高中物理-电磁感应中的“杆+导轨”模型练习

合集下载

2019年高考物理双基突破:专题32-电磁感应中的“单杆”模型(精练)(附答案解析)

2019年高考物理双基突破:专题32-电磁感应中的“单杆”模型(精练)(附答案解析)

1.如图所示,用天平测量匀强磁场的磁感应强度。

下列各选项所示的载流线圈匝数相同,边长MN 相等,将它们分别挂在天平的右臂下方。

线圈中通有大小相同的电流,天平处于平衡状态。

若磁场发生微小变化,天平最容易失去平衡的是【答案】A2.如图,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω。

一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5。

在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T 。

将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)A .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W【答案】B【解析】小灯泡稳定发光说明棒做匀速直线运动。

此时:F 安=B 2l 2v R 总对棒满足:mg sin θ-μmg cos θ-B 2l 2vR 棒+R 灯=0因为R 灯=R 棒则:P 灯=P 棒再依据功能关系:mg sin θ·v -μmg cos θ·v =P 灯+P 棒 联立解得v =5 m/s ,P 灯=1 W ,所以B 项正确。

6.(多选)半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0。

圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B 。

杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示。

则A .θ=0时,杆产生的电动势为2BavB .θ=π3时,杆产生的电动势为3BavC .θ=0时,杆受的安培力大小为2B 2av(π+2)R 0D .θ=π3时,杆受的安培力大小为3B 2av(5π+3)R 0【答案】AD7.(多选)水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,如图所示,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和粗糙两种情况比较,这个过程A .产生的总内能相等B .通过ab 棒的电荷量相等C .电流所做的功相等D .安培力对ab 棒所做的功不相等 【答案】AD【解析】两过程中产生的总内能等于金属棒减少的动能,选项A 正确;两种情况下,当金属棒速度相等时,在粗糙导轨滑行时的加速度较大,所以导轨光滑时金属棒滑行的较远,根据q =It =ΔΦRt ·t =ΔΦR =B ·ΔSR 可知,导轨光滑时通过ab 棒的电荷量较大,选项B 错误;两个过程中,金属棒减少的动能相等,所以导轨光滑时克服安培力做的功等于导轨粗糙时克服安培力做的功与克服摩擦力做功之和,选项D 正确;因为电流所做的功等于克服安培力做的功,所以选项C 错误。

电磁感应中双杆模型问题答案

电磁感应中双杆模型问题答案

电磁感应中双杆模型问题一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a 和b 和导轨紧密接触且可自由滑动,先固定a ,释放b ,当b 速度达到10m/s 时,再释放a ,经1s 时间a 的速度达到12m/s ,则:A 、 当va=12m/s 时,vb=18m/sB 、当va=12m/s 时,vb=22m/sC 、若导轨很长,它们最终速度必相同D 、它们最终速度不相同,但速度差恒定【解析】因先释放b ,后释放a ,所以a 、b 一开始速度是不相等的,而且b 的速度要大于a 的速度,这就使a 、b 和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。

再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。

开始两者的速度都增大,因安培力作用使a 的速度增大的快,b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g 的匀加速直线运动。

在释放a 后的1s 内对a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s 内它的冲量大小都为I ,选向下的方向为正方向。

当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。

释放棒后,经过时间t ,分别以和为研究对象,根据动量定理,则有:对a 有:( mg + I ) · t = m v a0, 对b 有:( mg - I ) · t = m v b -m v b0联立二式解得:v b = 18 m/s ,正确答案为:A 、C 。

在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度。

高中物理《电磁感应中的“杆+导轨”模型》典型题(精品答案)

高中物理《电磁感应中的“杆+导轨”模型》典型题(精品答案)

《电磁感应中的“杆+导轨”模型》典型题1.如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属导轨上以速度v向右匀速滑动,MN中产生的感应电动势为E1;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2.则通过电阻R的电流方向及E1与E2之比E1∶E2分别为( )A.c→a,2∶1 B.a→c,2∶1C.a→c,1∶2 D.c→a,1∶22.(多选)如图,水平放置的金属导体框abcd,ab、cd边平行、间距为l,导体框内均有垂直于框面、磁感应强度大小为B的匀强磁场,一单位长度电阻为r 的金属杆MN,与导轨成θ角,以速度v沿平行于cd的方向匀速滑动,金属杆滑动过程中与导轨接触良好,导轨框电阻不计,则( )A.M点电势低于N点电势B.闭合回路中磁通量的变化率为Bl vC.金属杆所受安培力的方向与运动方向相反D.金属杆所受安培力的大小为B2l v r3.如图所示,两根间距为l的光滑平行金属导轨与水平面夹角为α,图中虚线下方区域内存在磁感应强度为B的匀强磁场,磁场方向垂直于斜面向上.两金属杆质量均为m,电阻均为R,垂直于导轨放置.开始时金属杆ab处在距磁场上边界一定距离处,金属杆cd处在导轨的最下端,被与导轨垂直的两根小柱挡住.现将金属杆ab由静止释放,金属杆ab刚进入磁场便开始做匀速直线运动.已知重力加速度为g,则( )A.金属杆ab进入磁场时感应电流的方向为由a到bB.金属杆ab进入磁场时速度大小为2mgR sin αB2l2C.金属杆ab进入磁场后产生的感应电动势为mg sin αBlD.金属杆ab进入磁场后,金属杆cd对两根小柱的压力大小为零4.CD、EF是两条水平放置的电阻可忽略的平行金属导轨,导轨间距为L,在水平导轨的左侧存在磁感应强度方向垂直导轨平面向上的匀强磁场,磁感应强度大小为B,磁场区域的长度为d,如图所示.导轨的右端接有一电阻R,左端与一弯曲的光滑轨道平滑连接.将一阻值也为R的导体棒从弯曲轨道上h高处由静止释放,导体棒最终恰好停在磁场的右边界处.已知导体棒与水平导轨接触良好,且动摩擦因数为μ,则下列说法中正确的是( )A.电阻R的最大电流为Bd2ghRB.流过电阻R的电荷量为BdL RC.整个电路中产生的焦耳热为mghD.电阻R中产生的焦耳热为12mg(h-μd)5.(多选)如图所示,足够长的“U”形光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN与PQ平行且间距为L,导轨平面与磁感应强度大小为B的匀强磁场垂直,导轨电阻不计.金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且接触良好,ab棒接入电路的部分的电阻为R,当流过ab棒某一横截面的电荷量为q时,棒的速度大小为v,则金属棒ab在这一过程中( )A.a点的电势高于b点的电势B.ab棒中产生的焦耳热小于ab棒重力势能的减少量C.下滑的位移大小为qR BLD.受到的最大安培力大小为B2L2vR sin θ6.(多选)如图甲所示,水平面上两根足够长的金属导轨平行固定放置,间距为L,一端通过导线与阻值为R的电阻连接.导轨上放一质量为m的金属杆,金属杆、导轨的电阻均忽略不计,匀强磁场垂直导轨平面向下.用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,金属杆做匀速运动时的速度v也会变化,v和F的关系如图乙所示.下列说法正确的是( )A.金属杆在匀速运动之前做匀加速直线运动B.流过电阻R的电流方向为a→R→bC.由图象可以得出B、L、R三者的关系式为B2L2R=23D.当恒力F=3 N时,电阻R消耗的最大电功率为8 W7. 如图所示,两条足够长的平行金属导轨相距L,与水平面的夹角为θ,整个空间存在垂直于导轨平面的匀强磁场,磁感应强度大小均为B,虚线上方轨道光滑且磁场方向垂直导轨平面向上,虚线下方轨道粗糙且磁场方向垂直导轨平面向下.当导体棒EF以初速度v0沿导轨上滑至最大高度的过程中,导体棒MN一直静止在导轨上,若两导体棒质量均为m、电阻均为R,导轨电阻不计,重力加速度为g,在此过程中导体棒EF上产生的电热为Q,求:(1)导体棒MN受到的最大摩擦力;(2)导体棒EF上升的最大高度.8.如图甲所示,足够长的光滑导轨倾角为30°,间距L=1 m,电阻不计,恒定的非匀强磁场方向垂直于斜面向下,电阻R=1 Ω,导体棒ab质量m=0.25 kg,其电阻r=1 Ω,垂直于导轨放置.现导体棒ab从磁场上边界由静止下滑,测得导体棒所到达位置的磁感应强度B与导体棒在该位置速度之间的关系如图乙所示,(g取10 m/s2)(1)求导体棒下滑2 s时的速度和位移;(2)求导体棒下滑2 s内回路中产生的焦耳热.9.如图甲所示,两根足够长平行金属导轨MN、PQ相距为L,导轨平面与水平面夹角为α,金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m.导轨处于匀强磁场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B.金属导轨的上端与开关S、定值电阻R1和电阻箱R2相连.不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g.现在闭合开关S,将金属棒由静止释放.(1)判断金属棒ab中电流的方向;(2)若电阻箱R2接入电路的阻值为0,当金属棒下降高度为h时,速度为v,求此过程中定值电阻上产生的焦耳热Q;(3)当B=0.40 T,L=0.50 m,α=37°时,金属棒能达到的最大速度v m随电阻箱R2阻值的变化关系,如图乙所示.取g=10 m/s2,sin 37°=0.60,cos 37°=0.80.求R1的阻值和金属棒的质量m.10.如图所示,电阻不计、间距L=1 m、足够长的光滑金属导轨ab、cd与水平面成θ=37°角,导轨平面矩形区域efhg内分布着磁感应强度大小B=1 T、方向垂直导轨平面向上的匀强磁场,边界ef、gh之间的距离D=1.4 m.现将质量m=0.1 kg、电阻R=53Ω的导体棒P、Q相隔Δt=0.2 s先后从导轨顶端由静止自由释放,P、Q在导轨上运动时始终与导轨垂直且接触良好,P进入磁场时恰好匀速运动,Q穿出磁场时速度为2.8 m/s.已知重力加速度g=10 m/s2,sin 37°=0.6,求:(1)导轨顶端与磁场上边界ef之间的距离s;(2)从导体棒P释放到Q穿出磁场的过程,回路中产生的焦耳热Q总.《电磁感应中的“杆+导轨”模型》典型题参考答案1.解析:选C.杆MN向右匀速滑动,由右手定则判知,通过R的电流方向为a →c ;又因为E =BL v ,所以E 1∶E 2=1∶2,故选项C 正确.2.(多选)解析:选BD.由右手定则可知M 点电势高于N 点电势,故A 错误.根据法拉第电磁感应定律可得E =ΔΦΔt =Bl v ,故B 正确.由左手定则知,金属杆所受安培力方向垂直于MN 斜向上,故C 错误.由E =Bl v ,I =E R ,R =l sin θr ,F =BI l sin θ,解得F =B 2l v r ,故D 正确.3.解析:选B.由右手定则可知,金属杆ab 进入磁场时产生的感应电流的方向为由b 到a ,故A 错误;因金属杆ab 刚进入磁场便开始做匀速直线运动,则有mg sin α=B 2l 2v 2R ,解得v =2mgR sin αB 2l 2,故B 正确;金属杆ab 进入磁场后产生的感应电动势E =Bl v ,解得E =2mgR sin αBl,故C 错误;由左手定则可知,金属杆cd 受到的安培力与斜面平行且向下,则金属杆cd 对两根小柱的压力不为零,故D 错误.4.解析:选 D.由题图可知,导体棒刚进入磁场的瞬间速度最大,产生的感应电流最大,由机械能守恒有mgh =12m v 2,所以I =E 2R =BL v 2R =BL 2gh 2R ,A 错误;流过R 的电荷量为q =I t =ΔΦ2R =BLd 2R ,B 错误;由能量守恒定律可知整个电路中产生的焦耳热为Q =mgh -μmgd ,C 错误;由于导体棒的电阻也为R ,则电阻R 中产生的焦耳热为12Q =12mg (h -μd ),D 正确.5.(多选)解析:选ABC.由右手定则可知a 点相当于电源的正极,b 点相当于电源的负极,故A 正确;由能量守恒可知ab 棒重力势能的减少量等于ab 棒中产生的焦耳热与ab 棒的动能之和,故B 正确;由q =ΔΦR =BxL R 可得,下滑的位移大小为x =qR BL ,故C 正确;金属棒ab 在这一过程中受到的安培力大小为F =BIL ,I 最大为BL v R ,故最大安培力大小为B 2L 2v R ,故D 错误.6.(多选)解析:选BD.金属杆在匀速运动之前,随着运动速度的增大,由F 安=B 2L 2v R可知金属杆所受的安培力增大,由牛顿第二定律可知金属杆的加速度减小,故金属杆做加速度减小的加速运动,选项A 错误;由楞次定律可知,流过电阻R 的电流方向为a →R →b ,选项B 正确;因为图象与横轴交点等于金属杆所受摩擦力的大小,故由图象可知金属杆所受的摩擦力为F f =1 N ,金属杆匀速运动时有F-F f =F 安=B 2L 2v R ,则可得B 2L 2R =F -F f v =12,选项C 错误;当恒力F =3 N 时,金属杆受到的安培力大小为F 安=F -F f =2 N ,金属杆匀速运动的速度为4 m/s ,所以金属杆克服安培力做功的功率P =8 W ,转化为电能的功率为8 W ,故电阻R 消耗的最大电功率为8 W ,选项D 正确.7.解析:(1)EF 获得向上初速度v 0时,产生感应电动势E =BL v 0,电路中电流为I ,由闭合电路的欧姆定律有I =E 2R ,此时对导体棒MN 受力分析,由平衡条件有F A +mg sin α=F f ,F A =BIL ,解得F f =B 2L 2v 02R +mg sin θ.(2)导体棒EF上升过程MN一直静止,对系统由能的转化和守恒定律有12m v2=mgh+2Q,解得h=m v20-4Q 2mg.答案:(1)B2L2v02R+mg sin θ(2)m v20-4Q2mg8.解析:(1)由题图乙可知,棒下滑的任意状态有B2v=0.5 T2·m·s-1对棒下滑过程中某一状态由牛顿第二定律得mg sin 30°-B2L2vR+r=ma代入数据可得导体棒的加速度a=4 m/s2可见导体棒在斜面上做a=4 m/s2的匀加速直线运动棒在2 s内的位移x=12at2=8 m2 s末的速度v=at=8 m/s(2)由能量守恒得mgx sin 30°=12m v2+Q代入数据解得Q=2 J.答案:(1)8 m/s 8 m (2)2 J9.解析:(1)由右手定则可知,金属棒ab中的电流方向为由b到a.(2)由能量守恒定律知,金属棒减少的重力势能等于增加的动能和电路中产生的焦耳热,即mgh=12m v2+Q则Q=mgh-12m v2.(3)金属棒达到最大速度v m时,切割磁感线产生的感应电动势:E =BL v m由闭合电路的欧姆定律得:I =E R 1+R 2从b 端向a 端看,金属棒受力如图所示金属棒达到最大速度时,满足:mg sin α-BIL =0由以上三式得v m =mg sin αB 2L 2(R 2+R 1)由图乙可知:斜率k =60-302 m·s -1·Ω-1=15 m·s -1·Ω-1,纵轴截距v =30 m/s所以mg sin αB 2L 2R 1=v ,mg sin αB 2L 2=k解得R 1=2.0 Ω,m =0.1 kg答案:(1)b →a (2)mgh -12m v 2 (3)2.0 Ω 0.1 kg10.解析:(1)设P 进入磁场时的速度为v 1,由法拉第电磁感应定律有E =BL v 1由闭合电路欧姆定律有I =E 2R ,安培力F =BIL ,P 匀速运动有F =mg sin θ,联立解得v 1=2 m/s ,P 从ac 到ef 过程,由牛顿第二定律有a =g sin θ,由运动学公式有s =v 212a ,解得s =13 m ≈0.33 m.(2)P 进入磁场以速度v 1匀速运动,Δt =0.2 s 后,Q 恰好进入磁场,速度也为v 1=2 m/s.之后,P 、Q 以加速度a 匀加速运动,P 出磁场以后继续以加速度a 匀加速运动,而Q 在安培力作用下减速运动,直到穿出磁场区域.P 在磁场中匀速运动的位移x 1=v 1Δt ,此过程回路产生的焦耳热Q 1=mgx 1sin θ,P 、Q 一起匀加速运动的位移x 2=D -x 1,设P 刚好出磁场时,P 、Q 的速度为v ,由运动学公式有v 2-v 21=2ax 2,解得v =4 m/s ,P 出磁场后Q 做减速运动,Q 出磁场时的速度v 2=2.8 m/s ,运动的位移x 3=x 1,Q 减速运动过程中回路产生的焦耳热Q 2=mgx 3sin θ+12m v 2-12m v 22,所以,全过程回路中的焦耳热为Q 总=Q 1+Q 2=0.888 J.答案:(1)0.33 m (2)0.888 J。

高中物理电磁感应综合模型--双导体棒模型

高中物理电磁感应综合模型--双导体棒模型

电磁感应综合应用--双导体棒模型【一动一静】1、如图所示,平行且足够长的两条光滑金属导轨,相距L=0.4 m,导轨所在平面与水平面的夹角为30°,其电阻不计。

把完全相同的两金属棒(长度均为0.4 m)ab、cd分别垂直于导轨放置,并使每棒两端都与导轨良好接触。

已知两金属棒的质量均为m=0.1 kg、电阻均为R=0.2 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.5 T,当金属棒ab在平行于导轨向上的力F作用下沿导轨向上匀速运动时,金属棒cd恰好能保持静止。

(g=10 m/s2),则()A.F的大小为0.5 NB.金属棒ab产生的感应电动势为1.0 VC.ab棒两端的电压为1.0 VD.ab棒的速度为5.0 m/s2、如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4 m,导轨所在空间被分成区域Ⅰ和Ⅰ,两区域的边界与斜面的交线为MN。

Ⅰ中的匀强磁场方向垂直斜面向下,Ⅰ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T。

在区域Ⅰ中,将质量m1=0.1 kg、电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑。

然后,在区域Ⅰ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑。

cd在滑动过程中始终处于区域Ⅰ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2,问:(1)cd下滑的过程中,ab中的电流方向;(2)ab刚要向上滑动时,cd的速度v多大?(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8 m,此过程中ab 上产生的热量Q是多少?3、如图甲所示,光滑倾斜导体轨道(足够长)与光滑水平导体轨道平滑连接。

轨道宽度均为L=1 m,电阻忽略不计。

水平向右的匀强磁场仅分布在水平轨道平面所在区域;垂直于倾斜轨道平面向下,同样大小的匀强磁场仅分布在倾斜轨道平面所在区域。

题型专练四 电磁感应中的单、双杆模型

题型专练四 电磁感应中的单、双杆模型

题型专练四电磁感应中的单、双杆模型1.“导轨+杆”模型是电磁感应中的常见模型,选择题和计算题均有考查.该模型以单杆或双杆在导轨上做切割磁感线运动为情景,综合考查电路、动力学、功能关系、动量守恒等知识.2.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等,情景复杂,形式多变.3.在处理此类问题时,要以导体杆切割磁感线的速度为主线,由楞次定律、法拉第电磁感应定律和闭合电路欧姆定律分析电路中的电流,由牛顿第二定律分析导体杆的加速度及速度变化,由能量守恒分析系统中的功能关系,由动量定理中安培力的冲量分析电荷量.“导轨+双杆”模型中还可能满足动量守恒定律.高考题型1电磁感应中的单杆模型1.常见单杆情景及解题思路常见情景(导轨和杆电阻不计,以水平光滑导轨为例)过程分析三大观点的应用单杆阻尼式设运动过程中某时刻的速度为v,加速度为a,a=B2L2vRm,a、v反向,导体棒做减速运动,v↓⇒a↓,当a=0时,v=0,导体棒做加速度减小的减速运动,最终静止动力学观点:分析加速度能量观点:动能转化为焦耳热动量观点:分析导体棒的位移、通过导体棒的电荷量和时间单杆发电式(v0=0) 设运动过程中某时刻棒的速度为v,加速度为a=Fm-B2L2vmR,F恒定时,a、v同向,随v的增加,a减小,当a=0时,v最大,v m=FRB2L2;a恒定时,F=B2L2atR+ma,F与t动力学观点:分析最大加速度、最大速度能量观点:力F做的功等于导体棒的动能与回路中焦耳热之和动量观点:分析导体棒的位移、通过导体棒的电荷量为一次函数关系含“源”电动式(v 0=0)开关S 闭合,ab 棒受到的安培力F =BLE r ,此时a =BLE mr,速度v ↑⇒E 感=BL v ↑⇒I ↓⇒F =BIL ↓⇒加速度a ↓,当E 感=E 时,v 最大,且v m =EBL动力学观点:分析最大加速度、最大速度能量观点:消耗的电能转化为动能与回路中的焦耳热动量观点:分析导体棒的位移、通过导体棒的电荷量含“容”无外力充电式充电电流减小,安培力减小,a 减小,当a =0时,导体棒匀速直线运动能量观点:动能转化为电场能(忽略电阻)含“容”有外力充电式(v 0=0)电容器持续充电F -BIL =ma ,I =ΔQΔt ,ΔQ =C ΔU =CBL Δv ,a =ΔvΔt,得I 恒定,a恒定,导体棒做匀加速直线运动动力学观点:求导体棒的加速度a =Fm +B 2L 2C2.在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.①求电荷量或速度:B I L Δt =m v 2-m v 1,q =I Δt . ②求位移:-B 2L 2v Δt R 总=0-m v 0,即-B 2L 2xR 总=0-m v 0.③求时间:(i)-B I L Δt +F 其他Δt =m v 2-m v 1 即-BLq +F 其他·Δt =m v 2-m v 1已知电荷量q ,F 其他为恒力,可求出变加速运动的时间. (ii)-B 2L 2v ΔtR 总+F 其他·Δt =m v 2-m v 1,v Δt =x .若已知位移x ,F 其他为恒力,也可求出变加速运动的时间. 考题示例例1 (2016·全国卷Ⅱ·24)如图1,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上.t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求:图1(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.答案 (1)Blt 0(F m -μg ) (2)B 2l 2t 0m解析 (1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得 F -μmg =ma ①设金属杆到达磁场左边界时的速度为v ,由运动学公式有v =at 0②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律知金属杆中产生的电动势为 E =Bl v ③ 联立①②③式可得 E =Blt 0(Fm-μg )④(2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律 I =E R⑤ 式中R 为电阻的阻值.金属杆所受的安培力为 F 安=BlI ⑥因金属杆做匀速运动,有 F -μmg -F 安=0⑦ 联立④⑤⑥⑦式得 R =B 2l 2t 0m.例2 (2019·天津卷·11)如图2所示,固定在水平面上间距为l 的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN 和PQ 长度也为l 、电阻均为R ,两棒与导轨始终接触良好.MN两端通过开关S 与电阻为R 的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k .图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B .PQ 的质量为m ,金属导轨足够长、电阻忽略不计.图2(1)闭合S ,若使PQ 保持静止,需在其上加多大的水平恒力F ,并指出其方向;(2)断开S ,PQ 在上述恒力作用下,由静止开始到速度大小为v 的加速过程中流过PQ 的电荷量为q ,求该过程安培力做的功W .答案 (1)Bkl 3R 方向水平向右 (2)12m v 2-23kq解析 (1)设线圈中的感应电动势为E ,由法拉第电磁感应定律E =ΔФΔt ,则E =k ①设PQ 与MN 并联的电阻为R 并,有 R 并=R2②闭合S 时,设线圈中的电流为I ,根据闭合电路欧姆定律得I =ER 并+R ③设PQ 中的电流为I PQ ,有 I PQ =12I ④设PQ 受到的安培力为F 安,有F 安=BI PQ l ⑤ 保持PQ 静止,由受力平衡,有 F =F 安 ⑥联立①②③④⑤⑥式得 F =Bkl3R ⑦方向水平向右.(2)设PQ 由静止开始到速度大小为v 的加速过程中,PQ 运动的位移为x ,所用时间为Δt ,回路中的磁通量变化为ΔФ,平均感应电动势为E ,有 E =ΔΦΔt⑧其中ΔФ=Blx ⑨设PQ 中的平均电流为I ,有I =E 2R ⑩根据电流的定义得 I =qΔt ⑪由动能定理,有 Fx +W =12m v 2-0 ⑫联立⑦⑧⑨⑩⑪⑫式得 W =12m v 2-23kq .命题预测1.(多选)(2020·福建福清市线上检测)如图3所示,左端接有阻值为R 的定值电阻且足够长的平行光滑导轨CE 、DF 的间距为L ,导轨固定在水平面上,且处在磁感应强度为B 、竖直向下的匀强磁场中,一质量为m 、电阻为r 的导体棒ab 垂直导轨放置在导轨上静止,导轨的电阻不计.某时刻给导体棒ab 一个水平向右的瞬时冲量I ,导体棒将向右运动,最后停下来,则此过程中( )图3A .导体棒做匀减速直线运动直至停止运动B .电阻R 上产生的焦耳热为I 22mC .通过导体棒ab 横截面的电荷量为IBLD .导体棒ab 运动的位移为I (R +r )B 2L 2答案 CD解析 导体棒获得向右的瞬时初速度后切割磁感线,回路中出现感应电流,导体棒ab 受到向左的安培力,向右减速运动,由B 2L 2v R +r=ma ,可知由于导体棒速度减小,则加速度减小,所以导体棒做的是加速度越来越小的减速运动,A 错误;导体棒减少的动能E k =12m v 2=12m ⎝⎛⎭⎫I m 2=I 22m ,根据能量守恒定律可得E k =Q 总,又根据串并联电路知识可得Q R =R R +r Q 总=I 2R 2m (R +r ),B 错误;根据动量定理可得-B I L Δt =0-m v ,I =m v ,q =I Δt ,可得q =IBL ,C 正确;由于q =I Δt =ER +r Δt =BLx R +r 将q =IBL 代入可得,导体棒ab 运动的位移x =I (R +r )B 2L2,D 正确.2.如图4所示,足够长的两平行光滑水平直导轨的间距为L ,导轨电阻不计,垂直于导轨平面有磁感应强度大小为B 、方向竖直向上的匀强磁场;导轨左端接有电容为C 的电容器、开关S 和定值电阻R ;质量为m 的金属棒垂直于导轨静止放置,两导轨间金属棒的电阻为r .初始时开关S 断开,电容器两极板间的电压为U .闭合开关S ,金属棒运动,金属棒与导轨始终垂直且接触良好.下列说法正确的是( )图4A .闭合开关S 的瞬间,金属棒立刻开始向左运动B .闭合开关S 的瞬间,金属棒的加速度大小为BUL mRC .金属棒与导轨接触的两点间的最小电压为零D .金属棒最终获得的速度大小为BCULm +B 2L 2C答案 D解析 由左手定则可知,闭合开关S 的瞬间,金属棒所受安培力方向向右,金属棒立刻获得向右的加速度,开始向右运动,A 错误;闭合开关S 的瞬间,金属棒的加速度大小a =BULm (R +r ),B 错误;当金属棒切割磁感线产生的电动势跟电容器两极板之间的电压相等时,金属棒中电流为零,此后,金属棒将匀速运动下去,两端的电压达到最小值,故金属棒与导轨接触的两点间的电压不会为零,C 错误;设闭合开关S 后,电容器的放电时间为Δt ,金属棒获得的速度为v ,由动量定理可得B C (U -BL v )Δt L ·Δt =m v -0,解得v =BCULm +B 2L 2C ,D 正确.3.如图5所示,足够长的光滑平行金属导轨CD 、EF 倾斜放置,其所在平面与水平面间的夹角为θ=37°,两导轨间距为L ,导轨下端分别连着电容为C 的电容器和阻值R =3r 的定值电阻.一根质量为m 、电阻为r 的金属棒放在导轨上,金属棒与导轨始终垂直并接触良好,一根不可伸长的绝缘轻绳一端拴在金属棒中间、另一端跨过轻质定滑轮与质量M =3.6m 的重物相连.金属棒与定滑轮之间的轻绳始终在两导轨所在平面内且与两导轨平行,磁感应强度为B 的匀强磁场垂直于导轨所在平面向上,导轨电阻不计,初始状态用手托住重物使轻绳恰处于伸直状态,由静止释放重物,求:(sin 37°=0.6,重力加速度大小为g ,不计滑轮摩擦)图5(1)若S 1闭合,S 2断开,电阻R 的最大瞬时热功率;(2)若S 1和S 2均闭合,当金属棒速度达到最大值时,遇到障碍物突然停止运动,金属棒停止运动后,通过金属棒的电荷量;(3)若S 1断开、S 2闭合,请通过计算判断重物的运动性质.答案 (1)27m 2g 2r B 2L 2 (2)27mgrC4BL(3)重物做初速度为零的匀加速直线运动解析 (1)S 1闭合,S 2断开时,重物由静止释放后拉动金属棒沿导轨向上做加速运动,金属棒受到沿导轨向下的安培力作用,速度最大时,感应电动势最大,感应电流最大,则电阻R 的瞬时热功率最大,当金属棒速度最大时有Mg =mg sin 37°+BIL ,得I =3mgBLP m =I 2R联立解得P m =27m 2g 2rB 2L2(2)S 1和S 2均闭合时,电容器两极板间的最大电压U m =U R =IR =9mgrBL电容器所带的最大电荷量Q m =CU m =9mgrCBL金属棒停止运动后,电容器开始放电,此时电阻R 与金属棒并联,通过金属棒的电荷量q =R R +rQ m =27mgrC4BL(3)S 1断开、S 2闭合时,设从释放重物开始经时间t 金属棒的速度大小为v ,加速度大小为a ,通过金属棒的电流为i ,金属棒受到的安培力F =BiL ,方向沿导轨向下,设在t ~(t +Δt )时间内流经金属棒的电荷量为ΔQ ,ΔQ 也是平行板电容器在t ~(t +Δt )时间内增加的电荷量,感应电动势E =BL v ,平行板电容器所带电荷量Q =CE =CBL v ,故ΔQ =CBL Δv Δv =a Δt 则i =ΔQΔt=CBLa设绳中拉力为F T ,由牛顿第二定律,对金属棒有F T -mg sin θ-BiL =ma 对重物有Mg -F T =Ma 解得a =Mg -mg sin θM +m +CB 2L 2可知a 为常数,则重物做初速度为零的匀加速直线运动.高考题型2 电磁感应中的双杆模型1.常见双杆情景及解题思路 常见情景(以水平光滑导轨为例)过程分析三大观点的应用 双杆切割式杆MN 做变减速运动,杆PQ 做变加速运动,稳定时,两杆的加速度均为零,以相同的速度匀速运动.对系统动量守恒,对其中某杆适用动量定理 动力学观点:求加速度 能量观点:求焦耳热 动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量 不等距导轨杆MN 做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,两杆以不同的速度做匀速运动,所围的面积不变.v 1L 1=v 2L 2 动力学观点:求加速度 能量观点:求焦耳热 动量观点:动量不守恒,可分别用动量定理联立末速度关系求末速度双杆切割式a PQ 减小,a MN 增大,当a PQ =动力学观点:分别隔离两导体a MN时二者一起匀加速运动,存在稳定的速度差棒,F-B2l2ΔvR总=m PQ aB2l2ΔvR总=m MN a,求加速度2.对于不在同一平面上运动的双杆问题,动量守恒定律不适用,可以用对应的牛顿运动定律、能量观点、动量定理进行解决.考题示例例3(多选)(2019·全国卷Ⅲ·19)如图6,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图象中可能正确的是()图6答案AC解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,这时两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上运动,水平方向上不受外力作用,由动量守恒定律有m v0=m v1+m v2,解得v1=v2=v02,选项A、C正确,B、D错误.例4(多选)(2020·全国卷Ⅰ·21)如图7,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc 边垂直.ab 、dc 足够长,整个金属框电阻可忽略.一根具有一定电阻的导体棒MN 置于金属框上,用水平恒力F 向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN 与金属框保持良好接触,且与bc 边保持平行.经过一段时间后( )图7A .金属框的速度大小趋于恒定值B .金属框的加速度大小趋于恒定值C .导体棒所受安培力的大小趋于恒定值D .导体棒到金属框bc 边的距离趋于恒定值 答案 BC解析 当金属框在恒力F 作用下向右加速运动时,bc 边产生从c 向b 的感应电流i ,金属框的加速度大小为a 1,则有F -Bil =Ma 1;MN 中感应电流从M 流向N ,MN 在安培力作用下向右加速运动,加速度大小为a 2,则有Bil =ma 2,当金属框和MN 都运动后,金属框速度为v 1,MN 速度为v 2,则电路中的感应电流为i =Bl (v 1-v 2)R ,感应电流从0开始增大,则a 2从零开始增加,a 1从F M 开始减小,加速度差值减小.当a 1=a 2时,得F =(M +m )a ,a =FM +m 恒定,由F 安=ma 可知,安培力不再变化,则感应电流不再变化,据i =Bl (v 1-v 2)R 知金属框与MN 的速度差保持不变,v -t 图像如图所示,故A 错误,B 、C 正确;MN 与金属框的速度差不变,但MN 的速度小于金属框的速度,则MN 到金属框bc 边的距离越来越大,故D 错误.例5 (2017·浙江4月选考·22)间距为l 的两平行金属导轨由水平部分和倾斜部分平滑连接而成,如图8所示,倾角为θ的导轨处于大小为B 1、方向垂直于倾斜导轨平面向上的匀强磁场区间Ⅰ中,水平导轨上的无磁场区间静止放置一质量为3m 的“联动双杆”(由两根长为l 的金属杆cd 和ef ,用长度为L 的刚性绝缘杆连接构成),在“联动双杆”右侧存在大小为B 2、方向垂直于水平导轨平面向上的匀强磁场区间Ⅱ,其长度大于L ,质量为m 、长为l 的金属杆ab 从倾斜导轨上端释放,达到匀速后进入水平导轨(无能量损失),杆ab 与“联动双杆”发生碰撞后,杆ab 和cd 粘合在一起形成“联动三杆”,“联动三杆”继续沿水平导轨进入磁场区Ⅱ并从中滑出,运动过程中杆ab 、cd 和ef 与导轨始终接触良好,且保持与导轨垂直.已知杆ab 、cd 和ef 电阻均为R =0.02 Ω,m =0.1 kg ,l =0.5 m ,L =0.3 m ,θ=30°,B 1=0.1 T ,B 2=0.2 T ,g =10 m/s 2,不计摩擦阻力和导轨电阻,忽略磁场边界效应,求:图8(1)ab 杆在倾斜导轨上匀速运动时的速度大小v 0; (2)“联动三杆”进入磁场区间Ⅱ前的速度大小v ; (3)“联动三杆”滑过磁场区间Ⅱ产生的焦耳热Q . 答案 (1)6 m /s (2)1.5 m/s (3)0.25 J解析 (1)ab 杆受到的安培力为:F A =B 1Il =B 12l 2v 0R +R 2ab 杆匀速运动,由平衡条件得:mg sin θ=F A ,代入数据解得:v 0=6 m/s.(2)ab 杆与“联动双杆”碰撞过程系统动量守恒,以向右为正方向,由动量守恒定律得m v 0=(m +3m )v代入数据解得:v =1.5 m/s.(3)设“联动三杆”进入磁场区间Ⅱ的过程中速度的变化量为Δv ,由动量定理得: -B 2I l Δt =4m Δv设在“联动三杆”进入磁场区间Ⅱ的过程中,通过ab 杆的电荷量为q ,则I Δt =q =B 2LlR +R 2代入数据解得:Δv =-0.25 m/s“联动三杆”离开磁场区间Ⅱ的过程中,速度的变化量也为:Δv =-0.25 m /s ,离开磁场区间Ⅱ时“联动三杆”的速度为:v ′=v +2Δv =1.5 m/s -2×0.25 m/s =1 m/s.“联动三杆”滑过磁场区间Ⅱ的过程中,产生的焦耳热为:Q =12·4m v 2-12·4m v ′2,代入数据解得:Q =0.25 J.命题预测4.如图9所示,水平放置的两平行光滑金属导轨固定在桌面上,导轨间距为L ,处在磁感应强度为B 、竖直向下的匀强磁场中.桌面离地面的高度为H .初始时刻,质量为m 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d ,质量也为m 的杆cd 与导轨垂直,以初速度v 0进入磁场区域,最终发现两杆先后落在地面上.已知两杆接入电路的电阻均为R ,导轨电阻不计,两杆落地点之间的距离为s ,重力加速度为g .图9(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时,求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能. 答案 (1)v 02-s2g 2H (2)d +RmB 2L 2⎝⎛⎭⎫v 0-s g 2H (3)14m v 02-mgs 28H解析 (1)设ab 、cd 杆从磁场边缘射出时的速度分别为v 1、v 2,ab 杆落地点到抛出点的水平距离为x 1,cd 杆落地到抛出点的水平距离为x 2,则有 x 1=v 12Hg x 2=v 22H g且x 2-x 1=s以v 0的方向为正方向,根据动量守恒定律有m v 0=m v 1+m v 2 解得v 2=v 02+s2g2H ,v 1=v 02-s 2g2H(2)ab 杆运动距离为d ,对ab 杆应用动量定理,有 B I L Δt =BLq =m v 1 设cd 杆运动距离为d +Δx q =ΔΦ2R =BL Δx 2R解得Δx =2Rm v 1B 2L 2=RmB 2L2(v 0-sg2H) 则cd 杆运动距离为x =d +Δx =d +RmB 2L 2⎝⎛⎭⎫v 0-sg 2H(3)根据能量守恒定律,回路中产生的电能等于系统损失的机械能, 则有Q =12m v 02-12m v 12-12m v 22=14m v 02-mgs 28H.5.如图10所示,足够长的水平轨道左侧b 1b 2~c 1c 2部分轨道间距为2L ,右侧c 1c 2~d 1d 2部分的轨道间距为L ,曲线轨道与水平轨道相切于b 1b 2,所有轨道均光滑且电阻不计.在水平轨道内有斜向下与竖直方向成θ=37°的匀强磁场,磁感应强度大小为B =0.1 T .质量为M =0.2 kg 的金属棒B 垂直于导轨静止放置在右侧窄轨道上,质量为m =0.1 kg 的金属棒A 自曲线轨道上a 1a 2处由静止释放,两金属棒在运动过程中始终相互平行且与导轨保持良好接触,A 棒总在宽轨上运动,B 棒总在窄轨上运动.已知:两金属棒接入电路的有效电阻均为R =0.2 Ω,h =0.2 m ,L =0.2 m ,sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,求:图10(1)金属棒A 滑到b 1b 2处时的速度大小; (2)金属棒B 匀速运动的速度大小;(3)在两棒整个运动过程中通过金属棒A 某横截面的电荷量;(4)在两棒整个运动过程中金属棒A 、B 在水平导轨间扫过的面积之差. 答案 见解析解析 (1)A 棒在曲线轨道上下滑时,由机械能守恒定律得: mgh =12m v 02解得v 0=2 m/s.(2)选取水平向右为正方向,对A 、B 分别应用动量定理, 对B :F B 安·t =M v B , 对A :-F A 安·t =m v A -m v 0, 其中F A 安=2F B 安, 整理得:m v 0-m v A =2M v B ,两棒最后匀速时,电路中无电流,此时回路总电动势为零,必有2B cos θL v A -B cos θL v B =0, 即v B =2v A , 联立解得v B =49m/s.(3)当金属棒A 运动到水平轨道后,回路中开始有感应电流产生,此时金属棒B 开始加速运动,通过A 的电荷量与通过B 的电荷量相等. 在B 加速过程中:∑(B cos θ)iL Δt =M v B -0, q =∑i Δt , 解得q =509C.(4)根据法拉第电磁感应定律有:E =ΔΦΔt ,其中磁通量变化量:ΔΦ=B ΔS cos θ, 电路中的电流:I =E 2R ,通过横截面的电荷量:q =I Δt , 联立解得ΔS =2509m 2.专题强化练保分基础练1.(多选)(2020·河南六市高三4月第一次联合调研)如图1所示,光滑平行的两金属导轨间距为L ,与水平面夹角为θ,两导轨上端用阻值为R 的定值电阻相连,该装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨平面向上.质量为m 的金属杆ab 以沿导轨平面向上的初速度v 0从导轨底端开始运动,然后又返回到出发位置.在运动过程中,ab 与导轨垂直且接触良好,不计ab 和导轨的电阻以及空气阻力.则( )图1A .初始时刻金属杆的加速度为B 2L 2v 0mRB .金属杆上滑时间小于下滑时间C .在金属杆上滑和下滑过程中电阻R 上产生的热量相同D .在金属杆上滑和下滑过程中通过电阻R 上的电荷量相同答案 BD解析 金属杆开始运动时,金属杆所受的安培力F A =BIL =B 2L 2v 0R根据牛顿第二定律得,mg sin θ+F A =ma ,则金属杆的加速度a =mg sin θ+F A m =g sin θ+B 2L 2v 0mR ,选项A 错误;由于金属杆要克服安培力做功,其机械能不断减少,所以金属杆上滑和下滑经过同一位置时,上滑速度大于下滑的速度,则上滑的平均速度大于下滑的平均速度,所以金属杆上滑时间小于下滑时间,选项B 正确;金属杆克服安培力所做的功等于回路中产生的热量,即电阻R 上产生的热量,上滑过程中平均速度较大,则平均安培力较大,所以克服安培力做的功较大,产生的热量较多,选项C 错误;根据q =ΔΦR =BLsR 可知,在金属杆上滑和下滑过程中,通过电阻R 上的电荷量相同,选项D 正确.2.(多选)(2020·湖南常德市高三二模)如图2所示,两条相距为L 的光滑平行金属导轨位于水平面(纸面)内,其左端接一阻值为R 的定值电阻,导轨平面与磁感应强度大小为B 的匀强磁场垂直,导轨电阻不计.导体棒ab 垂直导轨放置并接触良好,接入电路的电阻也为R .若给棒以平行导轨向右的初速度v 0,当通过棒横截面的电荷量为q 时,棒的速度减为零,此过程中棒发生的位移为x .则在这一过程中( )图2A .导体棒做匀减速直线运动B .当棒发生的位移为x 2时,通过棒横截面的电荷量为q2C .在通过棒横截面的电荷量为q3时,棒运动的速度为v 03D .定值电阻R 产生的热量为BqL v 04答案 BD解析 由于导体棒向右减速运动,则感应电动势减小,感应电流减小,所以导体棒受到的安培力减小,根据牛顿第二定律可知其加速度减小,故导体棒做变减速运动,故A 错误;当棒的速度减为零,发生的位移为x 时,通过棒横截面的电荷量为q =ΔΦ2R =BLx2R ,则当棒发生的位移为x 2时,通过棒横截面的电荷量为q2,故B 正确;当棒的速度减为零时,通过棒横截面的电荷量为q =BLx 2R ,设这段时间回路中的平均电流为I 1,由动量定理得-B I 1Lt 1=0-m v 0,其中q =I 1t 1当通过棒横截面的电荷量为q3时,设这段时间回路中的平均电流为I 2由动量定理得-B I 2Lt 2=m v 1-m v 0,其中q3=I 2t 2解得:v 1=2v 03,m =qBLv 0,故C 错误;根据能量守恒可知,棒的速度减为零的过程中,定值电阻R 产生的热量为: Q R =12ΔE k =14m v 02=qBL v 04,故D 正确.3.(2020·哈尔滨师大附中联考)如图3所示,光滑、平行、电阻不计的金属导轨固定在竖直平面内,两导轨间的距离为L ,导轨顶端连接定值电阻R ,导轨上有一质量为m 、电阻不计的金属杆.整个装置处于磁感应强度为B 的匀强磁场中,磁场的方向垂直导轨平面向里.现将杆从M 点以v 0的速度竖直向上抛出,经过时间t ,到达最高点N ,杆始终与导轨垂直且接触良好,重力加速度大小为g .求t 时间内:图3(1)流过电阻的电荷量q ; (2)电阻上产生的电热Q .答案 (1)m v 0-mgt BL (2)12m v 02-m 2gR (v 0-gt )B 2L 2解析 (1)根据动量定理,有-mgt -F t =0-m v 0 又因为F =BL I ,q =I t ,联立解得q =m v 0-mgtBL(2)根据I =ER =ΔΦRt =BLh Rt, 解得h =(v 0-gt )mRB 2L 2由能量守恒定律得Q =12m v 02-mgh联立解得Q =12m v 02-m 2gR (v 0-gt )B 2L 2.争分提能练4.如图4,两条平行导轨所在平面与水平地面间的夹角为θ,两导轨的间距为L .导轨上端接有一平行板电容器,电容为C .导轨处于匀强磁场中,磁感应强度大小为B 、方向垂直于导轨平面向下.在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g .忽略所有电阻,让金属棒从导轨上端由静止开始下滑,求:图4(1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系. 答案 (1)Q =CBL v (2)v =m (sin θ-μcos θ)m +B 2L 2Cgt解析 (1)设金属棒下滑的速度大小为v ,则感应电动势为E =BL v ① 平行板电容器两极板之间的电势差U =E ②设此时电容器极板上积累的电荷量为Q ,则有Q =CU ③ 联立①②③式得Q =CBL v ④(2)设金属棒的速度大小为v 时经历的时间为t ,通过金属棒的电流为I .金属棒受到的安培力方向沿导轨向上,大小为F 安=BLI ⑤设在时间间隔(t ,t +Δt )内流经金属棒的电荷量为ΔQ ,据定义有I =ΔQΔt⑥ΔQ 也是平行板电容器两极板在时间间隔(t ,t +Δt )内增加的电荷量.由④式得:ΔQ =CBL Δv ⑦ Δv 为金属棒的速度变化量,有a =Δv Δt⑧金属棒所受到的摩擦力方向沿导轨向上,大小为F f =μF N ⑨ F N 是金属棒对导轨的正压力的大小,有F N =mg cos θ⑩ 由牛顿第二定律得mg sin θ-F 安-F f =ma ⑪ 联立⑤~⑪式得a =m (sin θ-μcos θ)m +B 2L 2Cg ⑫由⑫式及题意可知,金属棒做初速度为零的匀加速运动.则t 时刻金属棒的速度大小为 v =m (sin θ-μcos θ)m +B 2L 2Cgt .5.(2020·山东济宁市一模)两根足够长的平行金属导轨固定于同一水平面内,两导轨间的距离为L ,导轨上垂直放置两根导体棒a 和b ,俯视图如图5甲所示.两根导体棒的质量均为m ,电阻均为R ,回路中其余部分的电阻不计,在整个导轨平面内,有磁感应强度大小为B 、竖直向上的匀强磁场.两导体棒与导轨接触良好且均可沿导轨无摩擦地滑行,开始时,两棒均静止,间距为x 0,现给导体棒a 一向右的初速度v 0,并开始计时,可得到如图乙所示的Δv -t 图象(Δv 表示两棒的相对速度,即Δv =v a -v b ),求:图5(1)0~t 2时间内,回路产生的焦耳热; (2)t 1时刻,棒a 的加速度大小; (3)t 2时刻,两棒之间的距离.答案 (1)14m v 02(2)B 2L 2v 08mR (3)x 0+m v 0R B 2L 2解析 (1)t 2时刻,两棒速度相等以v 0的方向为正方向,由动量守恒定律得m v 0=(m +m )v 由能量守恒定律得Q =12m v 02-12×2m v 2联立解得Q =14m v 02。

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

电磁感应中的双杆模型问题与强化训练(附详细参考答案)一、双杆模型问题分析及例题讲解:1.模型分类:双杆类题目可分为两种情况:一类是“一动一静”,即“假双杆”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止,受力平衡。

另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减。

2.分析方法:通过受力分析,确定运动状态,一般会有收尾状态。

对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解。

题型一:一杆静止,一杆运动【题1】如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a、b垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面。

现用一平行于导轨的恒力F作用在a的中点,使其向上运动。

若b始终保持静止,则它所受摩擦力可能A.变为0 B.先减小后不变C.等于F D.先增大再减小【答案】AB【题2】如图所示,两条平行的金属导轨相距L =1 m ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中。

金属棒MN 和PQ 的质量均为m =0.2 kg ,电阻分别为R MN =1 Ω和R PQ =2 Ω。

MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好。

从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1 m/s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态。

t =3 s 时,PQ 棒消耗的电功率为8 W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动。

求:(1)磁感应强度B 的大小;(2)t =0~3 s 时间内通过MN 棒的电荷量;(3)求t =6 s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移 x 满足关系:v =0.4x ,PQ 棒仍然静止在倾斜轨道上。

电磁感应综合-导轨模型计算题(精选26题 含答案详解)

电磁感应综合-导轨模型计算题(精选26题 含答案详解)

电磁感应综合-导轨模型计算题1.(9分)如图所示,两根间距L=1m 、电阻不计的平行光滑金属导轨ab 、cd 水平放置,一端与阻值R =2Ω的电阻相连。

质量m=1kg 的导体棒ef 在外力作用下沿导轨以v=5m/s 的速度向右匀速运动。

整个装置处于磁感应强度B=0.2T 的竖直向下的匀强磁场中。

求:(1)感应电动势大小; (2)回路中感应电流大小; (3)导体棒所受安培力大小。

【答案】(1)V 1=E (2)0.5A I = (3)0.1N F =安【解析】 试题分析:(1)导体棒向右运动,切割磁感线产生感应电动势BLv E = 代入数据解得:V 1=E(2)感应电流RE I =代入数据解得:A 5.0=I(3)导体棒所受安培力BIL F =安 代入数据解得:N 10.F =安考点:本题考查了电磁感应定律、欧姆定律、安培力。

2.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ=37°角,下端连接阻值为R 的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.(1)求金属棒沿导轨由静止开始下滑时的加速度大小.(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8 W ,求该速度的大小.(3)在上问中,若R =2 Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)【答案】(1)4m/s 2(2)10m/s (3)0.4T 【解析】试题分析:(1)金属棒开始下滑的初速为零,Veba由牛顿第二定律得:mgsinθ-μmgcosθ=ma ①由①式解得:a=10×(0.6-0.25×0.8)m/s 2=4m/s 2②;(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F , 棒在沿导轨方向受力平衡:mgsinθ一μmgcos0一F=0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率:Fv=P ④ 由③、④两式解得:s m s m F P v /10/)8.025.06.0(102.08=⨯-⨯⨯==⑤ (3)设电路中电流为I ,两导轨间金属棒的长为l ,磁场的磁感应强度为B , 感应电流:RBlvI =⑥ 电功率:P=I 2R ⑦ 由⑥、⑦两式解得:T T vl PR B 4.011028=⨯⨯==⑧ 磁场方向垂直导轨平面向上;考点:牛顿第二定律;电功率;法拉第电磁感应定律. 3.(13分)如图,在竖直向下的磁感应强度为B 的匀强磁场中,两根足够长的平行光滑金属轨道MN 、PQ 固定在水平面内,相距为L 。

高二物理:电磁感应中的“杆+导轨”模型

高二物理:电磁感应中的“杆+导轨”模型
(2)金属杆的质量m和阻值r; (3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做 的功W。
转到解析
3.规律方法
解决此类问题的分析要抓住三点 (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力 为零); (2)整个电路产生的电能等于克服安培力所做的功; (3)电磁感应现象遵从能量守恒定律。
(1)电阻R消耗的功率; (2)水平外力的大小。
答案
B2l2v2 (1)
B2 (2)
l2v+μmg
R
R
转到解析
【思维训练2】(2016·泰州一模)如图13甲,MN、PQ两条平行的光滑 金属轨道与水平面成θ=37°角固定,M、P之间接电阻箱R,导轨所在 空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B= 0.5 T。质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为 r。现从静止释放杆ab,测得最大速度为vm。改变电阻箱的阻值R,得 到vm与R的关系如图乙所示。已知轨距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计。求:(1)杆ab下滑过程中感应电流的方 向及R=0时最大感应电动势E的大小;
2.典例剖析
【思维训练1】(2015·海南单科,13)如图12,两平行金属导轨位于同 一水平面上,相距l,左端与一电阻R相连;整个系统置于匀强磁场中, 磁感应强度大小为B,方向竖直向下。一质量为m的导体棒置于导轨上 ,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保 持与导轨垂直并接触良好。已知导体棒与导轨间的动摩擦因数为μ,重 力加速度大小为g,导轨和导体棒的电阻均可忽略。求
目录页
Contents Page
物理建模:电磁感应 中的“杆+导轨”模型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理-电磁感应中的“杆+导轨”模型练习“杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“杆+导轨”模型又分为“单杆”型和“双杆”型(“单杆”型为重点);导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速、匀变速、非匀变速运动等.考点一单杆水平式模型1.如图,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中.一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad处向bc滑动的过程中( ) A.PQ中电流先增大后减小B.PQ两端电压先减小后增大C.PQ上拉力的功率先减小后增大D .线框消耗的电功率先减小后增大解析:选C.PQ 在运动过程中切割磁感线产生感应电动势,相当于电源,线框左右两端电阻并联,当PQ 运动到中间时并联电阻最大,流经PQ 的电流最小,因此在滑动过程中,PQ 中的电流先减小后增大,选项A 错误;由于外接电阻先增大后减小,因此PQ 两端的电压即路端电压先增大后减小,选项B 错误;由能量守恒得拉力功率等于线框和导体棒的电功率,因此拉力功率为P =E 2R 总=BLv 2R 总,由于电路总电阻先增大后减小,因此拉力功率先减小后增大,选项C正确;矩形线框abcd 总电阻为3R ,当PQ 滑动到ab 中点时,线框并联总电阻最大,最大值为34R ,小于导体棒PQ 的电阻,所以滑动过程中线框消耗的电功率先增大后减小,选项D 错误.2.U 形光滑金属导轨水平放置,如图所示为俯视图,导轨右端接入电阻R =0.36 Ω,其他部分无电阻,导轨间距为L =0.6 m,界线MN 右侧有匀强磁场,磁感应强度为B = 2 T .导体棒ab 电阻为零,质量m =1 kg.导体棒与导轨始终垂直且接触良好,在距离界线MN 为d =0.5 m 处受恒力F =1 N 作用从静止开始向右运动,到达界线PQ 时恰好匀速,界线PQ 与MN 间距也为d .(1)求匀速运动时的速度v 的大小;(2)求导体棒在MN 和PQ 间运动过程中R 的发热量Q .解析:(1)匀速时合力为零,所以F =F 安=BIL =B 2L 2vR得v =FRB 2L 2=0.5 m/s (2)设导体棒从出发到匀速的过程安培力做功为W A ,根据动能定理有F ·2d +W A =12mv2得W A=-78JR的发热量即为导体棒克服安培力做的功,即Q=|W A|=78J答案:(1)0.5 m/s (2)78J3.如图所示,一对足够长的平行光滑金属导轨固定在水平面上,两导轨间距为L,左端接一电源,其电动势为E、内阻为r,有一质量为m、长度也为L的金属棒置于导轨上,且与导轨垂直,金属棒的电阻为R,导轨电阻可忽略不计,整个装置处于磁感应强度为B,方向竖直向下的匀强磁场中.(1)若闭合开关S的同时对金属棒施加水平向右恒力F,求棒即将运动时的加速度和运动过程中的最大速度;(2)若开关S开始是断开的,现对静止的金属棒施加水平向右的恒力F,一段时间后再闭合开关S;要使开关S闭合瞬间棒的加速度大小为Fm,则F需作用多长时间.解析:(1)闭合开关S的瞬间回路电流I=E R+r金属棒所受安培力水平向右,其大小F A=ILB由牛顿第二定律得a=FA+F m整理可得a=ER+r mLB+Fm金属棒向右运动的过程中,切割磁感线产生与电源正负极相反的感应电动势,回路中电流减小,安培力减小,金属棒做加速度逐渐减小的加速运动,匀速运动时速度最大,此时由平衡条件得F A′=F由安培力公式得F A′=I′LB由闭合电路欧姆定律得I′=BLvm-E R+r联立求得v m=F R+rB2L2+EBL(2)设闭合开关S时金属棒的速度为v,此时电流I″=BLv-E R+r由牛顿第二定律得a″=F-FA″m所以加速度a″=Fm-BLv-ER+r mLB若加速度大小为Fm,则⎪⎪⎪⎪⎪⎪Fm-BLv-ER+r mLB=Fm解得速度v1=EBL,v2=EBL+2F R+rB2L2未闭合开关S前金属棒的加速度一直为a0=F m解得恒力F作用时间t 1=v1a=mEFBL或t2=v2a=mEFBL+2m R+rB2L2答案:(1)ER+r mLB+FmF R+rB2L2+EBL(2)mEFBL或mEFBL+2m R+rB2L2考点二单杆倾斜式模型1.如图所示,平行金属导轨宽度为d,一部分轨道水平,左端接电阻R,倾斜部分与水平面成θ角,且置于垂直斜面向上的匀强磁场中,磁感应强度为B,现将一质量为m、长度也为d的导体棒从导轨顶端由静止释放,直至滑到水平部分(导体棒下滑到水平部分之前已经匀速,滑动过程中与导轨保持良好接触,重力加速度为g).不计一切摩擦力,导体棒接入回路电阻为r,则整个下滑过程中( )A.导体棒匀速运动时速度大小为mg R+r sin θB2d2B.匀速运动时导体棒两端电压为mg R+r sin θBdC.导体棒下滑距离为s时,通过R的总电荷量为Bsd RD.重力和安培力对导体棒所做的功大于导体棒获得的动能解析:选 A.导体棒下滑过程中受到沿斜面向下重力的分力和沿斜面向上的安培力,当匀速运动时,有mg sin θ=BId,根据欧姆定律可得I=ER+r,根据法拉第电磁感应定律可得E=Bdv,联立解得v=mg R+rB2d2sin θ,E=mg R+rBdsinθ,故导体棒两端的电压为U=Er+RR=mgRBdsin θ,A正确,B错误.根据法拉第电磁感应定律E=ΔΦΔt=BΔSΔt=BdsΔt,故q=IΔt=ER+rΔt=BsdR+r,根据动能定理可得重力和安培力对导体棒所做的功等于导体棒获得的动能,C、D错误.2.如图所示,两根足够长平行金属导轨MN、PQ固定在倾角θ=37°的绝缘斜面上,顶部接有一阻值R=3 Ω的定值电阻,下端开口,轨道间距L=1 m.整个装置处于磁感应强度B=2 T的匀强磁场中,磁场方向垂直斜面向上.质量m=1 kg 的金属棒ab置于导轨上,ab在导轨之间的电阻r=1 Ω,电路中其余电阻不计.金属棒ab由静止释放后沿导轨运动时始终垂直于导轨,且与导轨接触良好.不计空气阻力影响.已知金属棒ab与导轨间动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,取g=10 m/s2.(1)求金属棒ab沿导轨向下运动的最大速度v m;(2)求金属棒ab沿导轨向下运动过程中,电阻R上的最大电功率P R;(3)若从金属棒ab开始运动至达到最大速度过程中,电阻R上产生的焦耳热总共为1.5 J,求流过电阻R的总电荷量q.解析:(1)金属棒由静止释放后,沿斜面做变加速运动,加速度不断减小,当加速度为零时有最大速度v m.由牛顿第二定律得mg sin θ-μmg cos θ-F安=0F安=BIL,I=BLvmR+r,解得v m=2.0 m/s(2)金属棒以最大速度v m匀速运动时,电阻R上的电功率最大,此时P R=I2R,解得P R=3 W(3)设金属棒从开始运动至达到最大速度过程中,沿导轨下滑距离为x,由能量守恒定律得mgx sin θ=μmgx cos θ+QR +Q r+12mv2m根据焦耳定律QRQr=Rr,解得x=2.0 m根据q=IΔt,I=E R+rE=ΔΦΔt=BLxΔt,解得q=1.0 C答案:(1)2 m/s (2)3 W (3)1.0 C3.如图所示,两足够长的平行光滑的金属导轨MN、PQ相距L,导轨平面与水平面的夹角θ=30°,导轨电阻不计,磁感应强度为B的匀强磁场垂直于导轨平面向上.长为L的金属棒垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m、电阻为R.两金属导轨的上端连接一个灯泡,灯泡的电阻也为R.现闭合开关K,给金属棒施加一个方向垂直于杆且平行于导轨平面向上的、大小为F=2mg的恒力,使金属棒由静止开始运动,当金属棒达到最大速度时,灯泡恰能达到它的额定功率.重力加速度为g,求:(1)金属棒能达到的最大速度v m;(2)灯泡的额定功率P L;(3)若金属棒上滑距离为s时速度恰达到最大,求金属棒由静止开始上滑2s 的过程中,金属棒上产生的电热Q1.解析:(1)金属棒先做加速度逐渐减小的加速运动,当加速度为零时,金属棒达到最大速度,此后开始做匀速直线运动,设最大速度为v m,则速度达到最大时有E=BLvm ,I=E2R,F=BIL+mg sin θ,解得vm =3mgRB2L2,(2)P L=I2R,解得P L=9m2g2R 4B2L2.(3)设整个电路放出的电热为Q,由能量守恒定律有F·2s=Q+mg sin θ·2s+12mv2m,由题意可知Q1=Q2,解得Q1=32mgs-9m3g2R24B4L4.答案:(1)3mgRB2L2(2)9m2g2R4B2L2(3)32mgs-9m3g2R24B4L4考点三双杆模型1. 如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4 m.导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T.在区域Ⅰ中,将质量m1=0.1 kg,电阻R1=0.1 Ω 的金属条ab放在导轨上,ab刚好不下滑.然后,在区域Ⅱ中将质量m2=0.4 kg、电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑.cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2.问:(1)cd下滑的过程中,ab中的电流方向;(2)ab刚要向上滑动时,cd的速度v多大;(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8 m,此过程中ab上产生的热量Q是多少.解析:(1)由右手定则可判断出cd中的电流方向为由d到c,则ab中电流方向为由a流向b.(2)开始放置ab刚好不下滑时,ab所受摩擦力为最大静摩擦力,设其为F max,有F max=m1g sin θ①设ab刚要上滑时,cd棒的感应电动势为E,由法拉第电磁感应定律有E=BLv ②设电路中的感应电流为I,由闭合电路欧姆定律有I=ER1+R2③设ab所受安培力为F安,有F安=BIL④此时ab受到的最大静摩擦力方向沿斜面向下,由平衡条件有F安=m1g sin θ+F max⑤综合①②③④⑤式,代入数据解得v=5 m/s⑥(3)设cd棒运动过程中在电路中产生的总热量为Q总,由能量守恒定律有m 2gx sin θ=Q总+12m2v2⑦又Q=R1R1+R2Q总⑧解得Q=1.3 J⑨答案:(1)由a流向b(2)5 m/s (3)1.3 J2.如图所示,两根足够长且平行的光滑金属导轨与水平面成53°角固定放置,导轨间连接一阻值为6 Ω的电阻R,导轨电阻忽略不计.在两平行虚线m、n 间有一与导轨所在平面垂直、磁感应强度为B的匀强磁场.导体棒a的质量为m a =0.4 kg,电阻R a =3 Ω;导体棒b 的质量为m b =0.1 kg,电阻R b =6 Ω;它们分别垂直导轨放置并始终与导轨接触良好.a 、b 从开始相距L 0=0.5 m 处同时由静止开始释放,运动过程中它们都能匀速穿过磁场区域,当b 刚穿出磁场时,a 正好进入磁场(g 取10 m/s 2,不计a 、b 之间电流的相互作用).求:(1)当a 、b 分别穿越磁场的过程中,通过R 的电荷量之比; (2)在穿越磁场的过程中,a 、b 两导体棒匀速运动的速度大小之比; (3)磁场区域沿导轨方向的宽度d ; (4)在整个过程中产生的总焦耳热. 解析:(1)由法拉第电磁感应定律得E =ΔΦΔt, 平均电流I =E R 总,通过导体棒的总电荷量q 总=I Δt =ΔΦR 总.在b 穿越磁场的过程中,b 是电源,a 与R 是外电路,电路的总电阻R 总1=R b +RR aR +R a=8 Ω. 则通过R 的电荷量为q Rb =13q 总=13·ΔΦR 总1.同理,a 穿越磁场的过程中,R 总2=R a +RR b R +R b =6 Ω,通过R 的电荷量为q Ra =12q 总=12·ΔΦR 总2.解得q Ra ∶q Rb =2∶1.(2)设b 在磁场中匀速运动的速度大小为v b ,则b 中的电流I b =BLv bR 总1.由平衡条件得B 2L 2v bR 总1=m b g sin 53°.同理,a在磁场中匀速运动时有B2L2vaR总2=m a g sin 53°.联立可得v a∶v b=3∶1.(3)设a、b穿越磁场的过程中的速度分别为v a和v b.由题意得v a=v b+gt sin 53°,d=v b t,因v2a-v2b=2gL0sin 53°,解得d=0.25 m.(4)由F安a=m a g sin 53°,故W a=m a gd sin 53°=0.8 J,同理W b=m b gd sin 53°=0.2 J.在整个过程中,电路中共产生焦耳热为Q=Wa+W b=1 J.答案:(1)2∶1 (2)3∶1 (3)0.25 m (4)1 J11。

相关文档
最新文档