油气层渗流力学

合集下载

油气层渗流力学第二版第二章(张建国版中国石油大学出版社).

油气层渗流力学第二版第二章(张建国版中国石油大学出版社).

运动方程 v K p
连续性方程
(v) 0
( K p) 0
K/μ是常数
( K p) 0
x
p x
y
p y
z
p z
0
2 p 2 p 2 p 0 x 2 y 2 z 2
单相不可压缩液体在均质地层中稳定渗流的数学模型
2 p 2 p 2 p 0
x 2 y 2 z 2
描述运动要素(速度、密度、饱和度、浓度)随时间和坐 标的变化关系,在稳定渗流时则是描述这些要素和坐标之间的 变化。
常见连续性方程 单相流体连续性方程 两相流体连续性方程 带传质扩散过程的连续性方程
连续性方程建立方法 微分法建立连续性方程 积分法建立连续性方程
➢ 微分法建立连续性方程 渗流环境 渗流系统
➢ 积分法建立连续性方程
dt
( )
t
dV
dt
s
vndS
根据奥高定律
s vndS (v)dv
Ώ的任意性假定被积函数在Ώ连续,单相渗流的连续性方程为
( ) (v)
t
( ) (v) 0
t
第五节 典型油气渗流微分 方程的推导
一、单相不可压缩性液体稳定渗流微分方程
假设单相液体在均质介质中的渗流为满足线性渗流规律 的等温稳定渗流过程,不考虑多孔介质及流体的压缩性。
利用渗流物理基础实验认识力学现象和规律,是建 立数学模型的关键。
➢ 科学的数学方法
无穷小微元体上:分析力学现象,物理量之间内在联 系,建立微分方程(数学模型)。数学模型建立后,用数 学理论论证是否有解?连续?唯一?
二、渗流数学模型的结构
渗流数学模型要综合反映渗流过程中,各种现象(力 学、物理学、化学及相互作用)的内在联系,其内容包括:

油气层渗流力学第三章1

油气层渗流力学第三章1

1 d (r dP ) 0 积分 r dr dr
再积分
r
dP dr
c1
P c1 ln r c2 ①
代入边界条件得:
Pe c1 ln re c2 ② Pwf c1 ln rw c2 ③
②-③
c1
Pe Pwf ln re
rw
②-①或①-③并代
入边界条件 c1
P Pe
Pe Pwf ln re
★降低原油粘度 可提高产量,如热力采油等;
★供给半径 re 和油井半径rw 均在对数内,其变化对产量 q 影响较小。
②实际应用时,产量公式中各物理量可如下确定:
★ Pwf 可以实测;
2a
★ Pe 用目前地层压力代替; L
★ re 一般根据实际井网形状
A
确定,如图所示则:
→泄油面积: A 2aL
q 2Kh(Pe Pwf ) ln re
rw
又由产量公式变形:Pe Pwf q 代入压力分布公式得: ln re 2Kh
rw
P
Pe
q 2Kh
ln
re r

P
Pwf
q ln 2Kh
r rw
3. 结果分析
P ●压力分布公式表
明:压力与坐标 r 呈对
数关系,从整个地层看 Pe
P
,地层各点压力分布是
解: 方法Ⅰ:由稳定流连续性关系求。
rw r1
PrrPrrPe1Pwef区区间间22qq内 内K21K压压21hh力力llnn分分rrrrew布布规规律律为为渗::透K率2突P变wKf 的1 rP1r圆e1 形地Pe层r
由稳定流连续性关系:
q1 q2 q
可求出产量 q 为:

油气层渗流力学

油气层渗流力学
渗流:流体通过多孔介质的流动。 多孔介质:含有大量任意分布的彼此连通且形 状各异、大小不一的孔隙的固体介 质。 渗流力学:研究流体在多孔介质中渗流的形态 和规律的科学。其研究的对象是流 体和多孔介质。
次生孔隙发育程度
粘土充填孔隙
全直径岩心X-CT二维扫描002号切片,可见 大孔洞与裂缝连通
油气层渗流力学的基本概念
的渗流理论;
↓1923年,列宾宗首先提出气体在多孔介质中 ↓ 1937年,马斯凯特发表了关于均质流体渗 ↓ 30年代初,人们研究了液体弹性及岩石压
流的重要著作;
缩性对渗流的影响。到1948年,谢尔加乔夫发 表了弹性液体在弹性多孔介质中的渗流理论; 建立了混气液体的渗流理论;
↓ 1936年,在研究相渗透率的基础上,初步
油气层渗流力学的研究方法
油气层渗流力学是流体力学的一个分支,因此, 它的研究方法也主要是数学力学方法。但由于流动环 境的特殊性,使得研究方法也具有一些特点,概括地 说分三步: 1.建立地质模型 地质模型描述了流体渗流的地质条件,如地层的 几何形态、孔隙结构、油层物理参数等。 2.建立力学模型 力学模型描述了渗流过程中所发生的力学规律和 物理化学规律。
v v
vx
x
vy o
y
M
§2.2 渗流基本微分方程的建立
二、状态方程
状态方程:描述液体、气体、岩石的状态参数随压力变化 规律的数学方程。 1.液体的状态方程 ( ρ )
CL = − 1 ΔVL VL ΔP CL = −
取全微分 整理
油气层渗流力学的发展概况
●现阶段研究特征及发展趋势 1.广泛应用计算机及现代数学方法进行渗 流力学研究。 展。 2.油气渗流理论的研究内容日趋向纵深发 ①物理化学渗流的研究; ② 裂缝、双重介质、三重介质渗流规律 的研究; ③地层非均质性对渗流影响的研究。

油气层渗流力学第二版绪论(张建国版中国石油大学出版社)

油气层渗流力学第二版绪论(张建国版中国石油大学出版社)
ቤተ መጻሕፍቲ ባይዱ
五、渗流力学发展历史
1、1856年,法国工程师达西,用砂土层、渗水试验→渗流 基本规律→达西规律。 2、二十年代后,石油,天然气工业发展→形成石油天然气 渗流理论;
1923年,列宾亲→气体在多孔介质里渗流理论; 1937年,麦斯盖特→均质液体渗流,油气渗流的各种水动力 学问题(不可压缩,均质,渗流问题); 30年代初,研究液体弹性和岩石压缩性影响各种布井方式下 油井产量计算方法; 1948年,苏:射尔加乔夫→弹性渗流理论; 1956年,溶解气驱,气顶驱渗流理论
16
七、现代渗流力学研究的进展及有待解决问题
目的:研究流体和多孔介质→状态及流动规律 经典渗流力学:均质(匀)孔隙性介质(单重介质) 1、不可压缩液体→稳定渗流理论; 2、微可压缩液体→弹性不稳定流理论(应用试井); 3、气体渗流理论; 4、油气、油水两项流理论 数学上体现:求解Laplace和热传导方程;
4、认识油气水在岩层中流动的客观规律,形成油气
层渗流力学,已深入到油气田开发工作的各个环节。 5、是现代流体力学分支→流体力学和多孔介质理论, 表面物理,物理化学,固体力学,生物学交叉渗透的一 个边缘学科。
三、学习本课程的主要难点 课程内容抽象 各种公式多 推导较为复杂 单位制复杂 作业较多且难 四、学习本课程的要求 认真听课,积极思考,作好课堂笔记 课后及时进行复习、总结 按时完成布置的作业

渗流(如水净化处理)
多 孔 介 质
净化水
前 言
工程渗流——指各种人造多孔介质和工程装置中的流体渗流
前 言
地下渗流——指土壤、岩石和地表堆积物中的流体渗流
前 言
• 为什么学习渗流力学 • 学习渗流力学有什么意义 • 工作后有什么作用

渗流力学 第一章 渗流基本概念和定律

渗流力学 第一章 渗流基本概念和定律
2)有效渗透率Ko、Kw、Kg:岩石中同时有两种或以上的流 体流动,则岩石对其中一相的通过能力。是饱和度的函数。
3)相对渗透率Krw、Kro:多相同时流动时,相渗透率与绝对 渗透率的比值。
3、大的比面
多孔介质比面很大,使得流体流动时粘滞阻力很大。
多孔介质的分类:
1)单纯介质:由孔隙或纯裂缝组成,渗流形式简单。
1、孔隙性
储层岩石具有孔隙性,并被流体所充满,孔隙性大小用孔隙
度表示:
a
Vt V
Φa—绝对孔隙度;Φ—有效孔隙度;
V0 V
V—岩石视体积;Vt—岩石总孔隙体积; V0—岩石有效孔隙体积。
2、渗透性
多孔介质让流体通过的性质,叫渗透性。渗透性的大小用渗透 率表示。
1)绝对渗透率K:岩石孔隙中液体为一相时,岩石允许流体 通过的能力。绝对渗透率只与岩石本身性质有关。
二、渗流的分类
1)地下渗流:存在于地层中,如油气水在地层中的流动; 2)工程渗流:化工、冶金、环保中的渗流问题; 3)生物渗流:动物和植物中的渗流问题。
三、渗流力学的发展(地下渗流)
1、古典渗流力学: 1920年以前 动因:开发利用地下水; 代表:法国水利工程师达西(Darcy); 定律:达西定律(Darcy’s Law,1856)。
F—内摩擦力(粘滞力),N; μ—粘滞系数(又称绝对粘度),Pa·s。
• 粘度单位通常用mPa·s表示: 1Pa·s=103mPa·s
• 粘度单位以g/(cm·S)表示时称为“泊”: 1泊=100厘泊(cP)
• cP与mPa·s的换算关系为: 1mPa·s=lcP
• 在渗流中,粘滞力为阻力,且动力消耗主要用于渗流 时克服流体粘滞阻力。
1.2 渗流中的力学分析及驱动类型

1_油气层渗流力学基础解析

1_油气层渗流力学基础解析
14
边水
底水
1、第一章油气层渗流力学基础
油气 界面
油水 界面 实际上,油气接触面和油水接触面是不存在的,而 是存在油气过渡带和油水过渡带。
15
1、第一章油气层渗流力学基础
pc
O WOC1 WOC2 FWL O+W W
油水界面划分
ps
转折压力
pd
排驱压力
sw
pc=ps pc=pd pc=0
WOC1(第一油水界面),以上产纯油 WOC2(第二油水界面),以下产纯水 FWL (自由水面)
6
1、第一章油气层渗流力学基础
(1)油(气)藏高度
油藏高度
油水接触面与油藏最高点的高度差,称为油藏高度。
7
1、第一章油气层渗流力学基础
气藏高度
气水接触面与气藏最高点间的高度差,称为气藏高度。
8
1、第一章油气层渗流力学基础
气顶高度 油藏高度
油气藏高度
油藏高度:油水接触面和油气接触面之间的高度差
地层不整合圈闭
潜山圈闭
地层超覆圈闭
23
1、第一章油气层渗流力学基础
24
1、第一章油气层渗流力学基础
岩性圈闭:非储层岩石包围储层岩石。 分散、不连续。如岩性尖灭、砂岩透镜体
地层不整合圈闭:因构造运动而倾斜抬升,后 因沉降作用而与上覆地层形成不整合接触。
• 地层圈闭 储层岩石性质 变化而引起 潜山圈闭:古山峰沉降掩埋后形成。古山峰长 期暴露大气,遭受风化、日晒、雨淋、冰冻等 剥蚀作用,发育大量溶蚀孔洞,优良储层。
岩浆岩
(1)岩性(储层)
变质岩
碎屑岩:砂岩
沉积岩
结晶岩:碳酸盐岩
21
1、第一章油气层渗流力学基础

油气层渗流力学课件

油气层渗流力学课件
详细描述
稳定流是指流动参数不随时间变化的流动,通常发生在压力 梯度保持恒定的条件下。非稳定流是指流动参数随时间变化 的流动,如启动流动和边界层流动。
相对渗透率
总结词
相对渗透率是描述多孔介质中流体可流动的孔隙体积与总孔隙体积之比。
详细描述
相对渗透率取决于流体的粘度、孔隙结构和流体与固体表面之间的相互作用力。对于同一介质,不同流体的相对 渗透率可能不同,这影响了流体在多孔介质中的流动特性。
数值模拟与实验相结合
通过数值模拟预测油气层渗流规律,然后通过实验验证模拟结果的 准确性。
05 油气层渗流的应用实例
油气藏评价
油气藏类型识别
通过渗流力学原理,判断油气藏的类型,如块状、 裂缝性、孔隙性等。
油气藏储量估算
基于渗流力学模型,估算油气藏的储量,为后续 开发提供依据。
油气藏产能预测
通过渗流力学模型预测油气藏的产能,评估开发 的经济效益。
油气开采方案设计
开发方式选择
根据渗流力学原理,选择 合适的开发方式,如自喷、 机械采油等。
井网优化
基于渗流力学模型,优化 井网布置,提高采收率。
生产参数优化
根据渗流力学原理,优化 生产参数,如采油速度、 采油温度等。
提高采收率方法
化学驱油
利用化学剂改变油、水、岩石之间的界面张力,提高采收率。
热力驱油
流动的过程。
该模型考虑了时间变化 的影响,能够描述流体 的动态变化和油气层的
动态产能。
非稳态渗流模型通常用 于评估油气层的短期流
动行为和产能预测。
多相渗流模型
多相渗流模型描述的是油气层中多相流体(如油、 气、水)同时流动的过程。
该模型考虑了不同相之间的相互作用和流动特性 差异,能够更准确地模拟多相流体的流动行为。

油气层渗流力学

油气层渗流力学
是否物理化学渗流或非牛顿液体渗流
三、建立数学模型的步骤
3、确定未知量和其它物理量之间的关系
运动方程:速度和压力梯度的关系
dp
vi

f ( A, B, ) dx
状态方程:物理参数和压力关系 Ai fi ( p), Bi fi ( p)
连续性方程:渗流速度V和坐标及时间 或饱和度与坐标和时间的关系
[ vx

(vx )
x
dx ]dydzdt 2
dt 时间内,从右侧面流出微元体的质量流量为:
[ vx

(vx )
x
dx ]dydzdt 2
则微元体在dt 时间内,沿 x 方向流入流出的质量流量差为:
同理:
y方向
z 方向
(vx ) dxdydzdt
x
(vy ) dxdydzdt
流体力学、物理学和化学问题的总和,并且还要描述这些现象 的内在联系。因此,建立基本渗流微分方程要考虑包括以下几 方面的因素:
﹡ 渗流过程是流体运动的过程,必然受运动方程支配; ﹡ 渗流过程又是流体和岩石的状态不断改变的过程,所 以需要建立流体和岩石的状态方程; ﹡ 质量守恒定律是自然界的一般规律,因此基本渗流微 分方程的建立必须以表示物质守恒的连续性方程为基础;
单相微可压缩流体在微可压缩地层中按达西定律渗流的 渗流基本微分方程。
式中 2 为拉普拉斯算子(算符)。
2 2 2 2
x2 y2 z 2
为哈密尔顿算子(算符)。




i



j


k
x y z
v () (v) 0 t v K P
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PBi c1 L c2
Pe PBi P Pe x L
或:
c2 Pe
单向渗流压力 分布公式
Pe PBi P PBi ( L x) L
2. 求解数学模型
压力梯度:
渗流速度:
流量:
3. 结果分析
● 压力沿
x 方向线性分布,压
Pe
P
力梯度为常数,说明单位长度
上的能量损耗为定值;
● 单向稳定渗流时,流速
PBi
和流量 q 与位置坐标
为常数;
v
o
x
x 无关,
单向渗流压力分布曲线
dP dx
L
x
● 流过 [0, x ]渗流段的渗流阻
力为:
v o
x

KBh
x
4. 单向渗流的渗流场图(水动力场图)
◆渗流场图:由一组等压线和一 组流线按一定规则构成的图形。 ◆等压线:渗流场中压力相同点
律;
●同一渗流场中,流线密的地方流速大,等压线密
的地方压力变化急剧(压力梯度大)。
§3.1 单相液体稳定渗流微分方程典型解
二、平面径向渗流
1. 数学模型
d 2 P 1 dP 0 2 dr r dr
Pe
Pwf
re
2rw
h

Pe
K
P
r rw
Pwf
(井底处) (供给边界)
Pe
P
r re
油气层渗流力学
第三章 单相液体稳定渗流理论
主要内容
§3.1 单相液体稳定渗流微分方程的解及应用
§3.2 井的不完善性对渗流的影响 §3.3 油井的稳定试井 §3.4 井间干扰现象和势的叠加 §3.5 势叠加原理的典型应用
§3.6 考虑边界效应的镜像反映法
§3.7 等值渗流阻力法
§3.8 复变函数理论在平面渗流问题中的应用
流线
yபைடு நூலகம்
等压线
的连线。
◆等压面:渗流场中压力相同的
o
L x
单向渗流渗流场图 ★ 等间距的水平线和垂 线构成的均匀网格
空间点组成的面。
⊙规则:各相邻两条等压线间的 压差值相等;各相邻两条流线间 通过的流量相等。
y C1 x C2
任意
常数
渗流场图描述渗流规律:直观、生动、具体。
●渗流场图中,流线给出了流体质点的运动轨迹, 描述了流体流向和流速分布规律; ●等压线形象地描绘了能量损耗规律和压力分布规
§3.9 平面渗流场的保角变换求解方法




◆单相流动:只有一种流体的流动叫单相流动。 多相流动:有两种或两种以上流体同时流动,叫两相 或多相流动。
◆稳定渗流:渗流的运动要素P、v 等只是空间坐标的函数,
与时间 t 无关。 不稳定渗流:渗流的运动要素不仅是空间坐标的函数, 也是时间的函数。即:
P f1 ( x , y , z , t ) v f 2 ( x, y, z , t )
刚性水压驱动; 忽略油水性质的差别。
§3.1 单相液体稳定渗流微分方程 的解及其应用
▲典型解:指三种简化的典型渗流方式下的解。 单向流 渗 流 方 式 平面径向流 球面径向流
§3.1 单相液体稳定渗流微分方程典型解
一、单向渗流(平面单向流)
1. 数学模型
供给边界
d P 0 2 dx
2
Pe
K
re q P Pe ln 2Kh r
q r ln 或 P Pwf 2Kh rw
3. 结果分析
●压力分布公式表明:
压力与坐标r呈对数关系
Pe Pwf r P Pwf ln re r w ln rw
P
,从整个地层看,地层
各点压力分布是此对数
Pe
曲线绕井轴旋转构成的
曲面,此曲面形似漏斗
w
rw
则计算结果如表所示:
Pe P Pe Pwf
r (米)
0.1 1
1 0.8
10 0.6
100 0.4
1000 0.2
K dP K Pe Pwf 1 渗流速度: v dr ln re r rw
平面径向流 产量公式 (裘比公式)
2Kh( Pe Pwf ) q re ln rw
产量公式: q Av 2rh v
Pe Pwf q 又由产量公式变形: 代入压力分布公式得: re 2Kh ln rw
排液道
PBi
h
L
单向渗流模型
P
x 0
Pe(供给边界)
(排液道) PBi
B A Bh x
P
x L
2. 求解数学模型
d 2P 0 2 dx
渗流微分 方程积分
dP c1 dx
再分离变 量积分
P c1 x c2
Pe PBi c1 L
代入边界条件
c2 Pe
积分常数为:
平面径向流渗流场图
等压线:一组与井轴同心的同心圆。
流线: 以井为中心的径向线。
r C1
C2
例3-1 圆形均质等厚地层中为单相液体稳定渗流,中 心一口井井半径 rw 0.1 米,供给半径 re 10000 米 ,试计算从供给边缘到距井1000、100、10、1米处的 从1米至0.1米处的压力损耗 能量(压力)损耗百分数。 re 与从一万米至一千米处的压 ln P P r e wf P P e 力损耗相等,同为 20 ﹪,说 e r ln 得: 解: 由 P Pe re r 明能量损耗主要集中在井底 re Pe Pwf ln ln 附近。 r
Pe
Pwf
平面径向渗流模型
2. 求解数学模型
dP 令 u dr
*降阶法求解 *直接积分法
积分
du u dr r
ln u ln r ln c1
ur c1
dP r c1 dr
代入边界条件得:
再积分
P c1 ln r c2 ①
②- ③
Pe c1 ln re c2 ② Pwf c1 ln rw c2 ③
Pe Pwf re P Pe ln r r ln e rw
Pe Pwf r P Pwf ln r rw ln e rw
Pe Pwf c1 re ln rw
②-①或①-③并代 入边界条件 c1
平面径向流压 力分布公式
dP c1 Pe Pwf 1 压力梯度: r r dr r ln e rw
P
Pwf
,习惯称为“压降漏斗
”。
r
o
re
r
平面径向流压力分布曲线
dP 1 , v 表明在井底附近,渗流截面积减小,渗流 ● dr r
速度大,压力梯度大,能量损耗也越大;
等压线
●平面径向流的渗流场图, 可以直观地反映出平面径向流的
流线
渗流规律:越靠近井壁,等压线
和流线越密集,渗流速度和压力 梯度也越大。
相关文档
最新文档