类比探究—直角结构(含答案)1

合集下载

类比探究(习题及答案)

类比探究(习题及答案)

➢例题示范类比探究(习题)例1:如图1,在□ABCD 中,点E 是BC 边的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G.(1)尝试探究:如图1,若AF= 3 ,则CD的值是.EF CG(2)类比延伸:如图2,在原题的条件下,若AF=m (m>EF0),则CD的值是CG解答过程.(用含m 的代数式表示),试写出(3)拓展迁移:如图3,在梯形ABCD 中,DC∥AB,点E是BC 延长线上一点,AE 和BD 相交于点F.若AB=a ,CDBC=b(a>0,b>0),则AF的值是(用含a,b 的代BE EF 数式表示).1【思路分析】根据特征确定问题结构,设计方案解决第一问.问题背景是平行四边形,且已知线段比例关系,考虑通过相似传递比例关系,进而求 CD的值.CG构造相似利用作平行线的方法,即过中点 E 作 EH ∥AB 交 BG于点 H ,可得“A ”字型相似△BEH ∽△BCG ,“X ”型相似△EFH ∽△AFB ,结合 AF= 3 ,可得 CG =2EH ,AB =3EH ,故EFCD = 3 .CG 2类比第一问思路,解决第二问.分析不变特征,此时平行四边形、中点特征均不变,变化的是 AF ,EF 的比例,照搬第一问思路,过点 E 作 EH ∥AB 交BG 于点 H ,同样可得△BEH ∽△BCG ,△EFH ∽△AFB ,此时 CG =2EH ,AB =mEH ,故 CD = m.CG 2照搬思路解决第三问.虽然此问中图形、中点 E 、比例关系均发生变化,但 DC ∥AB 不变,依然可利用相似来整合条件,可照搬前面思路处理, 依然构造平行.过点 E 作 EH ∥AB 交 BD 的延长线于点 H ,可得△BCD ∽△BEH ,△AFB ∽△EFH ,可得 BC = CD,BE EHAF = AB ,结合 AB = a , BC = b ,可知 EF EH CD BE AF = AB = a ⋅CD = ab . EF EH EH212 3➢巩固练习1.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°.【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P,边EF 与边BC 交于点Q.【探究】在旋转过程中,(1)如图2,当CE=1时,EP 与EQ 满足怎样的数量关系?EA并给出证明.(2)如图3,当CE= 2 时,EP 与EQ 满足怎样的数量关系?EA并给出证明.(3)根据你对(1),(2)的探究结果,试写出当CE=m时,EAEP 与EQ 满足的数量关系式为.3,=2.如图1,在等边三角形ABC 中,线段AD 为其内角角平分线,过点D 的直线B1C1⊥AC 于C1,交AB 的延长线于B1.(1)请你探究:AC =CD AC1 C1D 是否都成立?AB BD AB1DB1(2)请你继续探究:如图2,若△ABC 为任意三角形,线段AD 为其内角角平分线,请问AC=CD一定成立吗?并证明AB BD你的判断.(3)如图3,在Rt△ABC 中,∠ACB=90°,AC=8,AB=40,3E 为AB 上一点且AE=5,CE 交其内角角平分线AD 于F.试求DF的值.FA43.如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°.(1) 操作发现如图 2,固定△ABC ,使△DEC 绕点 C 旋转,当点 D 恰好落在 AB 边上时,填空:①线段 DE 与 AC 的位置关系是 ;②设△BDC 的面积为 S 1,△AEC 的面积为 S 2,则 S 1 与 S 2 的数量关系是.图 1图 2(2) 猜想论证当△DEC 绕点 C 旋转到图 3 所示的位置时,小明猜想(1) 中 S 1 与 S 2 的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中 BC ,CE 边上的高,请你证明小明的猜想.(3) 拓展探究如图 4 , 已知∠ ABC =60°, 点 D 是其角平分线上一点, BD =CD =4,DE ∥AB 交 BC 于点 E .若在射线 BA 上存在点 F , 使 S △DCF =S △BDE ,请直.接.写.出.相应的 BF 的长.5➢思考小结总结类比探究问题中的常见结构①旋转结构始终含有等腰结构(正方形、等腰直角三角形等),并且经过旋转后,能将各条件重新组合应用.②中点结构平行夹中点(类)倍长中线中位线始终含有中点,常考虑利用中点结构补全图形,然后将所证目标放在一个较大的背景下(等腰三角形、直角三角形、等腰直角三角形等)研究.③直角结构始终含有直角,常构造直角与斜直角配合,得到同角的余角相等;再配合构造的其他直角证明相似,所求目标往往和比例关系相关.6④平行结构所求目标为线段间的比例关系,题目中没有相似三角形,往往考虑利用平行线构造相似求解.78 3 3 【参考答案】 ➢ 巩固练习1. (1)EP =EQ ,证明略;(2) EP = 1EQ ,证明略;2 (3) EP = 1EQ .m2. (1)都成立,证明略; (2)一定成立,证明略;(3) DF = 5 .FA 83. (1)①DE ∥AC ;②S 1=S 2.(2) 证明略; (3) BF 的长为4 3或 .38。

几何类比探究题型-2024年中考数学答题技巧与模板构建(解析版)

几何类比探究题型-2024年中考数学答题技巧与模板构建(解析版)

几何类比探究题型题型解读|模型构建|通关试练几何的类比探究题型是近年中招解答题的必考题型,该题型往往以压轴题的形式出现,有一定的难度。

探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类。

由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.模型01图形旋转模型模型一、A字形(手拉手)及其旋转模型二、K字型及其旋转手拉手模型是有两个等腰的三角形或者两个等边的三角形,他们有一个共同的顶点,且两个等腰三角形的顶角是相等的,那么就可以用角的和差求得共顶点的另外两个角相等等,然后利用等腰的边对应相等,可证明两个三角形全等(边角边)组成这样的图形模样的我们就说他是手拉手模型。

在类比探究题型中,往往会对等腰三角形或者等边三角形进行演变,变成一般三角形进行旋转,通常全等三角形变为相似三角形。

模型特征:双等腰;共顶点;顶点相等;绕着顶点作旋转解题依据:等腰共顶手拉手,旋转全等马上有;左手拉左手,右手拉右手,两根拉线抖一抖,它们相等不用愁;拉线夹角与顶角,相等互补答案有。

模型02图形平移模型探究1.四边形平移变换四边形的平移变换题型中主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平移几何性质、三角形内角和定理的应用,勾股定理,解题的关键是熟练掌握三角形全等或相似的判定方法,画出相应的图形,注意分类讨论.2.三角形平移变换三角形平移变换主要利用三角形全等和三角形相似的判定和性质,勾股定理,矩形的判定和性质,平移性质、平行线的判定和性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.3.其它图形平移类比探究问题综合考查了全等三角形的判定和性质,相似三角形的判定和性质,三角形内角和定理的应用,勾股定理,解题的关键是熟练掌握三角形相似的判定方法,画出相应的图形,注意分类讨论.模型03动点引起的题型探究动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运动的一类非常具有开放性的题目。

类比探究(人教版)(含答案)

类比探究(人教版)(含答案)

类比探究(人教版)一、单选题(共9道,每道11分)1.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.如图1,易证AB=AP,且AB⊥AP.(1)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点O,连接AP,BO.则BO与AP所满足的数量及位置关系是( )A.相等但不垂直B.不相等但垂直C.相等且垂直D.不相等也不垂直答案:C解题思路:试题难度:三颗星知识点:类比探究2.(上接第1题)(2)将△EFP沿直线l继续向左平移到图3的位置时,EP的延长线交AC 的延长线于点O,连接AP,BO.此时,BO与AP的数量关系和位置关系是( )A.相等但不垂直B.不相等但垂直C.相等且垂直D.不相等也不垂直答案:C解题思路:试题难度:三颗星知识点:类比探究3.已知:如图,在Rt△ABC中,AB=BC,∠ABC=90°.一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,三角板的两直角边分别交AB,BC或其延长线于点E,F,图1,图2是旋转三角板所得图形的两种情况.(1)如图1,当点E和点F分别在AB和BC边上时,OE和OF的大小关系是( )A.OE>OFB.OE=OFC.OE<OFD.无法确定答案:B解题思路:试题难度:三颗星知识点:类比探究4.(上接第3题)(2)如图2,当点E和点F分别在AB和BC边的延长线上时,OE和OF的大小关系是( )A.OE>OFB.OE=OFC.OE<OFD.无法确定答案:B解题思路:试题难度:三颗星知识点:类比探究5.如图1,在正方形ABCD和正方形CGEF(CG>BC)中,点B,C,G在同一直线上,点M是AE的中点。

(1)探究线段MD,MF的位置关系,并证明。

解题思路:(1)小明猜测MD⊥MF,看到图1中M是AE的中点,并且AD∥EF,考虑延长DM交EF于点H,如下图,先利用全等三角形的判定定理_____,证明_____,由全等的性质可以得到_____,所以CD=EH,进而可以得到FD=FH,在等腰△DFH中,由等腰三角形三线合一可以得到_____,从而证明结论。

类比探究之结构类比((类)倍长中线)(北师版)(含答案)

类比探究之结构类比((类)倍长中线)(北师版)(含答案)

学生做题前请先回答以下问题问题1:类比探究属于几何综合题,解决此问题的主要方法是什么?问题2:目前我们所学的结构类比中有两种结构,分别是什么?问题3:如图1,△ABC和△BDE均为等腰直角三角形,BA⊥AC,ED⊥BD,点D在AB边上.连接EC,取EC的中点F,连接AF,DF.为了证明FA⊥FD,FA=FD,我们只需要延长DF交线段AC于点G,说明AF是等腰直角三角形ADG的中线即可.将△BDE旋转至如图2所示的位置,使点E在AB的延长线上,点D在CB的延长线上,其他条件不变,类比上面的做法,为了证明FA⊥FD,FA=FD,我们需要作的辅助线是( )A.连接ADB.过点C作CG⊥DF,交DF的延长线于点GC.延长DF到G,使FG=DF,连接CG,AD,AGD.延长DF交AC的延长线于点G,连接AD分析题目中的不变特征,画出其线路图.类比探究之结构类比((类)倍长中线)(北师版)一、单选题(共5道,每道20分)1.如图1,△ABC和△BDE均为等腰直角三角形,BA⊥AC,ED⊥BD,点D在AB边上.连接EC,取EC的中点F,连接AF,DF.为了证明FA⊥FD,FA=FD,我们只需要延长DF交线段AC于点G,说明AF是等腰直角三角形ADG的中线即可.将△BDE旋转至如图2所示的位置,使点E在AB的延长线上,点D在CB的延长线上,其他条件不变,类比上面的做法,为了证明FA⊥FD,FA=FD,我们需要作的辅助线是( )A.连接ADB.过点C作CG⊥DF,交DF的延长线于点GC.延长DF到G,使FG=DF,连接CG,AD,AGD.延长DF交AC的延长线于点G,连接AD答案:C解题思路:试题难度:三颗星知识点:类比探究问题2.在试题1图2的证明中,说明△ADG是等腰直角三角形之前,证明AD=AG需要直接使用到某对三角形全等,则判定这对三角形全等的条件是( )A.AASB.ASAC.SSSD.SAS答案:D解题思路:试题难度:三颗星知识点:类比探究问题3.已知等腰直角三角形ABC中,D为斜边BC上一点,过D点作DE⊥BC交AB于E,连接CE,F为CE中点,连接AF、DF,易证AF=DF;(1)若将图①中△BDE绕点B顺时针旋转45°,如图②所示,取CE的中点F,连接AF、DF,则下列结论中错误的是( ).A.AF=DFB.C. D.AF⊥DF答案:B解题思路:故选B.试题难度:三颗星知识点:类比探究问题4.(上接试题3)(2)将图①中△BDE绕B点旋转任意角度,如图③所示,再连接相应的线段,则(1)中的结论中,AF=DF以及AF⊥DF仍然成立,我们需要作的辅助线是( )A.连接ADB.过点C作CM⊥DF,交DF的延长线于点MC.延长AF到M,使FM=AF,连接DM,AD,EMD.延长DF交AC的于点M,连接AD答案:C解题思路:试题难度:三颗星知识点:类比探究问题5.(上接试题3,4)(3)如图③,说明△ADM是等腰直角三角形之前,证明AD=DM需要直接使用到某对三角形全等,则判定这对三角形全等的条件是( )A.AASB.ASAC.SSSD.SAS答案:D解题思路:试题难度:三颗星知识点:类比探究问题。

三角形全等之类比探究-经典题型过关(含答案)

三角形全等之类比探究-经典题型过关(含答案)

三角形全等之类比探究(导学案)知识过关1. 类比探究是一类共性条件与特殊条件相结合,由特殊情形到一般情形(或由简单情形到复杂情形)逐步深入,解决思想方法一脉相承的综合性题目,常以几何综合题为主. 2. 解决类比探究问题的一般方法:(1)根据题干条件,结合_______________先解决第一问; (2)用解决_______的方法类比解决下一问,整体框架照搬.整体框架照搬包括_________________,________________,_________________. 3. 常见几何特征及做法:见中点,___________________________.➢ 典型题型1. 在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,AD ⊥MN 于D ,BE ⊥MN 于E . (1)当直线MN 绕点C 旋转到图1的位置时, 求证:①△ADC ≌△CEB ;②DE =AD +BE .(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD BE .(3)当直线MN 绕点C 旋转到图3的位置时,请直接写出DE ,AD ,BE 之间的数量关系.图1B NE CDM A图2ACDEMNB 图3ABC D EM N2. 如图1,四边形ABCD 是正方形,AB =BC ,∠B =∠BCD =90°,点E 是边BC 的中点,∠AEF =90°,EF 交正方形外角∠DCG 的 平分线CF 于点F .(1)求证:AE =EF (提示:在AB 上截取BH =BE ,连接HE ,构造全等三角形,经过推理使问题得到解决).(2)如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其他条件不变,那么结论“AE =EF ”仍然成立吗?说明理由.(3)如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”是否成立?说明理由.GABCDFE 图1E FDC BA G图2FDC A G图3图1M ADC E3. 以△ABC 的边AB ,AC 为直角边向外作等腰直角三角形ABE 和等腰直角三角形ACD ,∠BAE =∠CAD =90°,AB =AE ,AC =AD ,M 是边BC 的中点,连接AM ,DE .(1)如图1,在△ABC 中,当∠BAC =90°时,求AM 与DE 的数量关系和位置关系. (2)如图2,当△ABC 为一般三角形时,(1)中的结论是否成立?并说明理由.(3)如图3,若以△ABC 的边AB ,AC 为直角边向内作等腰直角三角形ABE 和等腰直角三角形ACD ,其他条件不变,(1)中的结论是否成立,并说明理由.4. (1)如图1,已知∠MAN =120°,AC 平分∠MAN ,∠ABC =∠ADC =90°,则能得到如下两个结论: ①DC =BC ;②AD +AB =AC .请你证明结论②.(2)如图2,把(1)中的条件“∠ABC =∠ADC =90°”改为“∠ABC +∠ADC =180°”,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)如图3,如果D 在AM 的反向延长线上,把(1)中的条件“∠ABC =∠ADC =90°”改为“∠ABC =∠ADC ”,其他条件不变,(1)中的结论是否仍然成立?若成立,请直接回答;若不成立,请直接写出你的结论.E D A M 图2B MCEA D图3A B CDMN图3图1NMDCBA B CDMN图2【参考答案】➢ 知识过关:解决类比探究问题的一般方法:(1)根据题干条件,结合分支条件先解决第一问;(2)用解决第(1)问的方法类比解决下一问,整体框架照搬. 整体框架照搬包括照搬字母,照搬辅助线, 照搬思路 . 常见几何特征及做法: 见中点, 考虑倍长中线 . ➢ 典型题型1. 证明:(1)如图,∵∠ACB =90° ∴∠1+∠2=90° ∵AD ⊥MN ,BE ⊥MN ∴∠ADC =∠CEB =90° ∴∠3+∠2=90° ∴∠1=∠3在△ADC 和△CEB 中∴△ADC ≌△CEB (AAS) ∴AD =CE ,DC =EB ∴DE =CE +DC=AD +BE (2)如图,∵∠ACB =90° ∴∠1+∠2=90° ∵AD ⊥MN ,BE ⊥MN ∴∠ADC =∠CEB =90° ∴∠CBE +∠2=90° ∴∠1=∠CBE 在△ADC 和△CEB 中∴△ADC ≌△CEB (AAS) ∴AD =CE ,DC =EB ∴DE =CE -DC=AD -BE13ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩1ADC CEB CBEAC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩321AM DC E NB321NM ED C BA(3)DE =BE -AD ,理由如下: 如图,∵∠ACB =90° ∴∠1+∠2=90° ∵AD ⊥MN ,BE ⊥MN ∴∠ADC =∠CEB =90° ∴∠3+∠2=90° ∴∠1=∠3在△ADC 和△CEB 中∴△ADC ≌△CEB (AAS) ∴AD =CE ,DC =EB ∴DE =DC -CE=BE -AD2. 解:(1)AE =EF ,理由如下:如图,在AB 上截取BH =BE ,连接HE .∵AB =BC ∴AH =EC ∵∠B =90° ∴∠1=∠2=45° ∴∠AHE =135° ∵∠BCD =90° ∴∠DCG =90° ∵CF 平分∠DCG ∴∠GCF =45° ∴∠ECF =135° ∴∠AHE =∠ECF ∵∠AEF =90°,∠B =90°∴∠AEB +∠3=90°,∠AEB +∠4=90° ∴∠3=∠4在△AHE 和△ECF 中∴△AHE ≌△ECF (ASA) ∴AE =EF(2)AE =EF 仍成立,理由如下:13ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩43AH ECAHE ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩21B NM EDC A4321H GA B CDFE如图,在AB 上截取BH =BE ,连接HE .∵AB =BC ∴AH =EC ∵∠B =90° ∴∠1=∠2=45° ∴∠AHE =135° ∵∠BCD =90° ∴∠DCG =90° ∵CF 平分∠DCG ∴∠GCF =45° ∴∠ECF =135° ∴∠AHE =∠ECF ∵∠AEF =90°,∠B =90°∴∠AEB +∠3=90°,∠AEB +∠4=90° ∴∠3=∠4在△AHE 和△ECF 中∴△AHE ≌△ECF (ASA) ∴AE =EF(3)AE =EF 仍成立,理由如下:如图,延长BA 到H ,使BH =BE ,连接HE .∵AB =BC ∴AH =EC ∵∠B =90° ∴∠H =45° ∵∠BCD =90° ∴∠DCG =90° ∵CF 平分∠DCG ∴∠1=45° ∴∠H =∠1∵∠AEF =90°,∠B =90°∴∠AEB +∠3=90°,∠AEB +∠2=90° ∴∠2=∠3∵∠HAE +∠2=180°,∠CEF +∠3=180° ∴∠HAE =∠CEF 在△AHE 和△ECF 中43AH ECAHE ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩H 4123E FDC BA G∴△AHE ≌△ECF (ASA) ∴AE =EF3. 解:(1)DE =2AM ,AM ⊥DE ,理由如下:如图,延长AM 到F ,使MF =AM ,连接BF ,延长MA 交DE 于G .∴AF =2AM ∵M 是BC 中点 ∴BM =CM在△BMF 和△CMA 中∴△BMF ≌△CMA (SAS) ∴FB =AC ,∠3=∠4 ∴BF ∥AC∴∠FBA +∠BAC =180° ∵∠BAE =∠CAD =90° ∴∠DAE +∠BAC =180° ∴∠FBA =∠DAE ∵AC =AD ∴BF =AD在△FBA 和△DAE 中∴△FBA ≌△DAE (SAS) ∴AF =ED ,∠5=∠6 ∴DE =2AM ∵∠BAE =90° ∴∠5+∠7=90° ∴∠6+∠7=90° ∴∠EGA =90° 即AM ⊥DE(2)(1)中的结论成立,理由如下:如图,延长AM 到F ,使MF =AM ,连接BF ,延长MA 交DE 于G .∴AF =2AM ∵M 是BC 中点1H AH ECHAE CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩12BM CM MF MA =⎧⎪∠=∠⎨⎪=⎩BF AD FBA DAE AB EA =⎧⎪∠=∠⎨⎪=⎩H123FDB AG∴BM =CM在△BMF 和△CMA 中∴△BMF ≌△CMA (SAS) ∴FB =AC ,∠3=∠4 ∴BF ∥AC∴∠FBA +∠BAC =180° ∵∠BAE =∠CAD =90° ∴∠DAE +∠BAC =180° ∴∠FBA =∠DAE ∵AC =AD ∴BF =AD在△FBA 和△DAE 中∴△FBA ≌△DAE (SAS) ∴AF =ED ,∠5=∠6 ∴DE =2AM ∵∠BAE =90° ∴∠5+∠7=90° ∴∠6+∠7=90° ∴∠EGA =90° 即AM ⊥DE(3)(1)中的结论成立,理由如下:如图,延长AM 到F ,使MF =AM ,交DE 于G ,连接BF .∴AF =2AM ∵M 是BC 中点 ∴BM =CM在△BMF 和△CMA 中∴△BMF ≌△CMA (SAS) ∴FB =AC ,∠FBM =∠ACM ∴BF ∥AC∴∠FBA +∠BAC =180°12BM CM MF MA =⎧⎪∠=∠⎨⎪=⎩BF AD FBA DAE AB EA =⎧⎪∠=∠⎨⎪=⎩BM CM BMF CMA MF MA =⎧⎪∠=∠⎨⎪=⎩FGD A EC MB∵∠BAE =∠CAD =90°∠BAC =∠BAE +∠CAD -∠DAE ∴∠DAE +∠BAC =180° ∴∠FBA =∠DAE ∵AC =AD ∴BF =AD在△FBA 和△DAE 中∴△FBA ≌△DAE (SAS) ∴AF =ED ,∠BAF =∠AED ∴DE =2AM ∵∠BAE =90° ∴∠BAF +∠EAF =90° ∴∠AED +∠EAF =90° ∴∠EGA =90° 即AM ⊥DE4. (1)证明:如图,在BN 上截取BE=AD .∵AC 平分∠DAB ,∠MAN =120° ∴∠1=∠2=60° 在△CDA 和△CBA 中∴△CDA ≌△CBA (AAS) ∴DC =BC ,AD =AB 在△CDA 和△CBE 中∴△CDA ≌△CBE (SAS) ∴AC =EC ∵∠2=60°∴AC=AE =BE+AB =AD+AB(2)成立,证明如下:如图,过C 作CG ⊥AM 于G ,CF ⊥AN 于F ,在BN 上截取BE=AD .BF AD FBA DAE AB EA =⎧⎪∠=∠⎨⎪=⎩12CDA CBA CA CA ∠=∠⎧⎪∠=∠⎨⎪=⎩DC BC CDA CBE AD EB =⎧⎪∠=∠⎨⎪=⎩21E图1NM DCB A∵CG ⊥AM ,CF ⊥AN ∴∵AC 平分∠DAB ,∠MAN =120° ∴∠1=∠2=60°,CG=CF ∵∠ABC +∠ADC =180° ∠CDG +∠ADC =180° ∠ABC +∠EBC =180°∴∠CDG =∠CBF ,∠ADC =∠EBC 在△CGD 和△CFB 中∴△CGD ≌△CFB (AAS ) ∴CD =CB在△CDA 和△CBE 中三角形全等之类比探究(实战演练)1. 在四边形ABCD 中,AB =AD ,∠BAD =90°,P 是直线CD 上一点,连接PA ,过点B ,D 作BE ⊥PA ,DF ⊥PA ,垂足分别为点E ,F .(1)如图1,请探究BE ,DF ,EF 这三条线段的数量关系.(2)若点P 在DC 的延长线上,如图2,则这三条线段又具有怎样的数量关系?(3)若点P 在CD 的延长线上,如图3,直接写出BE ,DF ,EF 这三条线段的数量关系.【参考答案】CGD CFB ∠=∠CDG CBF CGD CFB CG CF ∠=∠⎧⎪∠=∠⎨⎪=⎩CD CB ADC AD EB =⎧⎪∠=⎨⎪=⎩G FE A B C DMN图3图3图2图1PABCDEFP FED CBA PF EDCBA1. (1)EF=BE -DF ,证明略 (2)EF= DF -BE ,证明略 (3)EF=BE +DF 路线图:(AAS) 123ABE DAF AE DF BE AF EF AF AEBE DFEF AE AFDF BEEF AF AEDF BE↓==↓=-=-=-=-=+=+△≌△()()()三角形全等之类比探究(作业)➢ 例题示范例1:已知,在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边作正方形ADEF ,AD =AF ,∠DAF =90°,连接CF . (1)如图1,当点D 在线段BC 上时,求证:CF +CD =BC ;(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CF ,BC ,CD 三条线段之间的关系;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A ,F 分别在直线BC 的两侧,其他条件不变,求CF ,BC ,CD 三条线段之间的关系.【思路分析】结合题目特征,本题为类比探究问题. 解决方法:(1)根据题目条件及(1)问中D 在线段BC 上,证明△ABD ≌△ACF ,就可以得出BD =CF ,结论可证.图2图1ABCDEFFED CBA图3AB CDF 图1FED CBA(2)用解决第(1)问的方法解决后续问题,方法上完全照搬.如图2,通过证明△ABD ≌△ACF ,就可以得出BD =CF ,进而得到BC +CD =CF ; 如图3,通过证明△ABD ≌△ACF ,就可以得出BD =CF ,进而得到BC +CF =CD . 【过程书写】证明:如图,∵∠DAF =90°,∠BAC =90° ∴∠BAD =∠CAF 在△BAD 和△CAF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAF (SAS ) ∴BD =CF ∵BD +CD =BC ∴CF +CD =BC (2)BC +CD =CF(3)BC +CF =CD ,理由如下: ∵∠DAF =90°,∠BAC =90° ∴∠BAD =∠CAF 在△BAD 和△CAF 中,∴△BAD ≌△CAF (SAS ) ∴BD =CF ∵BC +BD =CD ∴BC +CF =CD➢ 巩固练习1. 已知AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,BC =DE ,如图1.(1)求证:AC =CE .(2)若将△ECD 沿CB 方向平移至如图2的位置(C 1,C 2不重合),其余条件不变,结论AC 1=C 2E 还成立吗?请说明理由.(3)若将△ECD 沿CB 方向平移至如图3的位置(B ,C 2重合),其余条件不变,结论AC 1=C 2E 还成立吗?请说明理由.AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩图3图2图1A C DEEDAEDB (C 2)AC 2C 1C 1图3AB CDEF图2图1CE MN NM D C BA2. (1)【问题发现】小明学习中遇到这样一个问题:如图1,△ABC 是等边三角形,点D 为BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线CE 所在直线于点E ,试探究AD 与DE 的数量关系.小明发现,过点D 作DF ∥AC ,交AB 于点F ,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD 与DE 的数量关系:_______________;(2)【类比探究】如图2,当点D 是线段BC 上(除B ,C 外)任意一点时(其他条件不变),试猜想AD 与DE 之间的数量关系,并证明你的结论;(3)【拓展应用】如图3,当点D 在线段BC 的延长线上(其他条件不变),试猜想AD 与DE 之间的数量关系,并证明你的结论.3. 如图1所示,在△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点B ,A ,D 在一条直线上,连接BE ,CD ,M ,N 分别为BE ,CD 的中点,连接AM ,AN ,MN . (1)求证:①BE =CD ;②△AMN 是等腰三角形.(2)在图1的基础上,将△ADE 绕点A 按顺时针方向旋转180°,其他条件不变,得到如图2所示的图形.(1)中的两个结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.图3EDC BA图2E DCBA【参考答案】1. 证明略路线图:(AAS) A DCE ABC CDE AC CE∠=∠↓↓=△≌△ 提示:(1)AC=CE ,由垂直转互余可以得到∠A =∠DCE , 结合BC=DE 证明△ABC ≌△CDE ,得到对应边相等, 可以得到AC=CE .(2)成立,照搬第一问的字母、思路和过程可以得到AC 1=C 2E . (3)成立,照搬第一问的字母、思路和过程可以得到AC 1=C 2E . 2. 证明略D DF AC AB F 过点作∥,交于点路线图(AAS) BDF BF BD AF CD ADF DEC AD DE↓==↓↓=△为等边三角形,△≌△ 提示: (1)AD =DE(2)AD =DE 成立,根据△ABC 以及△BDF 是等边三角形,得到AF =DC ,再结合∠ADE =60°,倒角,得到∠DAF =∠EDC ,结合外角平分线,知∠DCE =∠AFD =120°,得到△ADF ≌ △DEC ,得到对应边相等,可得AD =DE .(3)成立,照搬第二问的字母、思路和过程可以得到AD =DE .图1F E DC B A3. 证明略路线图(SAS) (SAS) BAE CAD BE CD ABE ACD ABM ACN AM AN AMN ↓=∠=∠↓↓=↓△≌△,△≌△△是等腰三角形提示:(1)由已知条件先证明△BAE ≌△CAD (SAS),得到BE=CD ,结合第一次全等提供的条件证明△ABM ≌△ACN (SAS)得到AM=AN ,因而△AMN 是等腰三角形.(2)成立,照搬第一问的字母、思路和过程可以得到BE=CD ,△AMN 是等腰三角形.。

中招考试几何类比探究题集锦一参考答案

中招考试几何类比探究题集锦一参考答案

中招考试几何类比探究题集锦(附参考答案)参考答案与试题解析一.解答题(共11小题)1.在△ABC中,AB=AC,∠BAC=2∠DAE=2α.(1)如图1,若点D关于直线AE的对称点为F,求证:△ABD≌△ACF;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,请直接写出DE2,BD2,CE2三者之间的等量关系.【解答】解:(1)∵点D关于直线AE的对称点为F,∴EF=DE,AF=AD,∠DAE=∠EAF=α∴∠CAE+∠CAF=α∵∠BAC=2∠DAE=2α.∴∠BAD+∠CAE=∠BAC﹣∠DAE=α,∴∠BAD=∠CAF,在△ABD和△ACF中,第1页(共33页)第2页(共33页)∴△ABD ≌△ACF (SAS ),(2)由(1)知,△ABD ≌△ACF (SAS ),∴CF=BD ,∠ACF=∠B ,∵AB=AC ,∠BAC=2α,α=45°,∴△ABC 是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB +∠ACF=45°+45°=90°,在Rt △CEF 中,由勾股定理得,EF 2=CF 2+CE 2,∴DE 2=BD 2+CE 2,(3)DE 2=BD 2+CE 2;理由:如图,∵∠BAC=2∠DAE=2α.∴∠DAE=α,∵点D 关于直线AE 的对称点为F ,∴EF=DE ,AF=AD ,∠DAE=∠EAF=α∴∠CAF=∠EAF +∠CAE=α+∠CAE∴∠BAD=∠BAC ﹣∠DAC=2α﹣∠DAC=2α﹣(∠DAE ﹣∠CAE )=2α﹣(α﹣∠CAE)=α+∠CAE∴∠BAD=∠CAF,在△ABD和△ACF中,∴△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=2α,α=45°,∴△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,∴DE2=BD2+CE2,2.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.猜测DE、BD、CE三条线段之间的数量关系(直接写出结果即可).(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问第(1)题中DE、BD、CE之间的关系是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF 均为等第3页(共33页)边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断线段DF、EF的数量关系,并说明理由.【解答】解:(1)DE=BD+CE.理由如下:如图1,∵BD⊥l,CE⊥l,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)如图2,∵∠BDA=∠AEC=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,第4页(共33页)∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE;(3)DF=EF.理由如下:由(2)知,△ADB≌△CAE,BD=EA,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,第5页(共33页)∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.∴DF=EF.3.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为60°;②线段AC、CD、CE之间的数量关系为AC=CD+CE.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC 上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.第6页(共33页)【解答】解:(1)①∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,故答案为:60°;②线段AC、CD、CE之间的数量关系为:AC=CD+CE;理由是:由①得:△BAD≌△CAE,∴BD=CE,∵AC=BC=BD+CD,∴AC=CD+CE;故答案为:AC=CD+CE;(2)∠ACE=45°,AC=CD+CE,理由是:如图2,∵△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,第7页(共33页)∴△ABD≌△ACE,∴BD=CE,∠ACE=∠B=45°,∵BC=CD+BD,∴BC=CD+CE,∵在等腰直角三角形ABC中,BC=AC,∴AC=CD+CE;(3)如图3,过A作AC的垂线,交CB的延长线于点F,∵∠BAD=∠BCD=90°,AB=AD=2,CD=1,∴BD=2,BC=,∵∠BAD=∠BCD=90°,∴∠BAD+∠BCD=180°,∴A、B、C、D四点共圆,∴∠ADB=∠ACB=45°,∴△ACF是等腰直角三角形,由(2)得:AC=BC+CD,∴AC===.第8页(共33页)4.【探究发现】如图1,△ABC是等边三角形,∠AEF=60°,EF交等边三角形外角平分线CF所在的直线于点F,当点E是BC的中点时,有AE=EF成立;【数学思考】某数学兴趣小组在探究AE、EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上(B,C除外)任意一点时(其它条件不变),结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点E是线段BC上的任意一点”;“点E是线段BC延长线上的任意一点”;“点E是线段BC反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并证明AE=EF.【拓展应用】当点E在线段BC的延长线上时,若CE=BC,在备用图2中画出图形,并运用上述结论求出S△ABC :S△AEF的值.【解答】证明:第一种情况:点E是线段BC上的任意一点,可作三种辅助线:方法一:如图1,在AB上截取AG,使AG=EC,连接EG,第9页(共33页)∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=60°.∵AG=EC,∴BG=BE,∴△BEG是等边三角形,∠BGE=60°,∴∠AGE=120°.∵FC是外角的平分线,∠ECF=120°=∠AGE.∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠GAE=60°+∠GAE.∵∠AEC=∠AEF+∠FEC=60°+∠FEC,∴∠GAE=∠FEC.在△AGE和△ECF中,∴△AGE≌△ECF(ASA),∴AE=EF;方法二:在CA上截取CG=CE,连结GE,证明类似方法一;方法三:延长FC到G,使CG=CE,连结EG,易证△CEG是等边三角形,第10页(共33页)∴CE=EG,∠G=∠ACB=60°,∠CEG=∠AEF=60°,∴∠CEG+∠CEF=∠AEF+∠CEF,即∠GEF=∠AEC,∴△GEF≌△CEA,∴AE=EF.第二种情况:点E是线段BC延长线上的任意一点如图2,可作三种辅助线:①在CF上截取CG=CE,连接GE②延长AC到G,使CG=CE,连结EG;③或延长BA到G,使BG=BE,连结EG.第②种添加辅助线的方法证明如下:证明:延长AC到G,使CG=CE,连结EG,易证△CEG为等边三角形,∴∠G=∠ECF=60°,EG=CE,又∠AEG=∠CEG+∠AEC=60°+∠AEC,∠CEF=∠AEF+∠AEC=60°+∠AEC,第11页(共33页)∴∠AEG=∠CEF,∴△AEG≌△FEC,∴AE=EF.第三种情况:点E是线段BC反向延长线上的任意一点如图3,可作三种辅助线:①延长AB到G,使BG=BE,连结EG;②延长CF到G,使CG=CE,连结EG;③在CE上截取CG=CF,连结GF现就第①种添加辅助线的方法证明如下:证明:延长AB到G,使BG=BE,连结EG,易证△BEG为等边三角形,∴∠G=∠ECF=60°,第12页(共33页)∵∠AEB+∠BAE=∠ABC=60°,∠AEB+∠CEF=∠AEF=60°,∴∠BAE=∠CEF,∵AB=BC,BG=BE,∴AB+BG=BC+BE,即AG=CE,∴△AEG≌△EFC,∴AE=EF.拓展应用:如图4:作CH⊥AE于H点,∴∠AHC=90°.由数学思考得AE=EF,又∵∠AEF=60°,∴△AEF是等边三角形,∴△ABC∽△AEF.第13页(共33页)∵CE=BC=AC,△ABC是等边三角形,∴∠CAH=30°,AH=EH.∴CH=AC,AH=AC,AE=AC,∴.∴==.5.问题情境:在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,将三角板绕点O旋转.(1)操作发现:当点O为AC中点时:①如图1,三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系:AE2+CF2=EF2(无需证明);②如图2,三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的结论是否成立.若成立,请证明;若不成立,请说明理由;第14页(共33页)(2)类比延伸:当点O不是AC中点时,如图3,三角板的两直角边分别交AB,BC于E、F两点,若=,请直接写出=.【解答】解:(1)①猜想:AE2+CF2=EF2,连接OB,如图1,∵AB=BC,∠ABC=90°,O点为AC的中点,∴OB=AC=OC,∠BOC=90°,∠ABO=∠BCO=45°.∵∠EOF=90°,∴∠EOB+∠BOF=∠FOC+∠BOF.∴∠EOB=∠FOC,在△OEB和△OFC中,,∴△OEB≌△OFC(ASA).∴BE=CF,又∵BA=BC,∴AE=BF.在Rt△EBF中,∵∠EBF=90°,∴BF2+BE2=EF2,∴AE2+CF2=EF2;故答案为:AE2+CF2=EF2;第15页(共33页)②成立.证明:连结OB.如图2,∵AB=BC,∠ABC=90°,O点为AC的中点,∴OB=AC=OC,∠BOC=90°,∠ABO=∠BCO=45°.∵∠EOF=90°,∴∠EOB=∠FOC.在△OEB和△OFC中,,∴△OEB≌△OFC(ASA).∴BE=CF,又∵BA=BC,∴AE=BF.在Rt△EBF中,∵∠EBF=90°,∴BF2+BE2=EF2,∴AE2+CF2=EF2;(2)=,如图3,过点O作OM⊥AB于M,ON⊥BC于N.∵∠B=90°,第16页(共33页)∴∠MON=90°,∵∠EOF=90°,∴∠EOM=∠FON.∵∠EMO=∠FNO=90°,∴△OME∽△ONF,∴=,∵△AOM和△OCN为等腰直角三角形,∴△AOM∽△OCN,∴=,∵=,∴=,故答案为.第17页(共33页)第18页(共33页)6.阅读发现:(1)如图①,在Rt △ABC 和Rt △DBE 中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD ,AE .易证:△BCD ≌△BAE .(不需要证明) 提出问题:(2)在(1)的条件下,当BD ∥AE 时,延长CD 交AE 于点F ,如图②,求AF 的长.解决问题:(3)如图③,在Rt △ABC 和Rt △DBE 中,∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,连结CD ,AE .当∠BAE=45°时,点E 到AB 的距离EF 的长为2,求线段CD的长为 .【解答】(2)解:如图②中,AB与CF交于点O.由(1)可知:△BCD≌△BAE,∴∠OAF=∠OCB,CD=AE,∵∠AOF=∠COB,∴∠AFO=∠CBO=90°,∴CF⊥AE,∵BD∥AE,∴BD⊥CF,在RT△CDB中,∵∠CDB=90°,BC=3,BD=1,∴CD=AE==2,∵∠BDF=∠DFE=∠DBE=90°,∴四边形EFDB是矩形,∴EF=BD=1,∴AF=AE﹣EF=2﹣1.(3)解:在RT△ABC,RT△EBD中,∵∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,∴AB=BC,BE=BD,∴==,∵∠ABC=∠EBD=90°,∴∠ABE=∠DBC,∴△ABE∽△CBD,∴==,第19页(共33页)第20页(共33页)在RT △AEF 中,∵∠AFE=90°,∠EAF=45°,EF=2,∴AF=EF=2,AE=2,∴=,∴CD=.故答案为.7.如图1,两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,请猜想(1)中S1与S2的数量关系是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)拓展探究已知∠ABC=60°,BD平分∠ABC,BD=CD,BC=9,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请求相应的BF的长.【解答】解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,第21页(共33页)∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;故答案为:DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2=×2×2=2;故答案为:S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,第22页(共33页)∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,第23页(共33页)∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×6÷cos30°=3÷=2,∴BF1=2,BF2=BF1+F1F2=2+2=4,故BF的长为2或4.8.问题解决:如图(1),将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D 重合),压平后得到折痕MN.当时,求的值.类比归纳:第24页(共33页)在图(1)中,若,则的值等于;若,则的值等于;若(n 为整数),则的值等于.(用含n的式子表示)联系拓广:如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D 重合),压平后得到折痕MN,设,则的值等于.(用含m,n的式子表示)【解答】解:(1)方法一:如图(1﹣1),连接BM,EM,BE.由题设,得四边形ABNM和四边形FENM关于直线MN对称.∴MN垂直平分BE,∴BM=EM,BN=EN.∵四边形ABCD是正方形,∴∠A=∠D=∠C=90°,设AB=BC=CD=DA=2.∵,∴CE=DE=1.第25页(共33页)设BN=x,则NE=x,NC=2﹣x.在Rt△CNE中,NE2=CN2+CE2.∴x2=(2﹣x)2+12,解得x=,即BN=.在Rt△ABM和在Rt△DEM中,AM2+AB2=BM2,DM2+DE2=EM2,∴AM2+AB2=DM2+DE2.设AM=y,则DM=2﹣y,∴y2+22=(2﹣y)2+12,解得y=,即AM=(6分)∴.方法二:同方法一,BN=.如图(1﹣2),过点N做NG∥CD,交AD于点G,连接BE.∵AD∥BC,∴四边形GDCN是平行四边形.∴NG=CD=BC.同理,四边形ABNG也是平行四边形.∴AG=BN=∵MN⊥BE,∴∠EBC+∠BNM=90度.∵NG⊥BC,∴∠MNG+∠BNM=90°,第26页(共33页)∴∠EBC=∠MNG.在△BCE与△NGM中,∴△BCE≌△NGM,EC=MG.∵AM=AG﹣MG,AM=﹣1=.∴.(2)如图1,当四边形ABCD为正方形时,连接BE,=,不妨令CD=CB=n,则CE=1,设BN=x,则EN=x,EN2=NC2+CE2,x2=(n﹣x)2+12,x=;作MH⊥BC于H,则MH=BC,又点B,E关于MN对称,则MN⊥BE,∠EBC+∠BNM=90°;而∠NMH+∠BNM=90°,故∠EBC=∠NMH,则△EBC≌△NMH,∴NH=EC=1,AM=BH=BN﹣NH=﹣1=则:==.故当=,则的值等于;若=,则的值等于;第27页(共33页)(3)若四边形ABCD为矩形,连接BE,=,不妨令CD=n,则CE=1;又==,则BC=mn,同样的方法可求得:BN=,BE⊥MN,易证得:△MHN∽△BCE.故=,=,HN=,故AM=BH=BN﹣HN=,故==.故答案为:;;;.第28页(共33页)第29页(共33页)9.阅读理解:如图1,在直角梯形ABCD 中,AB ∥CD ,∠B=90°,点P 在BC 边上,当∠APD=90°时,易证△ABP ∽△PCD ,从而得到BP•PC=AB•CD ,解答下列问题.(1)模型探究:如图2,在四边形ABCD 中,点P 在BC 边上,当∠B=∠C=∠APD 时,结论BP•PC=AB•CD 仍成立吗?试说明理由;(2)拓展应用:如图3,M 为AB 的中点,AE 与BD 交于点C ,∠DME=∠A=∠B=45°且DM 交AC 于F ,ME 交BC 于G .AB=,AF=3,求FG 的长.【解答】解:(1)∵∠APC=∠APD +∠CPD ,∠APC=∠BAP +∠B (三角形外角定理),∠B=∠APD (已知),∴∠BAP=∠CPD,又∵∠B=∠C,∴△ABP∽△PCD∴=,∴BP•PC=AB•CD;(2)∵∠AFM=∠DME+∠E(三角形外角定理),∠DME=∠A(已知),∴∠AFM=∠A+∠E(等量代换),又∠BMG=∠A+∠E(三角形外角定理),∴∠AFM=∠BMG.∵∠A=∠B,∴△AMF∽△BGM.当∠A=∠B=45°时,∠ACB=180°﹣∠A﹣∠B=90°,即AC⊥BC且AC=BC.∵M为AB的中点,∴AM=BM=,AC=BC=4.又∵△AMF∽△BGM,∴,∴BG===,又∵,CF=4﹣3=1,∴.第30页(共33页)10.基本模型如下图,点B、P、C在同一直线上,若∠B=∠1=∠C=90°,则△ABP∽△PCD成立,(1)模型拓展如图1,点B、P、C在同一直线上,若∠B=∠1=∠C,则△ABP∽△PCD成立吗?为什么?(2)模型应用①如图2,在等腰梯形ABCD中,AD∥BC,AD=1,AB=2,BC=4,在BC上截取BP=AD,作∠APQ=∠B,PQ交CD于点Q,求CQ的长;②如图3,正方形ABCD的边长为1,点P是线段BC上的动点,作∠APQ=90°,PQ交CD于Q,当P在何处时,线段CQ最长?最长是多少?【解答】解:(1)成立,∵∠A=180°﹣(∠B+∠APB),第31页(共33页)∠CPD=180°﹣(∠1+∠APB),∠B=∠1,∴∠A=∠CPD,∵∠B=∠C,∴△ABP∽△PCD;(2)①∵四边形ABCD是等腰梯形,∴∠B=∠C,∵∠B=∠APQ,∴∠B=∠APQ=∠C,由(1)知,△ABP∽△PCD,∴=,∴=,∴CQ=;②设BP=x,CQ=y.∵∠B=∠APQ=90°,∴△ABP∽△PCQ,∴=,即=,∴y=﹣x2+x=﹣(x﹣)2+,第32页(共33页)∴当x=时,y=,最大即当P是BC的中点时,CQ最长,最长为.第33页(共33页)。

几何难点突破之类比探究讲义及答案

几何难点突破之类比探究讲义及答案

几何难点突破之类比探究(讲义)一、知识点睛识别类比探究题型特征:1.题目中一般有三问或者更多,每小问的条件和图形相似度很高,因此可以“照搬”第一问的方法;2.每一问的图形或点的位置会有所变化(通常条件从特殊走向一般),但可以在这些变化过程中按照第一问的思路和对应关系找角、找边、找全等.二、精讲精练1. 如图1所示,在△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点B 、A 、D 在一条直线上,连接BE 、CD ,M 、N 分别为BE 、CD 的中点.(1)求证:①BE =CD ;②△AMN 是等腰三角形.(2)在图1的基础上,将△ADE 绕点A 按顺时针方向旋转180°,其他条件不变,得到图2所示的图形.(1)中的两个结论是否仍然成立,若成立,请给予证明;若不成立,请说明理由.图2ME CBNDA图1CBMN ED A2. 已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边作菱形ADEF (A 、D 、E 、F 按逆时针排列),使∠DAF =60°,连接CF . (1)如图1,当点D 在边BC 上时,求证:①BD =CF ;②AC =CF +CD ;(2)如图2,当点D 在边BC 的延长线上且其他条件不变时,结论AC =CF +CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由;(3)如图3,当点D 在边CB 的延长线上且其他条件不变时,探究AC 、CF 、CD 之间存在的数量关系.图1AFECDB图2ABC DFEABCD F3. 如图1,四边形ABCD 是正方形,点E 是边BC 的中点.且90AEF ∠=,且EF 交正方形外角DCG ∠的平分线CF 于点F .(1)求证:AE =EF ;(2)如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立吗?如果成立,写出证明过程;如果不成立,请说明理由;(3)如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”是否成立?如果成立,写出证明过程;如果不成立,请说明理由.图1GFE DC B A图2A B CDE FG图3GFE DCBA4.如图1,在△ABC 中,点P 为BC 边的中点,直线a 绕顶点A 旋转,若B 、P 在直线a 的异侧,BM ⊥直线a 于点M ,CN ⊥直线a 于点N ,连接PM 、PN ;(1)求证:PM =PN ;(2)若直线a 绕点A 旋转到图2的位置时,点B 、P 在直线a 的同侧,其它条件不变.此时PM =PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)如图3,若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变.请判断四边形MBCN 的形状及此时PM =PN 还成立吗?图1ABCP aMN图2ABCP aM N图3NMaP CBA5.如图1所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC 、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.(1)如图2,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图1中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图3,当点E在直线l的下方时,请探究三条线段DD1、EE1、AB之间的数量关系.DA BGEFCl D1E1图1GEBACFD1DE1()l图2图3lFGEBACD1DE16. 如图,点P 是正方形ABCD 对角线AC 上一动点,点E 在射线BC 上,且PE =PB ,连接PD ,O 为AC 中点. (1)如图1,当点P 在线段AO 上时,试猜想PE 与PD 的数量关系和位置关系,不用说明理由;(2)如图2,当点P 在线段OC 上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P 在AC 的延长线上时,判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.图1BB图2三、课后作业1.已知:如图所示,直线MA∥NB,∠MAB与∠NBA的平分线交于点C,过点C作一条直线l与两条直线MA、NB分别相交于点D、E.(1)如图1所示,当直线l与直线MA垂直时,猜想线段AD、BE、AB之间的数量关系,请直接写出结论,不用证明;(2)如图2所示,当直线l与直线MA不垂直且交点D、E都在AB的同侧时,(1)中的结论是否成立?如果成立,请证明:如果不成立,请说明理由;(3)如图3所示,当直线l与直线MA不垂直且交点D、E在AB的异侧时,(1)中的结论是否仍然成立?如果成立,请说明理由;如果不成立,那么线段AD、BE、AB之间还存在某种数量关系吗?如果存在,请写出它们之间的数量关系.【几何难点突破之类比探究参考答案】二、精讲精练图1A lCEBDNM图2M NDBElACMNDBEClA图3(1)lCENM1.提示:(1)①证△CAD≌△BAE(SAS);②证△ACN≌△ABM(SAS);或证△MEA≌△NDA(SAS);(2)成立,同(1)可证.2.证明:(1)如图1,在等边△ABC中,AB=AC=BC,∠BAC=60°∴ ∠BAD+∠DAC=60°∵ 在菱形ADEF中,∠DAF=60°∴ AD=AF,∠DAC+∠CAF=60°∴ ∠BAD=∠CAF∴ △ABD≌△ACF(SAS)∴ BD=CF∵ BC=BD+DC∴ BC=CF+CD即AC= CF+CD(2)此时AC=CF+CD不成立,CF = AC +CD.理由如下:如图2,在等边△ABC中,AB=AC=BC,∠BAC=60°∵ 在菱形ADEF中,∠DAF=60°∴ AD=AF∴ ∠BAC+∠CAD=∠DAF+∠CAD∴ ∠BAD=∠CAF∴ △ABD≌△ACF(SAS)∴ BD=CF∵ BD=BC+CD∴ CF= BC+CD即CF = AC +CD(3)CF = CD-AC.理由如下:如图3,在等边△ABC中,AB=AC=BC,∠BAC=60°∴ ∠CAF+∠BAF=60°∵ 在菱形ADEF中,∠DAF=60°∴ AD=AF,∠DAB+∠BAF=60°∴ ∠DAB+∠BAF =∠CAF+∠BAF∴ ∠DAB=∠F AC∴△ABD≌△ACF(SAS)∴ BD=CF图1AFECDB图2AB C DFE图3AB CDEF∵ BD=CD-CB∴ CF= CD-CB即CF = CD-AC3.提示:(1)在AB上取点M,使得AM=CE,证△AME≌△ECF(ASA);(2)成立,同(1)可证;(3)成立,在BA的延长线上取点M,使得AM=CE,证△AME≌△ECF(ASA).4.提示:(1)延长MP交CN于点E,证△BPM≌△CPE(ASA),直角三角形斜边中线等于斜边一半;(2)延长MP交NC的延长线于点E,同(1)可证;(3)四边形MBCN为矩形;成立,同(1)可证.5.提示:(1)△ADD1≌△CAB;(2)AB=DD1+EE1,过点C作CM⊥AB于点M,证△ADD1≌△CAM,△EBE1≌△BCM;(3)DD1=AB+EE1,同(2)可证.6.提示:(1)过P作PM⊥BC于点M,PN⊥DC于点N.证△APB≌△APD(SAS),△PME≌△PND(HL)即可;(2)成立,同(1)可证;(3)作图略;成立,过P分别作BC,DC的垂线,交BE于点M,DC的延长线于点N,同(1)可证.四、课后作业1.解:(1)AD+BE=AB(2)成立.证明:(方法一):在AB上截取AG=AD,连接CG.∵ ∠1=∠2,AC=AC∴△ADC≌△AGC(SAS)∴∠5=∠6∵ AM∥BN∴ ∠1+∠2+∠3+∠4=180°图1A lCEBDNM876541C lEDNM∵∠1=∠2,∠3=∠4∴ ∠2+∠3=90°∴ ∠ACB=90°即∠6+∠7=90°∵ ∠5+∠6+∠7+∠8=180°∴ ∠5+∠8=90°∴∠7=∠8∵∠3=∠4,BC=BC∴△BGC≌△BEC(ASA)∴BG=BE∴AG+BG=AD+BE∴AD+BE=AB(方法二):过点C作直线FG⊥AM,垂足为点F,交BN于点G.作CH⊥AB,垂足为点H.由(1)得AF+BG=AB∵AM∥BN,∠AFG=90°∴ ∠BGF=∠FGE=90°∵∠1=∠2,∠3=∠4∴ CF=CH,CH=CG∴ CF=CG∵ ∠FCD=∠GCE∴△CFD≌△CGE(ASA)∴DF=EG∴ AD+BE=AF-DF+GE+BG=AF+BG=AH+BH=AB (方法三):延长BC,交AM于点F.∵AM∥BN∴∠5=∠4∵ ∠3=∠4∴∠5=∠3HFG1234CAlEBDNM图2方法二51234FCAlEBDNM∴ AF =AB∵ ∠1=∠2,∴ CF =CB∵∠FCD =∠BCE∴ △FCD ≌△BCE (ASA )∴ DF =BE∴ AD +BE =AD +DF =AF =AB(3)不成立.存在.当点D 在射线AM 上,点E 在射线BN 的反向延长线上时(如图3(1)),AD -BE =AB当点D 在射线AM 的反向延长线上,点E 在射线BN 上时(如图3(2)),BE -AD =AB图3(2)图3(1)A l C E B D N M MN DBEClA。

八年级数学勾股定理的应用——类比探究(专题)(含答案)

八年级数学勾股定理的应用——类比探究(专题)(含答案)

勾股定理的应用——类比探究(专题)一、单选题(共7道,每道14分)1.如图,△ABC和△DBE都是等腰直角三角形,点D在AC上,其中∠ABC=∠DBE=90°,则∠DCE 的度数( )A.60°B.70°C.90°D.100°答案:C解题思路:∵△ABC和△DBE都是等腰直角三角形,∠ABC=∠DBE=90°∴AB=BC,BD=BE,∠A=∠ACB=45°,∴∠ABD=∠CBE,∴△ABD≌△CBE(SAS),∴∠A=∠BCE=45°,∴∠DCE=∠ACB+∠BCE=90°,故选C.试题难度:三颗星知识点:略2.(上接第1题)(2)若AD=5,CD=12,则CE的长为_______,DE的长为_______.( )A.5,12B.3,17C.5,17D.5,13答案:D解题思路:∵△ABC和△DBE都是等腰直角三角形,∠ABC=∠DBE=90°∴AB=BC,BD=BE,∠A=∠ACB=45°,∴∠ABD=∠CBE,∴△ABD≌△CBE(SAS),∴∠A=∠BCE=45°,AD=CE,∴∠DCE=∠ACB+∠BCE=90°,∵AD=5,∴CE=5,在Rt△CDE中,∠DCE=90°,CD=12,CE=5,由勾股定理得,,∴∴DE=13,故选D.试题难度:三颗星知识点:略3.(上接第1,2题)(3)当点D在线段AC上运动时(D不与A重合),则AD,CD,DE之间的数量关系为( )A. B.C. D.答案:A解题思路:∵△ABC和△DBE都是等腰直角三角形,∠ABC=∠DBE=90°∴AB=BC,BD=BE,∠A=∠ACB=45°,∴∠ABD=∠CBE,∴△ABD≌△CBE(SAS),∴∠A=∠BCE=45°,AD=CE,∴∠DCE=∠ACB+∠BCE=90°,在Rt△CDE中,∠DCE=90°,由勾股定理得,,∵AD=CE,∴,故选A.试题难度:三颗星知识点:略4.如图1,点Q是等边△ABC的边AB上的一点,以CQ为边作等边△CPQ,连接AP,则∠PAQ 的度数为_______,线段AP,BQ之间的数量关系为_______.( )A.60°,AP=BQB.120°,AP=BQC.90°,AP=BQD.140°,AP=BQ答案:B解题思路:∵△ABC和△CPQ都是等边三角形,∴AC=BC,CP=CQ,∠CAB=∠B=60°,∠PCQ=∠ACB=60°,∴∠ACP=∠BCQ,∴△ACP≌△BCQ(SAS),∴∠PAC=∠B=60°,AP=BQ,∴∠PAQ=∠PAC+∠CAB=120°,故选B.试题难度:三颗星知识点:略5.(上接第4题)(2)如图2,△ABC是等腰直角三角形,点Q在斜边AB上,以CQ为直角边作等腰直角△PCQ,其中∠PCQ=∠ACB=90°.则AQ,BQ,PQ之间的数量关系为( )A. B.C. D.答案:B解题思路:如图,连接AP,∵△ABC和△CPQ都是等腰直角三角形,∠PCQ=∠ACB=90°,∴AC=BC,CP=CQ,∠CAB=∠B=45°,∴∠ACP=∠BCQ,∴△ACP≌△BCQ(SAS),∴∠PAC=∠B=45°,AP=BQ,∴∠PAQ=∠PAC+∠CAB=90°,在Rt△APQ中,∠PAQ=90°,由勾股定理得,,∵AP=BQ,∴,故选B.试题难度:三颗星知识点:略6.(上接第4,5题)在(2)的条件下,则CQ,AQ,BQ三者之间的数量关系为( )A. B.C. D.答案:D解题思路:如图,连接AP,∵△ABC和△CPQ都是等腰直角三角形,∠PCQ=∠ACB=90°∴AC=BC,CP=CQ,∠CAB=∠B=45°,∴∠ACP=∠BCQ,∴△ACP≌△BCQ(SAS),∴∠PAC=∠B=45°,AP=BQ,∴∠PAQ=∠PAC+∠CAB=90°,在Rt△APQ中,∠PAQ=90°,由勾股定理得,,∵AP=BQ,∴,∵△CPQ是等腰直角三角形,PQ为斜边∴故选D.试题难度:三颗星知识点:略7.如图,在Rt△ABC中,AB=AC,∠BAC=90°,D,E为BC上两点,∠DAE=45°,F为△ABC 外一点,且FB⊥BC,FA⊥AE,则下列结论:①CE=BF;②;③,其中正确的是( )A.①②③B.①②C.②③D.①③答案:A解题思路:①由题意可得,∠BAC=∠EAF=90°,∴∠CAE+∠BAE=∠BAF+∠BAE=90°∴∠CAE=∠BAF在△ABC中,AB=AC,∠BAC=90°∴∠C=∠ABC=45°∵FB⊥BC∴∠FBE=90°∴∠ABF=45°=∠C∴△ABF≌△ACE(ASA)∴CE=BF,故①正确②如图,连接DF,由①可知,AF=AE,∵∠EAF=90°,∠DAE=45°,∴∠DAF=45°=∠DAE又AD=AD∴△ADF≌△ADE(SAS)∴DF=DE在Rt△BDF中,∠DBF=90°根据勾股定理得,,∴,故②正确;③在Rt△BEF中,∠EBF=90°由勾股定理可得,,在等腰直角△AEF中,,∴,故③正确;综上,①②③均正确,故选A试题难度:三颗星知识点:略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生做题前请先回答以下问题
问题1:类比探究属于几何综合题,类比(__________,___________,___________)是解决此问题的主要方法,做好类比需要把握变化过程中的____________.
若属于类比探究常见的结构类型,调用结构类比解决.
若不属于常见结构类型
①根据题干条件,结合___________________先解决第一问.
②类比解决下一问.
如果不能,分析条件变化,寻找______________.
结合所求目标,依据_____________,大胆猜测、尝试、验证
问题2:想一想类比探究问题常见的不变结构有哪些,处理方式是什么?
以下是问题及答案,请对比参考:
问题1:解决路径长问题的思路为:
①分析、,寻找;
②确定运动路径;
通过“、、”猜测运动路径,并结
合进行验证,在做的过程中要大胆猜测,小心验证.
③设计方案,求出路径长.
答:
类比探究—直角结构
一、单选题(共6道,每道16分)
1.在Rt△ABC中,∠B=90°,∠A=30°,将一块三角板的直角顶点放在△ABC斜边AC的中点P 处,将三角板绕点P旋转.
(1)如图1,三角板的两直角边分别交AB,BC于点M,N,此时PN和PM的数量关系是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:中考数学几何中的类比探究
2.(上接第1题)(2)如图2,三角板的两直角边分别交AB,BC的延长线于点M,N,此时PN和PM的数量关系是( )
A. B. C. D.
答案:C
解题思路:
试题难度:三颗星知识点:中考数学几何中的类比探究
3.(上接第1,2题)(3)如图3,若将三角板的直角顶点放在斜边上的点P处,三角板的两直角边分别交AB,BC的延长线于点M,N,当时,PN和PM的数量关系是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:中考数学几何中的类比探究
4.正方形ABCD中,O是对角线AC的中点,P是对角线AC上一动点,连接PB.
(1)过点P作PF⊥CD于点F,PE⊥PB,交CD(或CD的延长线)于点E,则DF和EF之间的数量关系是( )
A. B.
C.DF=EF
D.
答案:C
解题思路:
试题难度:三颗星知识点:直角结构
5.(上接第4题)(2)在(1)中,当点P在线段OA上时,如图所示,则线段PA,PC,CE 之间的数量关系为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:直角结构
6.(上接第4,5题)(3)在(1)中,当点P在线段OC上时(不与点O,C重合),类比(2)中的做法,可以判断线段PA,PC,CE之间的数量关系为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:直角结构。

相关文档
最新文档