数值计算方法 迭代法及其收敛性 - 迭代法及其收敛性

合集下载

迭代法的收敛性与稳定性 - 松弛迭代法、迭代法的收敛性与稳定性

迭代法的收敛性与稳定性 - 松弛迭代法、迭代法的收敛性与稳定性
Bk 0(零矩阵)(k )
定义 6.5 设有矩阵序列 Ak (aij(k ) ) Rnn 及 Ak (aij ) Rnn ,如果 n2 个数列极限存在
且有
lim
k
a (k) ij
aij
(i,
j
1,2,..., n)

Ak
称收敛于
A
记为 lim(k
)

定理 6.5
lim
k
Ak
A
lim
三 松弛法例题与程序
例 6.9 取 1.4, x(0) (1,1,1)T 用超松弛法解方程组
2x1 x2
1
x1 2x2 x3 0
x2 2x3 1.8
� � 解:由 xi(k1)
(1 )xik
aii
(bi
i 1 j 1
a x(k 1) ij j
n
aij
x
(k j
x j(k ) ) / aii xi(k )
j i
j i 1
i 1
n
(bi aij x j(k 1) aij x j(k ) ) / aii
ji
ji
(i 1,, n; k 0,1,).
� � i1
n
xi
b x(k 1) ij j
bij
x(k) j
gi
x(k) i
j 1
j i 1
a x(k1) ij j
aij x(jk ) ) / aii .
j 1
j i 1
(2) 再由 x(k) 与 ~xi(k 1) 加权平均定义 xi(k 1) ,即
x(k 1) i
(1 )xi(k)
x%i(k 1)

7.2 迭代法及其收敛性

7.2 迭代法及其收敛性

k4.1045
1/ 2
表 7.2.1 用不动点迭代法计算例7.2.1的结果
0 (a) 1.5 -0.625 6.447 -378.2 5.3697e7 -1.547e23 (b) 1.5 0.912871 2.454577 (c) (d) (e) 1.5 1.5 1.5 1.241638702 1.333333333 1.365079365 1.424290116 1.305205188 1.387624336 1.332682451 1.370291856 1.344991115 1.362217505 1.350582520 1.358732441 1.355350555 1.354767869 1.355301399 1.355384418 1.355301398 1.355288480 1.355303407 1.355301085 1.355301446 1.355301390
*
k
xk x L x0 x L max x0 a , b x0 ,
* k * k
从而 7.2.4 成立.
再由 7.2.3 , 对m k 1, 我们有
x m x k x m x m 1 x m 1 x m 2 x k 1 x k x m x m 1 x m 1 x m 2 x k 1 x k Lm 1 x1 x0 Lm 2 x1 x0 Lk x1 x0 Lk x1 x0 1 L L2 Lm k 1 .
(7.2.1)
其中 ( x )为连续函数,其取法不唯一,例如可取
方程(7.2.1)的解称为函数 ( x )的不动点, 求方程 (7.2.1)的解的问题称为不动点问题.

37第七节 迭代法及其收敛性

37第七节 迭代法及其收敛性
x(k) x q x(k) x(k1) 1q
x(k) x qk x(1) x(0) 1q
证 因 (B)||B||=q<1, 所以迭代格式收敛, 且有 设 lim x (k) =x*,由 x(k+1) = Bx(k) + f , 得 x* = Bx* + f ,则
数学学院 信息与计算科学系
又 || Bk|| ||B||k ,有 lim||Bk||=0 , 故 lim B k =0,由1)知,迭代格式收敛。
数学学院 信息与计算科学系
三、迭代法的收敛速度
考察误差向量
e(k) =x(k) -x*=Bk ·e(0)
设B有n个线性无关的特征向量及相应的特征值为
1 ,2 , ,n ,
1 , 2 , , n
数学学院 信息与计算科学系
2) 由1)知,迭代格式收敛 lim Bk=O , 即lim||Bk||=0 ,从而存在 k ,使 || B k || <1,由谱半径 的性质有
[( B )]k = (B k ) ||B k ||<1,
故得
( B )<1,
因(B)=inf{||B||}且(B)<1,存在 >0及使 || B || ( B )+ <1,
取对数得 定义3 称
k s ln10
ln (B)
R(B) ln (B)
为迭代法 x(k+1) = Bx(k) + f 的收敛速度。 由此看出,当(B)<1愈小,速度R(B)就愈大,
所需要的迭代次数也就愈少。
数学学院 信息与计算科学系
定理 2 若 ||B||=q<1,则对任意x(0) 迭代格式 x(k+1) = Bx(k) + f 收敛 ,且有误差估计式

数值计算中的算法设计与理论分析

数值计算中的算法设计与理论分析

数值计算中的算法设计与理论分析在现代科学和技术的发展中,数值计算是一个不可或缺的工具。

它将数学理论应用于工程、科学与社会经济等领域,为我们提供了各种各样的数值计算方法。

在数值计算中,算法设计是一个至关重要的环节,而算法的效率、稳定性和可靠性则与其理论分析密不可分。

一、数值计算中的算法设计算法设计是数值计算的核心,其设计目标通常是快速和准确地解决问题。

不同的问题需要不同的算法设计,常用的算法包括迭代法、插值法、微分方程数值解法、统计学方法等。

1. 迭代法迭代法是一种求解方程组或者函数零点的方法。

该方法的基本思想是从一个初值开始,不断迭代逼近目标解。

迭代法通常有牛顿迭代法、割线法等,其中牛顿迭代法是一种高效且广泛使用的方法,具有收敛速度快、收敛性好等优点,常用于求解非线性问题。

例如,求解方程f(x) = 0,其中f(x)是一个连续可导函数。

由泰勒展开可知,在x处的一次近似为:f(x + h) ≈ f(x) + hf'(x)设此时函数的近似根为x1,根据近似式有:0 ≈ f(x1 + h) ≈ f(x1) + hf'(x1)可得:x1 ≈ x - f(x)/f'(x)这就是牛顿迭代法的基本思路。

2. 插值法插值法是通过已知的有限个点来推算出未知数在某些位置处的数值。

插值法包括拉格朗日插值法、牛顿插值法、分段插值法等,其中最常用的是拉格朗日插值法和牛顿插值法。

例如,给定函数f(x)在点x0, x1, ..., xn处的取值yi = f(xi),要求在区间[x0, xn]内的任意点x处的函数值f(x)。

对于插值点xi,求相应的插值函数L(x),则L(x)的表达式为:L(x) = Σfi*li(x)其中fi是插值点xi对应的函数值,li(x)是插值点xi对应的基函数。

3. 微分方程数值解法微分方程数值解法是求解微分方程问题的一种数值计算方法。

常用的数值解法有欧拉法、龙格-库塔法、后向欧拉法等。

数值分析10迭代法的收敛性分析

数值分析10迭代法的收敛性分析
例如,Jacobi迭代法和Gauss-Seidel迭代法是两种常见的求解线性方程组的迭代法。通过收敛性分析,可以发现Jacobi迭代 法在一般情况下是收敛的,但收敛速度较慢;而Gauss-Seidel迭代法在一般情况下也是收敛的,且收敛速度较快。因此,在 实际应用中,可以根据问题的具体情况选择合适的迭代方法。
研究方向
进一步深入研究迭代法的收敛性,探索更有 效的迭代公式和算法,以提高收敛速度和稳 定性。
展望
随着计算技术的发展,迭代法在数值分析中 的应用将更加广泛,其收敛性分析将为解决 实际问题提供更有力的支持。同时,随着数 学理论的发展,迭代法的收敛性分析将更加 深入和完善。
感谢您的观看
THANKS
例如,梯度下降法和牛顿法是两种常见的求解优化问 题的迭代法。通过收敛性分析,可以发现梯度下降法 在一般情况下是收敛的,但可能会遇到收敛速度较慢 或者不收敛的情况;而牛顿法在一般情况下也是收敛 的,且收敛速度可能比梯度下降法更快。因此,在实 际应用中,可以根据问题的具体情况选择合适的迭代 方法。
06
迭代法收敛的充要条件
迭代法收敛的充要条件是迭代矩阵的谱半径小于1。谱半径是迭代矩阵所有特征值的模的最大值。
收敛性的判定方法
可以通过计算迭代矩阵的特征值来判断迭代法的收敛性,也可以通过迭代矩阵的范数来近似判断。
收敛速度的度量
01
02
03
迭代次数
迭代次数是衡量收敛速度 的一个直观指标,迭代次 数越少,收敛速度越快。
在非线性方程求解中的应用
非线性方程的求解是数值分析中的另一个重 要问题,迭代法也是求解非线性方程的重要 方法之一。与线性方程组求解类似,收敛性 分析在非线性方程求解中也有着重要的作用 。通过收敛性分析,可以判断迭代法的收敛 速度和收敛性,从而选择合适的迭代方法和 参数,提高求解效率。

数值分析非线性方程的数值解法

数值分析非线性方程的数值解法

数值分析非线性方程的数值解法数值分析是一种应用数学方法来分析和解决数学问题的领域。

非线性方程是数值分析中一类重要的问题,其解法包括了迭代法、牛顿法、割线法等。

本文将详细介绍这些数值解法及其原理和应用。

一、迭代法迭代法是解非线性方程的一种常用数值方法。

该方法的基本思想是通过不断迭代逼近方程的根,直到达到所需精度或满足停止准则为止。

迭代法的求根过程如下:1.选择适当的初始值x0。

2. 利用迭代公式xn+1 = g(xn),计算下一个近似根。

3.重复步骤2,直到满足停止准则为止。

常用的迭代法有简单迭代法、弦截法和牛顿法。

简单迭代法的迭代公式为xn+1 = f(xn),其中f(x)为原方程的一个改写形式。

该方法的收敛性要求函数f(x)在解附近有收敛性且导数在一个区间内收敛。

弦截法的迭代公式为xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。

该方法通过连接两个点上的函数值的割线来逼近方程的根。

牛顿法的迭代公式为xn+1 = xn - f(xn) / f'(xn),其中f'(x)为f(x)的导数。

该方法通过用切线来逼近方程的根。

二、牛顿法牛顿法是解非线性方程的一种常用迭代法。

该方法通过使用方程的导数来逼近方程的根。

迭代过程如下:1.选择适当的初始值x0。

2. 利用迭代公式xn+1 = xn - f(xn) / f'(xn),计算下一个近似根。

3.重复步骤2,直到满足停止准则为止。

牛顿法的收敛速度较快,但要求方程的导数存在且不为0。

三、割线法割线法是解非线性方程的另一种常用迭代法。

该方法通过连接两个点上的函数值的割线来逼近方程的根。

迭代过程如下:1.选择适当的初始值x0和x12. 计算下一个近似根xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。

3.重复步骤2,直到满足停止准则为止。

割线法的收敛速度介于简单迭代法和牛顿法之间。

数值分析23迭代法的收敛性

数值分析23迭代法的收敛性
1,故应先求迭代矩阵。而
1 2 2
A 1 1
1
2 2 1
故A分解后的各矩阵分别为
1
D
1
1
0 0 0
L
1
0
0
2 2 0
0 2 2
U 0 0 1 0 0 0
Jacobi迭代法的迭代矩阵为
0 2
1 2 2
2 A 1 1
2 2 1
0 2 1
于是迭代矩阵为
0 2 2
M (D L)1U 0 2 3 0 0 2
其特征方程为
2 2 | I M | 0 2 3 ( 2)3 0
0 0 2
故 (B) 2 1,
所以Gauss-Seidel迭代法发散。
请思考: (1) 若 记 不 住 Jacobi 迭 代 法 和 GaussSeidel迭代法的矩阵表示,怎么写出迭 代矩阵?
Ax b ,
其中A
9 3
4 10
显然Aˊ是严格对角占优阵,因此对方程组
Ax b 用Jacobi法和Gauss-Seidel法均收敛。
例 3 : 设 A=(aij) 是 二 阶 方 阵 , 且 a11a22≠0. 试 证 求 解 方 程 组 Ax=b 的 Jacobi 法 与 Gauss-Seidel 法 同时收敛或发散。
注:定理表明,迭代法收敛与否只决定于迭代 矩阵的谱半径,与初始向量及方程组的右 端项无关。对同一方程组,由于不同的迭 代法迭代矩阵不同,因此可能出现有的方 法收敛,有的方法发散的情形。
举例:解方程组
x1 x1
2x2 2x3 x2 x3 2
1
2 x1 2 x2 x3 3
讨论Jacobi法与Gauss-Seidel法的收敛性。

数值分析3.1.二分法、迭代法及收敛性

数值分析3.1.二分法、迭代法及收敛性

上述令p→∞, 及limxk+p=x* (p→∞)即得(2.6)式. 证毕. 注:误差估计式(2.5)原则上确定迭代次数,但它由 于含有信息 L 而不便于实际应用. 而误差估计式(2.6) 是实用的,只要相邻两次计算结果的偏差足够小即 可保证近似值 xk 具有足够精度.
注: 对定理1和定理2中的条件2º 可以改为导数,即 在使用时如果(x)∈C[a, b]且对任意x∈[a, b]有
显然f(x)∈C[a, b],且满足f(a)=(a)-a>0, f(b)=(b)-b<0, 由连续函数性质可知存在 x*∈(a, b) 使 f(x*)=0,即 x*=(x*),x*即为(x)的不动点. 再证不动点的唯一性. 设x1*, x2*∈[a, b]都是(x) 的不动点,则由(2.4)得
可以如此反复迭代计算
xk+1=(xk) 到的序列{xk}有极限 (k=0,1,2,). (2.2)
(x)称为迭代函数. 如果对任何x0∈[a, b],由(2.2)得
lim xk x .
k
则称迭代方程(2.2)收敛. 且x*=(x*)为(x)的不动点, 故称(2.2)为不动点迭代法.
例1 用二分法求方程 f(x)=x3-x-1=0在(1, 1.5)的实根, 要求误差不超过0.005.
解 由题设条件,即:
|x*-xn|≤0.005 则要
1 2
n 1
(b a)
1 2
n 1
(1.5 1)
1 2
n 2
0.005
2 由此解得 n 1 5.6,取 n=6, 按二分法计算过程见 lg 2
L2 xk 1 xk 2 Lk x1 x0 .
于是对任意正整数 p 有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

324
-1.212938934846244 10
{精确解为: x =1.594562}
972 -1.784501062446783 10
Clear[f,CC] f[x_]:=x^3+10x-20; Plot[f[x],{x,1,2}]
计算结果: 1.63265306122449
x[n_]:=20/((x[n-1])^2+10);
{精确解为: x =1.594562}
1.594731546347759 1.594493422715452
压缩映象原理1 设( x)在[a, b]满足以下条件:
3
1。 对任意x [a, b]有a ( x) b.
迭 代
2. 存在常数0 L 1,使对,x, y [a, b]都有

(x) ( y) L x y
重点
实多项式方程
f ( x) a0 x n a1 x n1 an1 x an (a0 0),
的求根问题.
(其中系数ai (i 0,1,, n)为实数)
若 方程f ( x*) 0, 则x*称为函数f ( x)的零点
1
若方程 f (x) (x x* )m g(x),
其 中m为 正 整 数 , 且g( x* ) 0.
据此建立迭代公式
xk1 3 xk型例题
例2
求方程 f ( x) x 3 10x 20 0
在x0 1.5附近的根x * , 要求精确到六位小数。
设方程分别改写成下列形式
(1) x x 3 11x 20
20 (2) x
x 2 10
据此建立迭代公式
(1) xn1 xn3 11xn 20
称x*为函数的一个不动点
相 关
求f ( x)的零点等价于求不动点

念 按下列公式反复迭代
xk1 ( xk )
( x)称为迭代函数
(k 0,1)
因为:f ( x) x ( x)
2
所以: f ( x) 0 的解 x ( x) 的解
迭 代

x
(
x)


y y
(
x
x)
的解(两条线的交点)
x*
lim
k
x
k
1
lim
k
(
xk
)
(lim k
xk
)
( x* )
故k充分大时,xk可作为方程根的近似值
按上述方法构造迭代格式来求解方程的方法称为简单迭代法或逐
次迭代法。
不动点迭代法: 将方程 f ( x) 0 改写为: x ( x).
1 若要求x*满足f ( x* ) 0,则x* ( x* );反之亦然,
法 的
2. 存在常数0 L 1,使对,x, y [a, b]都有
收 敛
'(x) L
条 件
则x ( x)在[a, b]上存在唯一的根x * .
且对任意的x0 [a, b], xn1 ( xn ) x*,并有
xn x*
Ln
1 L
x1 x0
回顾例题
例2
求方程 f ( x) x 3 10x 20 0
n次方程在复数域有且只有n个根
不动点迭代法
构造不动点方程,以求得近似根。
1 即由方程f(x)=0变换为其等价形式x=(x), 然后建立迭代格式,

xk1 ( xk )
关 概 念
当给定初值x0 后, 由迭代格式可求得数列{xk}。此数列可能收敛, 也可能不收敛。如果{xk}收敛于x*,则它就是方程的根。因为:
第 七
非线插性方值程(法组)数值解法

主讲教师:刘春凤
1 方程求根与二分法 2 迭代法及其收敛性 3 牛顿法及改进的牛顿法 4 弦截法
5 非线性方程组的牛顿法
问题的提法和相关概念 简单迭代法及其程序设计 迭代法探究及收敛原理
问题的提出
实多项式方程
讨论单变量非线性方程 f ( x) 0 的求根问题.
1.579085827030582

x[0]=1.5;
1.600830888972853

N[Table[x[n],{n,1,8}],20];
1.592019583443828

MatrixForm[%] N[Solve[f[x]==0,x],20][[1]]
1.595592799843456

1.59414421311147

收 敛
则x ( x)在[a, b]上存在唯一的根x * .
条 件
且对任意的x0 [a, b], xn1 ( xn ) x*,并有
xn x*
Ln
1 L
x1 x0
压缩映象原理应用
3
原理的重要应用
设( x)在[a, b]满足以下条件:


1。 对任意x [a, b]有a ( x) b.

则 : (1) 当m 1时 , 则 称x*为 单 根 ,
关 概
(2) 当m 1称x*为m重 根 , 或x*为f ( x)的m重 零 点.

若x*是f ( x)的m重 零 点,且g( x)充 分 光 滑 , 则
f ( x* ) f ( x* ) f (m1) ( x* ) 0, f (m) ( x* ) 0.
(n 0,1,2,).
(2)
xn1
20 xn2 10
结果有:
Clear[f,CC] f[x_]:=x^3+10x-20;
结果是:
-0.125
Plot[f[x],{x,1,2}]
-21.376953125

x[n_]:=(x[n-1])^3+11x[n-1]-20;
-10023.86093188077

y

y x
y y (x)


y x

y (x)

x
x
迭代法的几何意义
y
y=x
y
y=x
y=(x)
y=(x)
0
x1
x3 x5ξ x4 x2 x0
x
0
x3 x1 ξ x0 x2
x4
x
典型例题
例 1 求方程 f ( x) x 3 x 1 0 在x0 1.5附近的根x* .
设方程改写成下列形式 x 3 x1

x[0]=1.5;
N[Table[x[n],{n,1,8}],20]; 设
MatrixForm[%]
12 -1.007175483753888 10
36 -1.021681283411174 10

N[Solve[f[x]==0,x],20][[1]]
108 -1.066464276280024 10
在x0 1.5附近的根x * , 要求精确到六位小数。
设方程分别改写成下列形式
(1) x x 3 11x 20 1 ( x)
(2)
x
x
20 2 10
2
(
x)
(1) 1 '( x) 3x 2 11 1 所以迭代法发散
相关文档
最新文档