm ,∴CD =BG =AG -AB =2cm.22.已知矩形ABCD 中,AD =3,AB =1.若EF 把矩形分成两个小的矩形,如图所示,其中矩形ABEF 与矩形ABCD 相似.求AF ∶AD 的值.【答案】设AF=x ,∵矩形ABEF 与矩形ABCD 相似,且AD=3,AB=1,∴对应边成比例,即=,即=,解得x=,∴AF ∶AD=∶3=1∶9.23.如图,在平面直角坐标系中,△ABC 的顶点坐标为A (-2,3),B (-3,2),C (-1,1).(1)若将△ABC 向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A 1B 1C 1; (2)画出△A 1B 1C 1绕原点旋转180°后得到的△A 2B 2C 2;(3)△A'B'C'与△ABC 是位似图形,请写出位似中心的坐标: ; (4)顺次连接C ,C 1,C',C 2,所得到的图形是轴对称图形吗? (1) 【答案】如答图.(2) 【答案】如答图. (3) 【答案】(0,0)(4) 【答案】如答图,所得图形是轴对称图形.25.24.问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息如图1:甲组:测得一根直立于平地,长为80 cm 的竹竿的影长为60 cm ; 如图2:乙组:测得学校旗杆的影长为900 cm ;如图3:丙组:测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为350 cm,影长为300 cm.解决问题:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度?(2)如图3,设太阳光线MH与⊙O相切于点M,请根据甲、丙两组得到的信息,求景灯灯罩的半径?【答案】解(1)∵同一时刻物高与影长成正比,∴=,即=,解得DE=1 200 cm;(2)连接OM,设OM=r,∵同一时刻物高与影长成正比,∴=,即=,解得NG=400 cm,在Rt△NGH中,NH===500 cm,设⊙O的半径为r,∵MH与⊙O相切于点M,∴OM⊥NH,∴∠NMO=∠NGH=90°,又∵∠ONM=∠GNH,∴△NMO∽△NGH,∴=,即=,又∵NO=NK+KO=(NG-KG)+KO=400-350+r=50+r,∴500r=300(50+r),解得r=75 cm.故景灯灯罩的半径是75 cm.九年级下册(人教版)数学单元检测卷:第二十七章相似一、填空题1.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E.AB交EF于D.给出下列结论:①△ABC≌△AEF;②∠AFC=∠C;③DF=CF;④△ADE∽△FDB其中正确的结论是____________(填写所有正确结论的序号).2.如图是一个边长为1的正方形组成的网络,△ABC和△A′B′C′都是格点三角形,请问△ABC 和△A′B′C′是否相似?答:______________;若相似,它们的相似比等于__________.3.如图,O是△ABC内任意一点,D、E、F分别为AO、BO、CO上的点,且△ABC与△DEF 是位似三角形,位似中心为O.若AD=AO,则△ABC与△DEF的位似比为__________.4.已知△ABC∽△DEF,且S△ABC=4,S△DEF=25,则=________.5.一个等腰直角三角形和一个正方形如图摆放,被分割成了5个部分. ①,②,③这三块的面积比依次为1∶4∶41,那么④,⑤这两块的面积比是____________.6.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC 缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为____________.7.如图,顽皮的小聪在小芳的作业本上用红笔画了个“×”(作业本中的横格线都平行,且相邻两条横格线间的距离都相等),A、B、C、D、O都在横格线上,且AD、BC为线段.若线段AB=4 cm,则线段CD=________ cm.8.如图,五边形ABCDE和五边形A1B1C1D1E1是位似图形,且PA1=PA,则AB∶A1B1等于________.9.图中的两个四边形相似,则x+y=__________,α=__________.10.若a∶b∶c=1∶3∶2,且a+b+c=24,则a+b-c=________.二、选择题11.如图,将一张直角三角形纸片BEC的斜边放在矩形ABCD的BC边上,恰好完全重合,BE、CE分别交AD于点F、G,BC=6,AF∶FG∶GD=3∶2∶1,则AB的长为()A.1B.C.D.212.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,△ABC的面积为4,则△DEF的面积为()A.2B.8C.16D.2413.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形相似.对于两人的观点,下列说法正确的是()A.甲对,乙不对B.甲不对,乙对C.两人都对D.两人都不对14.关于对位似图形的表述,下列命题正确的有()①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意一组对应点P,P′与位似中心O的距离满足OP=k·OP′.A.①②③④B.②③④C.②③D.②④15.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60 m,ST=120 m,QR=80 m,则河的宽度PQ为()A.40 mB.60 mC.120 mD.180 m16.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A,再在河的这一边选点B和点C,使得AB⊥BC,然后再在河岸上选点E,使得EC⊥BC,设BC与AE交于点D,如图所示,测得BD=120米,DC=60米,EC=50米,那么这条河的大致宽度是()A.75米B.25米C.100米D.120米17.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示的图形,其中AB⊥BE,EF⊥BE,AF交BE于点D,C在BD上,有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A、B间距离的有()A.4组B.3组C.2组D.1组18.小刚身高180 cm,他站立在阳光下的影子长为90 cm,他把手臂竖直举起,此时影子长为115 cm,那么小刚的手臂超出头顶()A.35 cmB.50 cmC.25 cmD.45 cm19.观察图中各组图形:其中形状相同的有()A.1组B.2组C.3组D.4组20.如图,在平面直角坐标系中,点A在△ODC的OD边上,AB∥DC交OC于点B.若点A、B的坐标分别为(2,3)、(2,1),点C的横坐标为2m(m>0),则点D的坐标为()A.(2m,m)B.(2m,2m)C.(2m,3m)D.(2m,4m)三、解答题21.如图△ABC的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,求△DEF的边上与点M对应的点M′的坐标.22.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′的顶点都在格点上.(1)求证:△ABC∽A′B′C′;(2)A′B′C′与△ABC是位似图形吗?如果是,在图形上画出位似中心并求出位似比.23.如图△ABC中,D、E是AB、AC上点,AB=7.8,AD=3,AC=6,AE=3.9,试判断△ADE与△ABC是否会相似.24.如图,正方形A1A2B1C1,A2A3B2C2,A3A4B3C3,…,AnAn+1BnCn,如图位置依次摆放,已知点C1,C2,C3,…,Cn在直线y=x上,点A1的坐标为(1,0).(1)写出正方形A1A2B1C1,A2A3B2C2,A3A4B3C3,…,AnAn+1BnCn的位似中心坐标;(2)正方形A4A5B4C4四个顶点的坐标.25.如图,在△ABC中,∠C=90°,E是BC上一点,ED⊥AB,垂足为D.求证:△ABC∽△EBD.26.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.27.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,=,AC=14;(1)求AB、BC的长;(2)如果AD=7,CF=14,求BE的长.28.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立如图所示的平面直角坐标系.(1)将△ABC向左平移7个单位后再向下平移3个单位,请画出两次平移后的△A1B1C1,若M 为△ABC内的一点,其坐标为(a,b),直接写出两次平移后点M的对应点M1的坐标;(2)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1∶2.请在网格内画出在第三象限内的△A2B2C2,并写出点A2的坐标.答案解析1.【答案】C【解析】∵四边形ABCD是矩形,∴AB=CD,AD=BC=6,∠A=∠D=90°,∵∠E=90°,∴∠EFG+∠EGF=90°,∴∠AFB+∠DGC=90°,∵∠AFB+∠ABF=90°,∴∠ABF=∠DGC,∴△AFB∽△DCG,∴=,∵AF∶FG∶GD=3∶2∶1,∴AF=3,DG=1,∴AB2=AF·DG=3,∴AB=.故选C.2.【答案】C【解析】∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA∶OD=1∶2,∴△ABC与△DEF的面积之比为1∶4,∵△ABC的面积为4,∴△DEF的面积为16.故选C.3.【答案】A【解析】甲:根据题意,得AB∥A′B′,AC∥A′C′,BC∥B′C′,∴∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′,∴甲说法正确;乙:∵根据题意,得AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,∴==,==,∴≠,∴新矩形与原矩形不相似.∴乙说法不正确.故选A.4.【答案】B【解析】①位似图形一定是相似图形,但是相似图形不一定是位似图形;故错误;②位似图形一定有位似中心;正确;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;正确;④位似图形上任意一组对应点P,P′与位似中心O的距离满足OP=k·OP′;正确.故选B.5.【答案】C【解析】∵RQ⊥PS,TS⊥PS,∴RQ∥TS,∴△PQR∽△PSR,∴=,即=,∴PQ=120.故选C.6.【答案】C【解析】∵AB⊥BC,EC⊥BC,∴∠B=∠C=90°.又∵∠ADB=∠EDC,∴△ADB∽△EDC.∴=,即=.解得AB=100米.故选C.7.【答案】B【解析】①因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;②可利用∠ACB和∠ADB的正切求出AB;③因为△ABD∽△EFD,可利用=,求出AB;④无法求出A,B间距离.故共有3组可以求出A,B间距离.故选B.8.【答案】B【解析】设手臂竖直举起时总高度x m,则=,解得x=50 cm.故选B.9.【答案】C【解析】(1)组形状相同;(2)组形状相同;(3)组形状相同;(4)组形状不同,较大的图形上多出了上面的图案.故选C.10.【答案】C【解析】∵AB∥CD,∴△OAB和△ODC是以原点为位似中心的位似图形,而B(2,1),C点的横坐标为2m,∴把A点的纵坐标乘以m可得D点的纵坐标,即点D的横坐标为(2m,3m).故选C.11.【答案】①②④【解析】在△ABC和△AEF中,,∴△ABC≌△AEF,故①正确,∴AC=AF,∴∠C=∠AFC,故②正确,∵∠E=∠B,∠EDA=∠BDF,∴△ADE∽△FDB,故④正确,无法证明DF=CF,故③错误.12.【答案】相似【解析】△ABC∽△A′B′C′;根据题意,得AC=1,BC=,AB=,A′C′=,B′C′=2,A′B′=,∵==,=,==,∴===,∴△ABC∽△A′B′C′.13.【答案】【解析】∵O是△ABC内任意一点,D、E、F分别为AO、BO、CO上的点,且△ABC与△DEF 是位似三角形,位似中心为O.AD=AO,∴=,则△ABC与△DEF的位似比为.14.【答案】【解析】∵△ABC∽△DEF,且S△ABC=4,S△DEF=25,∴==.15.【答案】9∶14【解析】由题意,得①、②、④都是等腰直角三角形,∵①,②这两块的面积比依次为1∶4,∴设①的直角边为x,∴②的直角边为2x,设正方形的边长为y,∵①,③这两块的面积比依次为1∶41,∴①∶(①+③)=1∶42,即x2∶3xy=1∶42,∴y=7x,∴④的面积为6x·6x÷2=18x2,⑤的面积为4x·7x=28x2,∴④,⑤这两块的面积比是18x2∶28x2=9∶14.16.【答案】(2,)【解析】∵△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),∴AC的中点是(4,3),∵将△ABC缩小为原来的一半,∴线段AC的中点P变换后在第一象限对应点的坐标为(2,).17.【答案】6【解析】如图,过点O作OE⊥AB于点E,OF⊥CD于点F,则E、O、F三点共线,∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴=,即=,∴CD=6 cm.18.【答案】3∶2【解析】∵PA1=PA,∴PA∶PA1=3∶2,又∵AB∶A1B1=PA∶PA1∴AB∶A1B1=PA∶PA1=3∶2.19.【答案】6385°【解析】由于两个四边形相似,它们的对应边成比例,对应角相等,所以18∶4=x∶8=y∶6,解得x=36,y=27,则x+y=36+27=63.α=360°-(77°+83°+115°)=85°.20.【答案】8【解析】∵a∶b∶c=1∶3∶2,∴设a=k,则b=3k,c=2k,又∵a+b+c=24,∴k+3k+2k=24,∴k=4,∴a+b-c=k+3k-2k=2k=2×4=8.21.【答案】解(1)如图,△DEF和△D′E′F′为所作;(2)点M对应的点M′的坐标为(2a,2b)或(-2a,-2b).故答案为(2a,2b)或(-2a,-2b).【解析】(1)把点A、B、C的横、纵坐标都乘以2可得到对应点D、E、F的坐标,再描点可得△DEF;把点A、B、C的横、纵坐标都乘以-2可得到对应点D′、E′、F′的坐标,然后描点可得△D′E′F′;(2)利用以原点为位似中心的位似变换的对应点的坐标特征求解.22.【答案】(1)证明∵AB=,BC=,AC=2,A′B′=2,B′C′=2,A′C′=4,∴==,∴△ABC∽A′B′C′;(2)解如图所示:两三角形对应点的连线相交于一点,故A′B′C′与△ABC是位似图形,O即为位似中心,位似比为2.【解析】(1)分别求出三角形各边长,进而得出答案;(2)利用位似图形的性质得出答案.23.【答案】解△ADE∽△ACB;理由如下:∵AB=7.8,AD=3,AC=6,AE=3.9,∴=,=,∴=,又∵∠A=∠A,∴△ADE∽△ACB.【解析】由已知条件证出=,再由∠A是公共角,根据两组对应边的比相等且夹角相等的两个三角形相似,即可判定△ADE与△ABC相似.24.【答案】解(1)如图所示:正方形A1A2B1C1,A2A3B2C2,A3A4B3C3,…,AnAn+1BnCn的位似中心坐标为(0,0);(2)∵点C1,C2,C3,…,Cn在直线y=x上,点A1的坐标为(1,0),∴OA1=A1C1=1,OA2=A2C2=2,则A3O=A3C3=4,∴OA4=A4C4=8,则OA5=16,故A4(8,0),A5(16,0),B4(16,8),C4(8,8).【解析】(1)直接利用位似图形的性质得出对应点连线的交点为原点,进而得出答案;(2)利用一次函数图象上点的坐标性质得出各线段的长,进而得出答案.25.【答案】证明∵ED⊥AB,∴∠EDB=90°.∵∠C=90°,∴∠EDB=∠C.∵∠B=∠B,∴△ABC∽△EBD.【解析】先根据垂直的定义,得出∠EDB=90°,故可得出∠EDB=∠C.再由∠B=∠B即可得出结论.26.【答案】解在△ABC与△AMN中,==,==,∴=,又∵∠A =∠A,∴△ABC∽△AMN,∴=,即=,解得MN=1 500米,答:M、N两点之间的直线距离是1 500米;【解析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可.27.【答案】解(1)∵AD∥BE∥CF,∴==,∴=,∵AC=14,∴AB=4,∴BC=14-4=10;(2)过点A作AG∥DF交BE于点H,交CF于点G,如图所示:又∵AD∥BE∥CF,AD=7,∴AD=HE=GF=7,∵CF=14,∴CG=14-7=7,∵BE∥CF,∴==,∴BH=2,∴BE=2+7=9.【解析】(1)由平行线分线段成比例定理和比例的性质得出=,即可求出AB的长,得出BC的长;(2)过点A作AG∥DF交BE于点H,交CF于点G,得出AD=HE=GF=7,由平行线分线段成比例定理得出比例式求出BH,即可得出结果.28.【答案】解(1)所画图形如下所示,其中△A1B1C1即为所求,根据平移规律:左平移7个单位,再向下平移3个单位,可知M1的坐标(a-7,b-3);(2)所画图形如下所示,其中△A2B2C2即为所求,点A2的坐标为(-1,-4).【解析】(1)找出三角形平移后各顶点的对应点,然后顺次连接即可;根据平移的规律即可写出点M平移后的坐标;(2)根据位似变换的要求,找出变换后的对应点,然后顺次连接各点即可.。
人教版数学九年级下册《相似》单元测试题(含答案)

人教版数学九年级下册《相似》单元测试一、选择题1.下列说法中正确的是()A.两个平行四边形一定相似B.两个菱形一定相似C.两个矩形一定相似D.两个等腰直角三角形一定相似2.已知,则的值为 ( )A. B. C.2 D.3.下列各组数中,成比例的是()A.-7,-5,14,5B.-6,-8,3,4C.3,5,9,12D.2,3,6,124.若a:b:c=3:5:7,且3a+2b-4c=9,则a+b+c的值等于()A.-3B.-5C.-7D.-155.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是( )A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′6.图中两个四边形是位似图形,它们的位似中心是( )A.点MB.点NC.点OD.点P7.如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2B.1:4C.1:5D.1:68.如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E是CD的中点,则△ODE与△AOB的面积比为( )A.1:2B.1:3C.1:4D.1:59.如图,在▱ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD于点N,则下列式子一定正确的是( )A.= B.= C.= D.=10.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为,则下列结论中正确的是()A.m=5B.m=4C.m=3D.m=1011.如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED•BC=BO•BE.其中正确结论的个数有( )A.4个 B.3个 C.2个 D.1个12.如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是( )A.1 B.2 C.3 D.4二、填空题13.若四边形ABCD与四边形A/B/C/D/的相似比为3∶2,那么四边形A/B/C/D/与四边形ABCD的相似比为14..如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长为.15.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是.16.如图1,小红家阳台上放置了一个可折叠的晒衣架,如图2是晒衣架的侧面示意图,经测量:OC=OD=126cm,OA=OB=56cm,且AB=32cm,则此时C,D两点间的距离是______cm.17.如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ并延长,与边BC交于点P,则线段AP= .18.如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为.三、作图题19.在13×13的网格图中,已知△ABC和点M(1,2).(1)以点M为位似中心,位似比为2,画出△ABC的位似图形△A′B′C′;(2)写出△A′B′C′的各顶点坐标.四、解答题20.已知a,b,c均不为0,且,求的值.21.某同学将一张报纸对折后,发现对折后的半张报纸与整张报纸恰好相似,如图所示求整张报纸的长和宽的比是多少?22.如图,已知点C ,D 在线段AB 上,△PCD 是等边三角形,且AC=1,CD=2,DB=4.求证:△ACP ∽△PDB.23.如图,在菱形ABCD 中,G 是BD 上一点,连接CG 并延长交BA 的延长线于点F ,交AD 于点E.(1)求证:△ADG ≌△CDG.(2)若CE=2EF ,EG=4,求AG 的长.24.如图,⊙O 是△ABC 的外接圆,P 是⊙O 外的一点,AM 是⊙O 的直径,∠PAC=∠ABC.(1)求证:PA 是⊙O 的切线;(2)连接PB 与AC 交于点D ,与⊙O 交于点E ,F 为BD 上的一点,若M 为BC ︵的中点,且∠DCF=∠P ,求证:BD PD =FD ED =CD AD.25.如图,已知在△ABP 中,C 是BP 边上一点,∠PAC=∠PBA ,⊙O 是△ABC 的外接圆,AD 是⊙O的直径,且交BP 于点E.(1)求证:PA 是⊙O 的切线;(2)过点C 作CF ⊥AD ,垂足为点F ,延长CF 交AB 于点G ,若AG ·AB=12,求AC 的长;(3)在满足(2)的条件下,若AF ∶FD=1∶2,GF=1,求⊙O 的半径及sin ∠ACE 的值.参考答案1.D2.B3.B4.D5.C.6.D7.B8.A.9.D.10.B.11.答案为:A.解析:连结DO.∵AB为⊙O的直径,BC为⊙O的切线,∴∠CBO=90°,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;故①正确,∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故②正确;∵AB为⊙O的直径,DC为⊙O的切线,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故③正确;∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED•BC=BO•BE,故④正确;故选:A.12.答案为:D.解析:①∵∠BAC=90°,AB=AC,∴BF=CF,∵四边形ABCD是平行四边形,∴AB∥DE,∴∠BAF=∠CEF,∵∠AFB=∠CFE,∴△ABF≌△ECF(AAS),∴AB=CE,∴四边形ABEC是平行四边形,∵∠BAC=90°,AB=AC,∴四边形ABEC是正方形,故此题结论正确;②∵OC∥AD,∴△OCF∽△OAD,∴OC:OA=CF:AD=CF:BC=1:2,∴OC:AC=1:3,∵AC=BE,∴OC:BE=1:3,故此小题结论正确;③∵AB=CD=EC,∴DE=2AB,∵AB=AC,∠BAC=90°,∴AB=BC,∴DE=2×,故此小题结论正确;④∵△OCF∽△OAD,∴,∴,∵OC:AC=1:3,∴3S△OCF=S△ACF,∵S△ACF=S△CEF,∴,∴,故此小题结论正确.13.答案为:2:3;14.答案为:6.15.答案为:(,).16.答案为:72.17.答案为:.18.答案为:4和2.56.解析:∵过B点的切线交AC的延长线于点D,∴AB⊥BD,∴AB===8,当∠AEP=90°时,∵AE=EC,∴EP经过圆心O,∴AP=AO=4;当∠APE=90°时,则EP∥BD,∴=,∵DB2=CD•AD,∴CD===3.6,∴AC=10﹣3.6=6.4,∴AE=3.2,∴=,∴AP=2.56.综上AP的长为4和2.56.19.解:(1)如图所示:△A′B′C′即为所求;(2)△A′B′C′的各顶点坐标分别为:A′(3,6),B′(5,2),C′(11,4).20.解:设=k,则①②③由①+③得,2b+2c=12k,∴b+c=6k④由②+④,得4b=9k, ∴b=,分别代入①,④得,a=,c=.∴.21.略22.证明:∵△PCD是等边三角形,∴∠PCD=∠PDC=60°,PC=CD=PD=2,∴∠PCA=∠PDB=120°,∵AC=1,BD=4,∴,=,∴=,∴△ACP∽△PDB.23.解:24.解:(1)连接CM.∵∠PAC=∠ABC,∠M=∠ABC,∴∠PAC=∠M.∵AM 为直径,∴∠M +∠MAC=90°,∴∠PAC +∠MAC=90°,即∠MAP=90°,∴MA ⊥AP ,∴PA 是⊙O 的切线(2)连接AE.∵M 为BC ︵中点,AM 为⊙O 的直径,∴AM ⊥BC.∵AM ⊥AP ,∴AP ∥BC ,∴△ADP ∽△CDB , ∴BD PD =CD AD. ∵AP ∥BC ,∴∠P=∠CBD.∵∠CBD=∠CAE ,∴∠P=∠CAE.∵∠P=∠DCF ,∴∠DCF=∠CAE.又∵∠ADE=∠CDF ,∴△ADE ∽△CDF ,∴CD DA =FD ED, ∴BD PD =FD ED =CD AD. 25. (1)证明:如图,连接CD ,∵AD 是⊙O 的直径.∴∠ACD=90°.∴∠CAD +∠ADC=90°.又∵∠PAC=∠PBA ,∠ADC=∠PBA ,∴∠PAC=∠ADC.∴∠CAD +∠PAC=90°.∴PA ⊥DA.而AD 是⊙O 的直径,∴PA 是⊙O 的切线.(2)解:由(1)知,PA ⊥AD ,又∵CF ⊥AD ,∴CF ∥PA.∴∠GCA=∠PAC.又∵∠PAC=∠PBA ,∴∠GCA=∠PBA.而∠CAG=∠BAC ,∴△CAG ∽△BAC.∴AG AC =AC AB,即AC 2=AG ·AB.∵AG ·AB=12,∴AC 2=12.∴AC=2 3.(3)解:设AF=x ,∵AF ∶FD=1∶2,∴FD=2x.∴AD=AF +FD=3x.在Rt △ACD 中,∵CF ⊥AD ,∴AC 2=AF ·AD ,即3x 2=12,解得x=2或x=-2(舍去).∴AF=2,AD=6.∴⊙O 的半径为3.在Rt △AFG 中,AF=2,GF=1,根据勾股定理得AG=AF 2+GF 2=22+12=5,由(2)知AG ·AB=12,∴AB=12AG =1255.连接BD ,如图. ∵AD 是⊙O 的直径,∴∠ABD=90°.在Rt △ABD 中,∵sin ∠ADB=AB AD, AD=6,AB=1255,∴sin ∠ADB=255. ∵∠ACE=∠ADB ,∴sin ∠ACE=255.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相似》单元检测
一、选择题.(每题3分,共42分)
1.下列各组中的四条线段成比例的是
A. 4cm、2cm、1cm、3cm
B. 1cm、2cm、3cm、5cm
C. 3cm、4cm、5cm、6cm
D. 1cm、2cm、2cm、4cm
2. 如图,已知AB∥CD∥EF,那么下列结论正确的是
A.AD BC
DF CE
= B.
FD BC
AD CE
= C.
CD BC
EF BE
= D.
CE AD
EF AF
=第2题第4题第6题
3.关于相似的下列说法正确的是
A.所有直角三角形相似B.所有等腰三角形相似
C.有一角是80°的等腰三角形相似D.所有等腰直角三角形相似
4. 如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,如果AD=2cm,DB=1cm,AE=1.8cm,则EC=
A.0.9cm B.1cm C.3.6cm D.0.2cm
5. 如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是
A.B.C.D.
6. 如图所示,在▱ABCD中,BE交AC,CD于G,F,交AD的延长线于E,则图中的相似三角形有A.3对B.4对C.5对D.6对
7. 如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P点共有
A.1个B.2个C.3个D.4个
8. 如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m .若小明的眼睛与地面距离为1.5m ,则旗杆的高度为(单位:m )
A .163
B .9
C .12
D .643
9. 如图,DE ∥BC ,在下列比例式中,不能成立的是 A .AD AE DB EC = B .DE AE BC EC = C .AB AC AD AE = D .DB AB EC AC
= 10. 如图,在
ABCD 中,E 是AB 的中点,EC 交BD 于点F ,则△BEF 与△D CF 的面积比为 A . 49 B .19 C .14 D .12
第10题 第11题 第13题
11. 如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是
A .AD•DB=AE•EC
B .AD•AE=BD•EC
C .AD•CE=AE•B
D D .AD•BC=AB•DE
12.若578
a b c ==,且323a b c -+=,则243a b c +-的值是 A. 14 B. 42 C. 7 D.
143 13.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,∠B=30°,CE 平分∠ACB 交⊙O 于E ,交AB 于点D ,连接AE ,则S △ADE :S △CDB 的值等于
A .1:2
B . 1:3
C .1:2
D .2:3
14.如图,AE AB AF AC
=,∠1=∠2,则对于结论: ①△ABE ∽△ACF ; ②△ABC ∽△AEF ;
③AEF
ABE ABC ACF s s s s ∆∆∆∆=; ④EF BE BC FC
=. 其中正确的结论的个数是
A .1
B .2
C .3
D .4
二、填空题(每题3分,共18分)
15. 在比例尺为1:500000的地图上,量得甲、乙两地的距离是25cm,则两地的实际距离是km.
16. 已知
1
3
y
x
=,则的
x y
y
-
值为.
17. 如图, Rt△ABC,∠ACB=90,CD⊥AB 于D , CD=6cm,AD=4cm则BC=__________.
第17题第18题第19题
18. 如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为.
19.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影长为___________米.
20. 如图,在▱ABCD中,AB:BC=2:3,点E、F分别在边CD、BC上,点E是边CD的中点,
CF=2BF,∠A=120°,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,那么AP
AQ
的值为.
三、解答题(共60分)
21.(本题7分)
已知:在直角坐标平面内,△ABC顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;
(3)△A2B2C2的面积是平方单位.(正方形网格中每个小正方形的边长是一个单位长度).
如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5.求BC、BE的长.
23. (本题10分)
如图,在△ABC中,∠BAC=90°,M是BC的中点,过点A作AM的垂线,交CB的延长线于点D.求证:△DBA∽△DAC.
如图,小明在A时测得垂直于地面的树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为多少米?
25. (本题11分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
(1)观察猜想:
在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是,位置关系是.
(2)探究证明:
在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.
(3)拓展延伸:
如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=2,其他条件不变,过点D作DF⊥AD 交CE于点F,请直接写出线段CF长度的最大值.
参考答案
一、DADAA DCCBC CDDB
二、(15)125(16)2
3
(17)313(18)
25
4,
4
(19)5(20)
239
13
三、
21、(1)(2,-2)(2)(1,0)(3)10
22. ∵l1∥l2∥l3,
∴==,即==,
∴BC=6,BF=BE,
∴BE+BE=7.5,
∴BE=5.
23. 证明:∵∠BAC=90°,点M是BC的中点,∴AM=CM,
∴∠C=∠CAM,
∵DA⊥AM,
∴∠DAM=90°,
∴∠DAB=∠CAM,
∴∠DAB=∠C,
∵∠D=∠D,
∴△DBA∽△DAC.
24. 6米
25.(2)4.9
26.解:(1)①∵AB=AC,∠BAC=90°,
∴线段AD绕点A逆时针旋转90°得到AE,
∴AD=AE,∠BAD=∠CAE,
∴△BAD≌△CAE,
∴CE=BD,∠ACE=∠B,
故答案为:CE=BD,CE⊥BD.
(2)(1)中的结论仍然成立.理由如下:
如图,∵线段AD绕点A逆时针旋转90°得到AE,
∴AE=AD,∠DAE=90°,
∵AB=AC,∠BAC=90°
∴∠CAE=∠BAD,
∴△ACE≌△ABD,
∴CE=BD,∠ACE=∠B,
∴∠BCE=90°,即CE⊥BD,
∴线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CE⊥BD.(3)如图3,过A作AM⊥BC于M,EN⊥AM于N,
∵线段AD绕点A逆时针旋转90°得到AE
∴∠DAE=90°,AD=AE,
∴∠NAE=∠ADM,
易证得Rt△AMD≌Rt△ENA,
∴NE=AM,
∵∠ACB=45°,
∴△AMC为等腰直角三角形,
∴AM=MC,
∴MC=NE,
∴四边形MCEN为平行四边形,
∵∠AMC=90°,
∴四边形MCEN为矩形,
∴∠DCF=90°,
∴Rt△AMD∽Rt△DCF,
∴=,
设DC=x,
∵∠ACB=45°,AC=,
∴AM=CM=1,MD=1﹣x,
∴=,
∴CF=﹣x2+x=﹣(x﹣)2+,
∴当x=时有最大值,CF最大值为.。