2012考研数二真题及解析
考研数学二历年真题(2003—2012)题目

2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-的渐近线条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 设1230(1,2,3),n n n a n S a a a a >==++++,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设2sin d ,(1,2,3),k x k I e x x k π==⎰则有( )(A) 123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I << (5) 设函数(,f x y )为可微函数,且对任意的,x y 都有(,)(,)0,0,x y x y x y∂∂><∂∂则使不等式1122(,)(,)f x y f x y >成立的一个充分条件是( )(A) 1212,x x y y >< (B) 1212,x x y y >> (C) 1212,x x y y << (D) 1212,x x y y <> (6) 设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)d d Dx y x y -=⎰⎰( )(A) π (B) 2 (C) -2 (D) -π(7) 设1100c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,2201c ⎛⎫⎪= ⎪ ⎪⎝⎭α ,3311c ⎛⎫ ⎪=- ⎪ ⎪⎝⎭α ,4411c -⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为 ( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若()123,,P =ααα,()1223,,Q =+αααα则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 设()y y x =是由方程21yx y e -+=所确定的隐函数,则202x d y dx== .(10) 22222111lim 12n n n n n n →∞⎛⎫+++= ⎪+++⎝⎭ .(11) 设1ln ,z f x y ⎛⎫=+⎪⎝⎭其中函数()f u 可微,则2z z x y x y ∂∂+=∂∂ . (12) 微分方程()2d 3d 0y x x y y +-=满足条件11x y ==的解为y = .(13) 曲线()20y x x x =+<上曲率为2的点的坐标是 . (14) 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则*BA = .三、解答题:15-23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分 10 分)已知函数()11sin x f x x x+=-,记()0lim x a f x →=,(I)求a 的值;(II)若0x →时,()f x a -与kx 是同阶无穷小,求常数k 的值.(16)(本题满分 10 分)求函数()222,x y f x y xe+-=的极值.(17)(本题满分12分)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.(18)(本题满分 10 分)计算二重积分d Dxy σ⎰⎰,其中区域D 为曲线()1cos 0r θθπ=+≤≤与极轴围成.(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=, (I) 求()f x 的表达式;(II) 求曲线220()()d xy f x f t t =-⎰的拐点.(20)(本题满分10分)证明21ln cos 112x x x x x ++≥+-,(11)x -<<.(21)(本题满分10 分)(I)证明方程1x x x ++=n n-1+()1n >的整数,在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根;(II)记(I)中的实根为n x ,证明lim n n x →∞存在,并求此极限. (22)(本题满分11 分)设100010001001a a A a a⎛⎫ ⎪⎪= ⎪⎪⎝⎭,1100β⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭(I) 计算行列式A ;(II) 当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解.(23)(本题满分11 分)已知1010111001A a a ⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭,二次型()()123,,T T f x x x x A A x =的秩为2,(I) 求实数a的值;将f化为标准形.(II) 求正交变换x Qy2011年全国硕士研究生入学统一考试数学二试题2010年考研数学二真题一填空题(8×4=32分)2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数()3sin x x f x nx-=的可去间断点的个数,则( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. (3)设函数(),zf x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xFx f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A 、B 均为2阶矩阵,**AB,分别为A 、B 的伴随矩阵。
2012数二真题解析

>0,
¶f
(x, y) ¶y
< 0 ,则
f (x1, y1) <
f
(x2 , y2 ) 成
立的一个充分条件是( )
(A) x1 > x2 , y1 < y2 (B) x1 > x2, y1 > y2 (C) x1 < x2 , y1 < y2 (D) x1 < x2 , y1 > y2
【解析】由 ¶f (x, y) > 0 , ¶f (x, y) < 0 可知,函数 f (x, y) 关于自变量 x 是单增的,关于自变量 y 是单减
p e(x+2p )2 sin xdx - p e(2p -x)2 sin xdx =
[e p
( x+2p )2
- e(2p -x)2 ]sin
xdx
>
0
p
-p
0
0
0
所以 I > I ,综上可知 I < I < I ,选(D)
3
1
2
1
3
(5)设函数
f (x, y) 可微,且对任意的 x, y 都有
¶f (x, y) ¶x
1
÷ 0÷
ç è
0
0
1
÷ ø
ç è
0
0
1
÷ ø
æ1
0
0
-1
ö
æ1 0 0ö
ç
÷
ç
÷
= ç1 1 0÷ P-1APç 1 1 0÷
ç è
0
0
1
÷ ø
ç è
0
0
1
÷ ø
æ1
2012考研数学二真题详细答案解析

(3)设 an>0(n=1,2,…),Sn=a1+a2+…an,则数列(sn)有界是数列(an)收敛的
(A)充分必要条件.
(B)充分非必要条件.
(C)必要非充分条件.
(D)即非充分地非必要条件.
【答案】:(A)
∞
∞
∑ ∑ 【解析】:由于 an > 0 ,则 an 为正项级数,Sn=a1+a2+…an 为正项级数 an 的前 n
D
∫∫ ∫ ∫ 【解析】:
xydσ = π dθ 1+cosθ r cosθ ⋅ r sin θ ⋅ rdr
0
0
D
∫ = 1 π sin θ ⋅ cosθ ⋅ (1 + cosθ )4 dθ 40
6
考研辅导
∫ = 16
πθ sin
cos θ
(2 cos2
【答案】:(D) 【解析】: 由二重积分的区域对称性,
∫∫ ( ) ∫ ∫ ( π
) x5 y − 1 dxdy =
2 −π
dx
1 sin x
x5 y − 1 dy = −π
2
⎛ 0 ⎞ ⎛ 0 ⎞ ⎛ 1 ⎞ ⎛ −1⎞
(7)设 α1
=
⎜ ⎜
0
⎟ ⎟
,α
2
=
⎜ ⎜
1
⎟ ⎟
,α
3
=
⎜ ⎜
−1⎟⎟
,
α
考研辅导
2012 年全国硕士研究生入学统一考试
数学二试题解析
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求 的,请将所选项前的字母填在答.题.纸.指定位置上.
2012年全国硕士研究生入学考试数学二真题及答案

2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x xy x +=-的渐近线条数( )(A) 0 (B) 1 (C) 2 (D) 3 (2) 设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则(0)f '=( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 设1230(1,2,3),n n n a n S a a a a >==++++,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设2sin d ,(1,2,3),k x k I e x x k π==⎰则有( )(A) 123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I << (5) 设函数(,f x y )为可微函数,且对任意的,x y 都有(,)(,)0,0,x y x y x y∂∂><∂∂则使不等式1122(,)(,)f x y f x y >成立的一个充分条件是()(A) 1212,x x y y >< (B) 1212,x x y y >> (C) 1212,x x y y << (D) 1212,x x y y <> (6) 设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)d d Dx y x y -=⎰⎰( )(A) π (B) 2 (C) -2 (D) -π(7) 设1100c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,2201c ⎛⎫⎪= ⎪ ⎪⎝⎭α ,3311c ⎛⎫ ⎪=- ⎪ ⎪⎝⎭α ,4411c -⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若()123,,P =ααα,()1223,,Q =+αααα则1Q AQ -=( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫⎪⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 设()y y x =是由方程21yx y e -+=所确定的隐函数,则202x d y dx== .(10) 22222111lim 12n n n n n n →∞⎛⎫+++=⎪+++⎝⎭ .(11) 设1ln ,z f x y ⎛⎫=+⎪⎝⎭其中函数()f u 可微,则2z z x y x y ∂∂+=∂∂ . (12) 微分方程()2d 3d 0y x x y y +-=满足条件11x y ==的解为y = .(13) 曲线()20y x x x =+<上曲率为2的点的坐标是 . (14) 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,由考研云助手整理( 专注免费考研资料 微信公众号提供更多资讯)则*BA = .三、解答题:15-23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分 10 分)已知函数()11sin x f x x x+=-,记()0lim x a f x →=,(I)求a 的值;(II)若0x →时,()f x a -与kx 是同阶无穷小,求常数k 的值.(16)(本题满分 10 分)求函数()222,x y f x y xe+-=的极值.(17)(本题满分12分)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.(18)(本题满分 10 分)计算二重积分d Dxy σ⎰⎰,其中区域D 为曲线()1cos 0r θθπ=+≤≤与极轴围成.(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=, (I) 求()f x 的表达式;(II) 求曲线220()()d xy f x f t t =-⎰的拐点.(20)(本题满分10分)证明21ln cos 112x x x x x ++≥+-,(11)x -<<.(21)(本题满分10 分)(I)证明方程1x x x ++=n n-1+()1n >的整数,在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根;(II)记(I)中的实根为n x ,证明lim n n x →∞存在,并求此极限. (22)(本题满分11 分)设100010001001a a A a a⎛⎫ ⎪⎪= ⎪⎪⎝⎭,1100β⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭(I) 计算行列式A ;(II) 当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解. (23)(本题满分11 分)已知1010111001A a a ⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭,二次型()()123,,T T f x x x x A A x =的秩为2, (I) 求实数a 的值;(II) 求正交变换x Qy =将f 化为标准形.2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:(C )【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直渐近线 22lim 11x x xx →∞+=-,所以1y =为水平渐近线,没有斜渐近线,总共两条渐近线,选(C )。
2012考研数学二真题及参考答案

2012考研数学二真题及参考答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:C【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C (2)设函数2()(1)(2)()xxnx f x e e e n =---,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n ---(B )(1)(1)!nn -- (C )1(1)!n n --(D )(1)!nn - 【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的 (A)充分必要条件. (B)充分非必要条件.(C )必要非充分条件. (D )即非充分地非必要条件. 【答案】:(A)【解析】:由于0na >,则1n n a ∞=∑为正项级数,S n=a 1+a 2+…a n为正项级数1n n a ∞=∑的前n 项和。
正项级数前n 项和有界与正向级数1nn a∞=∑收敛是充要条件。
故选A(4)设2kx keI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3. (B) I 2< I 2< I 3.(C) I 1< I 3 <I 1,(D) I 1< I 2< I 3. 【答案】:(D) 【解析】::2sin kx k eI e xdx=⎰看为以k为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin k x k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f(x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2. (B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x∂>∂,(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。
2012年考研数学二真题及解析

# ! " . # " !
! " 3 . 4 ."# 5 . !
2 # ! " . # " !
! " . # " ! 3 . 4 . 5 ." $ 1
! ! ! +! $!-4,# . / # " $. / $ 0# ! !! #! ! ! ! #! " " " 567$%# 89:! $%# " & # ! ( ! ! " " %! " # 6" ;<=$ > ’! ? # !" 1 ## 1 $! #(
W) 6X# ? [6 UVEQ& , . / , . / + (* ( YZ # (
( "0 ( "0
( 2 *
! " 6" !"OP)*# 3C! + ! %" ’ $ 2 ( * " 89! A:! 2 # " & ! ! ! ! $ !# %# ’ % & 0 ) + ! ! " 6" !"OP6 ! $ ! , ! ! ! ! !" ## ## %" ! 2 2 , . ! 2 2 , . $! ! ! ! !# ## %"! ! 2 $ " ! ! 2 / / 2 2 ! 2 2 !
! " ! z&k># ! & " >" *# " " # #, #
9! 9 " $ $¬’! $ $ $ ! ! & +®/! ! #& #$ !$ &" &# " * + " * &# ! ~¢"* +( "" ! ~4u¯v& #$ #" ’ °’ ±/r²³!
2012年考研数学二真题及答案解析

数学(二)试题 第 5 页 (共 11 页)
(23)(本题满分 11 分)已知
1)求 a 的(k=1,2,3),则有()
0
(A)I1< I2 <I3.
(B) I3< I2< I1.
(C) I2< I3 <I1,
(D) I2< I1< I3.
(5)设函数 f (x,y) 可微,且对任意 x,y 都 有 f (x, y) x
f (x, y) >0, y <0,f(x1,y1)<f
(A) (1)n1(n 1)!
(B) (1)n (n 1)!
(C) (1)n1n!
(D) (1)n n!
(3)设 an>0(n=1,2,…),Sn=a1+a2+…an,则数列(sn)有界是数列(an)收敛的
(A)充分必要条件.
(B)充分非必要条件.
(C)必要非充分条件.
(D)既非充分也非必要条件.
已知函数 f (x) 1 x 1 ,记 a lim f (x)
sin x x,
x0
(1)求 a 的值
(2)若当 x 0 时, f (x) a 是 xk 的同阶无穷小,求 k
(16)(本题满分 10 分)
( ) -x2+y2
求函数 f x, y = xe 2 的极值。
(17)(本题满分 10 分)
(2)记(1)中的实根为
xn
,证明
lim
n
xn
存在,并求此极限。
(22)(本题满分 11 分)
1 a 0 0
1
设
A
0
1
a
1990-2012考研数学二历年真题word版

2004年全国硕士研究生入学统一考试数学二试题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = .(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为____..(3)1+∞=⎰_____..(4)设函数(,)z z x y =由方程232x zz ey -=+确定, 则3z zx y∂∂+=∂∂______. (5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为_______.(6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A*为A 的伴随矩阵, E 是单位矩阵, 则B =______-.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量20cos xtdt α=⎰, 20x β=⎰,30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是[](A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα (8)设()(1)f x x x =-, 则[](A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.(9)22lim (1)n nn→∞+等于[](A )221ln xdx ⎰. (B ) 212ln xdx ⎰.(C ) 212ln(1)x dx +⎰. (D ) 221ln(1)x dx +⎰(10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得 [](A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >. (D )对任意的(,0)x δ∈-有()(0)f x f >.(11)微分方程21sin y y x x ''+=++的特解形式可设为 [](A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++(12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于[](A)11()dx f xy dy -⎰⎰.(B)2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰. (D )2sin 200(sin cos )d f r rdr πθθθθ⎰⎰(13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为[](A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.(14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有[](A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上,2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导.(17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数;(Ⅱ)求()f x 的值域.(18)(本题满分12分)曲线2x xe e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形.该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim ()t S t F t →+∞(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e->-. (20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时.(21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z zx y x y∂∂∂∂∂∂∂. (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩ 试问a 取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵12314315a -⎛⎫⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A是否可相似对角化.2003年全国硕士研究生入学统一考试数学二试题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,T α是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________. 二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有[ ](A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e .[ ](3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为 [ ](A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有[ ](A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点. (D) 三个极小值点和一个极大值点.(5)01xdx x 02tan , 则 [ ](A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >>(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则[ ](A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e x x ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点? 四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d 五 、(本题满分9分)计算不定积分 .)1(232arctan dx x xex⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min/33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.)十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0; (2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'badx x f a a b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax , :2l 032=++a cy bx , :3l032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2002年全国硕士研究生入学统一考试数学(二)试题一、填空题(本题共5小题,每小题3分,满分15分)1.设函数0)(2arcsin 12tan ≤<⎪⎩⎪⎨⎧=-x x aex f xe xx在0=x 处连续,则=a ( ). 2.位于曲线xxe y -=(+∞<≤x 0)下方,x 轴上方的无界图形的面积为( ).3.02='+''y y y 满足初始条件21)0(,1)0(='=y y 的特解是( ). 4.1lim 1cos n n →∞++=( ).5.矩阵⎪⎪⎪⎭⎫⎝⎛-----222222220的非零特征值是( ).二、单项选择题(本题共5小题,每小题3分,满分15分.)1.函数)(u f 可导,)(2x f y =当自变量x 在1-=x 处取得增量1.0-=∆x 时,相应的函数增量y ∆的线性主部为0.1,则)1(f '= (A)-1; (B)0.1;(C)1; (D)0.5.2.函数)(x f 连续,则下列函数中,必为偶函数的是 (A)⎰x dt t f 02)(; (B)⎰x dt t f 02)(;(C)⎰--x dt t f t f t 0)]()([; (D)⎰-+xdt t f t f t 0)]()([.3.设)(x f y =是二阶常系数微分方程xe qy y p y 3=+'+''满足初始条件0)0()0(='=y y 的特解,则极限)()1ln(lim 20x y x x +→(A)不存在; (B)等于1; (C)等于2; (D) 等于3. 4.设函数)(x f 在+R 上有界且可导,则(A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x ;(B)当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x ;(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x ;(D) 当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .5.设向量组321,,ααα线性无关,向量1β可由321,,ααα线性表示,而向量2β不能由321,,ααα线性表示,则对于任意常数k 必有(A)21321,,,ββααα+k 线性无关;(B) 21321,,,ββααα+k 线性相关; (C)21321,,,ββαααk +线性无关; (D) 21321,,,ββαααk +线性相关.三、(本题满分6分)已知曲线的极坐标方程为θcos 1-=r ,求该曲线对应于6πθ=处的切线与法线的直角坐标方程.四、(本题满分7分)设函数10012)(2)1(223≤≤<≤-⎪⎩⎪⎨⎧+==+x x xx x f y x x e xe ,求函数⎰-=x dt t f x F 1)()(的表达式.五、(本题满分7分)已知函数)(x f 在+R 上可导,0)(>x f ,1)(lim =+∞→x f x ,且满足x he xf hx x f h 11))()((lim 0=+→,求)(x f . 六、(本题满分7分)求微分方程0)2(=-+dx y x xdy 的一个解)(x y y =,使得由曲线)(x y y =与直线2,1==x x 以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体的体积最小. 七、(本题满分7分)某闸门的形状与大小如图所示,其中直线l 为对称轴,闸门的上部为矩形ABCD,下部由二次曲线与线段 AB所围成.当水面与闸门的上断相平时,欲使闸门矩形部分与 承受的水压与闸门下部承受的水压之比为5:4,闸门矩形部分 的高h 应为多少? 八、(本题满分8分)设30<<n x ,)3(1n n n x x x -=+(n =1,2,3,…). 证明:数列{n x }的极限存在,并求此极限.九、(本题满分8分)设0>>a b ,证明不等式aba b a b b a a 1ln ln 222<--<+.十、(本题满分8分)设函数)(x f 在x =0的某邻域具有二阶连续导数,且0)0()0()0(≠'''f f f .证明:存在惟一的一组实数c b a ,,,使得当0→h 时,)()0()3()2()(2h o f h cf h bf h af =-++.十一、(本题满分6分)已知A,B为三阶方阵,且满足E B B A 421-=-.⑴证明:矩阵E A 2-可逆;⑵若⎪⎪⎪⎭⎫⎝⎛-=200021021B ,求矩阵A. 十二、(本题满分6分)已知四阶方阵),,,(4321αααα=A , 4321,,,αααα均为四维列向量,其中432,,ααα线性无关,3212ααα-=.若4321ααααβ+++=,求线性方程组β=Ax 的通解.2001年全国硕士研究生入学统一考试数学(二)试题一、填空题(本题共5小题,每小题3分,满分15分) 1、213lim21-++--→x x xx x =( ).2、曲线1)cos(2-=-+e xy eyx 在点(0,1)处 的切线方程为 :( ). 3、xdx x x 223cos )sin (22⎰-+ππ=( ). 4、微分方程11arcsin 2=-+'x y x y 满足)(21y =0的特解为:( ).5、方程组⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛211111111321x x x a a a 有无穷多解,则a =( ).二、单项选择题(本题共5小题,每小题3分,满分15分.) 1、1101)(>≤⎩⎨⎧=x x x f 则)]}([{x f f f =( A ) 0;(B )1;(C )1101>≤⎩⎨⎧x x ; (D )111>≤⎩⎨⎧x x .2、0→x 时,)1ln()cos 1(2x x +-是比n x x sin 高阶的无穷小,而nx x sin 是比12-x e 高阶的无穷小,则正整数n 等于( A )1;(B )2;(C )3;(D )4. 3、曲线22)3()1(--=x x y 的拐点的个数为 ( A )0;(B )1;(C )2;(D )3.4、函数)(x f 在区间(1-δ,1+δ)内二阶可导,)(x f ' 严格单调减小,且)1(f =)1(f '=1,则(A )在(1-δ,1)和(1,1+δ)内均有)(x f x <; (B )在(1-δ,1)和(1,1+δ)内均有)(x f x >;(C )在(1-δ,1)内有)(x f x <,在(1,1+δ)内有)(x f x >; (D )在(1-δ,1)内有)(x f x >,在(1,1+δ)内有)(x f x <. 5、设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示: 则)(x f y '=的图形为 ( )三、(本题满分6分)求⎰++221)12(xxdx.四、(本题满分7分)求函数)(x f =sin sin sin lim()sin xt x t x t x-→的表达式,并指出函数)(x f 的间断点及其类型.五、(本题满分7分)设)(x ρρ=是抛物线x y =上任意一点M (y x ,)(1≥x )处的曲率半径,)(x s s =是该抛物线上介于点A (1,1)与M 之间的弧长,计算222)(3ds d ds d ρρρ-的值(曲率K =23)1(2y y '+''). 六、(本题满分7分))(x f 在[0,+∞)可导,)0(f =0,且其反函数为)(x g . 若x x f e x dt t g 2)(0)(=⎰,求)(x f .七、(本题满分7分)设函数)(x f ,)(x g 满足)(x f '=)(x g , )(x g '=2xe -)(x f且)0(f =0,(0)g =2,求dx x x f x x g ⎰+-+π2])1()(1)([八、(本题满分9分)设L 为一平面曲线,其上任意点P (y x ,)(0>x )到原点的距离,恒等于该点处 的切线在y 轴上的截距,且L 过点(0.5,0).1、 求L 的方程2、 求L 的位于第一象限部分的一条切线,使该切线与L 以及两坐标轴所围成的图形的面积最小.九、(本题满分7分)一个半球型的雪堆,其体积的融化的速率与半球面积S 成正比比例系数K>0.假设在融化过程中雪堆始终保持半球形状,已知半径为 r 0 的雪堆在开始融化的3小时内,融化了其体积的7/8,问雪堆全部融化需要多少时间?十、(本题满分8分))(x f 在[-a ,a]上具有二阶连续导数,且)0(f =01、 写出)(x f 的带拉格朗日余项的一阶麦克劳林公式;2、 证明在[-a ,a]上至少存在一点η,使⎰-=''a adx x f f a )(3)(3η十一、(本题满分6分)已知⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=011101110,111011001B A 且满足AXA+BXB=AXB+BXA+E ,求X .十二、(本题满分6分)设4321,,,αααα为线性方程组AX=O 的一个基础解系, 144433322211,,,ααβααβααβααβt t t t +=+=+=+=,其中t 为实常数试问t 满足什么条件时4321,,,ββββ也为AX=O 的一个基础解系.2000 年全国硕士研究生入学统一考试一、 填空题1.2.3.4.5.二、选择题6. 7.8.9.10.三、解答题11.12.13.14.15.16. 17.18.19.20.21.1999 年全国硕士研究生入学统一考试(数学二)1998 年全国硕士研究生入学统一考试(数学二)1997 年全国硕士研究生入学统一考试(数学二)1996 年全国硕士研究生入学统一考试(数学二)1995 年全国硕士研究生入学统一考试(数学二)1994 年全国硕士研究生入学统一考试(数学二)1993 年全国硕士研究生入学统一考试(数学二)1992 年全国硕士研究生入学统一考试(数学二)1991 年全国硕士研究生入学统一考试(数学二)1990 年全国硕士研究生入学统一考试(数学二)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年全国硕士研究生入学统一考试
数学二试题解析
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
(1)曲线221
x x y x +=-渐近线的条数为() (A )0
(B )1 (C )2 (D )3
(2)设函数2()(1)(2)()x x nx f x e e
e n =---L ,其中n 为正整数,则'(0)
f = (A )1(1)
(1)!n n --- (B )(1)(1)!n n -- (C )1
(1)!n n -- (D )(1)!n n - (3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的
(A)充分必要条件.
(B)充分非必要条件. (C)必要非充分条件.
(D )即非充分地非必要条件. (4)设2k x k e I e =⎰ sin x d x (k=1,2,3),则有D
(A )I 1< I 2 <I 3.
(B) I 2< I 2< I 3. (C) I 1< I 3 <I 1, (D) I 1< I 2< I 3.
(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x
∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f (x 2,y 2)成立的一个充分条件是
(A) x 1> x 2, y 1< y 2.
(B) x 1> x 2, y 1>y 1. (C) x 1< x 2, y 1< y 2. (D) x 1< x 2, y 1> y 2.
(6)设区域D 由曲线,1,2,sin =±==y x x y π
围成,则()
)(15⎰⎰=-dxdy y x ππ--)(2)(2)()(D C B A
(7)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
其中1234,,,c c c c 为任意常数,则下列向量组线性相关的是( )
(A )123,,ααα (B )124,,ααα
(C )134,,ααα (D )234,,ααα
(8)设A 为3阶矩阵,P 为3阶可逆矩阵,且1112P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭
,()123,,P ααα=,
()1223,,Q αααα=+则1Q AQ -=( )
(A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )112⎛⎫ ⎪ ⎪ ⎪⎝⎭
(C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D )221⎛⎫ ⎪ ⎪ ⎪⎝⎭
二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.
(9)设()y y x =是由方程21y x y e -+=所确定的隐函数,则
________。
(10)计算22222111lim 12x n n n n n →∞⎛⎫+++= ⎪+++⎝⎭
…________。
(11)设1ln z f x y ⎛⎫=+ ⎪⎝
⎭,其中函数()f u 可微,则2z z x y x y ∂∂+=∂∂________。
(12)微分方程2(3)0ydx x y
dy +-=满足初始条件|x y =1=1的解为________。
(13)曲线2(0)y x x x =+<上曲率为
2
2的点的坐标是________。
(14)设A 为3阶矩阵,3A =,*A 为A 的伴随矩阵,若交换A 的第一行与第二行得到矩阵B ,则
*BA =________。
三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.
(15)(本题满分10分) 已知函数11()sin ,
x f x x x +=
-,记0lim ()x a f x →= (1)求a 的值
(2)若当0x →时,()f x a -是k x 的同阶无穷小,求k
(16)(本题满分10分) 求()22
,2
x y f x y xe +=-的极值。
(17)(本题满分10分)
过点(0,1)点作曲线L :x y ln =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 及x 轴围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积。
(18)(本题满分10分)
计算二重积分⎰⎰D
xyd σ,其中区域D 为曲线()πθθ≤≤+=0cos 1r 与极轴围成。
(19)(本题满分11分)已知函数)(x f 满足方程0)(2)()('''=-+x f x f x f 及x e x f x f 2)()('=+
1)求表达式)(x f
2)求曲线的拐点dt t f x f y x ⎰-=022)()
(
(20)(本题满分10分) 证明:2
1ln cos 1,1112
x x x x x x ++≥+-<<- (21)(本题满分11分)
(1)证明方程)1(1...1的整数>=+++-n x x x n n ,在区间⎪⎭
⎫ ⎝⎛1,21内有且仅有一个实根; (2)记(1)中的实根为n x ,证明n n x ∞→lim 存在,并求此极限。
(22)(本题满分11分)
设100010001001a a A a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,1100b ⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭
(Ⅰ)求A
(Ⅱ)已知线性方程组Ax b =有无穷多解,求a ,并求Ax b =的通解。
T A 为矩阵A 的转置,已知()2T r A A =,且二次型(23)(本题满分11分)三阶矩阵 T T f x A Ax =。
1)求a
2)求二次型对应的二次型矩阵,并将二次型化为标准型,写出正交变换过程。
P。