《经济数学--微积分》第三章-导数与微分练习题

《经济数学--微积分》第三章-导数与微分练习题
《经济数学--微积分》第三章-导数与微分练习题

第三章 导

数与微分

一、判断题 1. 若函数)(x f 在0x 点可导,则00()[()]f x f x ''=;( )

2. 若)(x f 在0x 处可导,则 )(lim 0x f x x → 一定存在;( )

3. 函数 x x x f =)( 是定义区间上的可导函数;( )

4. 函数 x x f =)( 在其定义域内可导;( )

5. 若 )(x f 在 [,]a b 上连续,则 )(x f 在 (,)a b 内一定可导;( )

6. 若 ()f x 在 0x 点不可导,则 ()f x 在 0x 不连续;( )

7. 函数 22,1()ln ,014

x x f x x x ?≥?=?<

8. ()(),()f x f x y e y e f x ''''==已知则;( )

9. 若 (),n f x x = 则 ()(0)!n f n = ;( )

10. 2()2d ax b ax += ;( )

二、填空题

1. 设 )(x f 在 0x 处可导,且 A x f =')(0,则 h

h x f h x f h )3()2(lim

000--+→用A 的代数式表示为_______ ;

2.

()f x = ,则 (0)f '= _________ ;

3. 设 ln e x e y x e x e =+++,则 y '= ______ ;

4. ()x x ' = _______;

5. 曲线 3y x = 在点 (1,1) 处的切线方程是 ________ ;

6. 曲线 x e x y += 在点 (0,1) 的处的切线方程是_______;

7. 函数 32sin(1)y x x =+ 的微分 dy =__________ ;

8. sin(1)x y e =+ ,dy =_______ ;

9. dy y -? 的近似值是 _________ ;

10. 设 e x y n += ,则 ()n y = ________ ;

三、选择题

1. 设)(x f 在点0x 处可导,则下列命题中正确的是 ( ) (A) 000()()

lim x x f x f x x x →-- 存在 (B) 000

()()lim

x x f x f x x x →--不存在 (C) 00()()

lim x x f x f x x →+-存在 (D) 00()()

lim x f x f x x ?→-?不存在

2. 设)(x f 在点0x 处可导且0001lim (2)()4

x x

f x x f x →=--,则0()f x '等于 (

) (A) 4 (B) –4 (C) 2 (D) –2

3. 设 ()y f x = 可导,则 (2)()f x h f x -- = ( )

(A) ()()f x h o h '+ (B) 2()()f x h o h '-+

(C) ()()f x h o h '-+ (D) 2()()f x h o h '+

4. 设 (0)0f = ,且 0()lim x f x x → 存在,则 0()

lim x f x

x →= ( )

(A) ()f x ' (B) (0)f ' (C) (0)f (D) 1

(0)2f '

5. 设 1

(2)1f x x +=+ ,则 ()f x '= ( )

(A) 21

(1)x -- (B) 21(1)x -+ (C) 11x + (D) 1

1x --

6. 函数 x x x f )1()(-=的导数为 ( )

(A)x x x )1(- (B)1)1(--x x (C)x x x ln (D))]

1ln(1[)1(-+--x x x

x x

7. 设 21,10

()1,02x x f x x ?+-<≤=?<≤? ,则)(x f 在点x = 0 处 ( )

(A) 可导 (B) 连续但不可导 (C) 不连续 (D) 无定义

8. 函数)(x f 在 0x x =处连续,是 )(x f 在 0x 处可导的 ( )

(A) 充分不必要条件 (B) 必要不充分条件

(C) 充分必要条件 (D) 既不充分也不必要条件

9. 函数 x x

x f =)( 在 0=x 处 ( )

(A) 连续但不可导 (B) 连续且可导

(C) 极限存在但不连续 (D) 不连续也不可导

10.函数 0,

0()1,0x f x x x ≤??=?>?? ,在点 0x = 不连续是因为 ( )

(A) (00)(0)f f +≠ (B) (00)(0)f f -≠

(C) (00)f +不存在 (D) (00)f -不存在

11.设 21cos ,0()0,01tan ,0x x x f x x x x x

?? ,则 ()f x 在 0x =处( )

(A) 极限不存在 (B) 极限存在,但不连续

(C) 连续但不可导 (D) 可导

12. 函数 )(x f e y =,则 ="y ( )

(A) )(x f e (B) )(")(x f e x f (C) 2)()]('[x f e x f (D) )}(")]('{[2)(x f x f e x f +

13. 设 x x y e e -=+ ,则 y ''=( )

(A) x x e e -+ (B) x x e e -- (C) x x e e --- (D) x x e e --+

14. 已知 ln y x x = ,则 (10)y = ( )

(A) 91x - (B) 91x (C) 98!x (D) 9

8!x - 15. 已知 sin y x = ,则 (10)y = ( )

(A) sin x (B) cos x (C) sin x - (D) cos x -

四、计算与应用题

1.设 x y e y ln = 确定 y 是 x 的函数,求 dx

dy 2.方程 0y x e e xy -+= 确定 y 是 x 的函数,求 y '

3.方程 2cos 0y y x e += 确定 y 是 x 的函数,求 y '

4.设 21(1)arctan cos 2y x x x =++,求 y '

5.l n t a n 2

x y = ,求 'y 及 dy

6.221cos 5ln x x y -+= ,求 y ' 及 dy

7.a r c n y e = ,求 y ' 及 dy

8.xy e y x -= ,求 y ' 及 dy 9.已知 2cos 3y x =,求 y '

10.设 ln(y x x =+,求 y ' 11.设 2

2arctan()1x y x =- ,求 y ' 12.设 x y x = ,求 y ' 13.求 13cos x y e x -= 的微分

14.求 2x

e y x = 的微分

15.设 )ln(ln x y =,求 dy 16.设 x x y 1

cos 1

ln += ,求 dy

17.设 cos 2x y e = ,求 dy 18.3cos cos x y x x e =+ ,求 dy

19.ln y x x = ,求 y '' 20.已知 ()sin3f x x = ,求 ()2f π

''

高数第三章一元函数的导数和微分

第三章一元函数的导 数和微分【字体:大中小】【打印】 3.1 导数概念 一、问题的提出 1.切线问题 割线的极限位置——切线位置 如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线. 极限位置即 切线MT的斜率为 2.自由落体运动的瞬时速度问题

二、导数的定义 设函数y=f(x)在点的某个邻域内有定义,当自变量x在处取得增量Δx(点仍在该邻域内)时,相应地函数y取得增量;如果Δy与Δx之比当Δx→0时的极限存在,则称函数y=f(x)在点处可导,并称这个极限为函数 y=f(x)在点处的导数,记为 即 其它形式 关于导数的说明: 在点处的导数是因变量在点处的变化率,它反映了因变量随自变量的变化而变化的快慢程度。 如果函数y=f(x)在开区间I内的每点处都可导,就称函数f(x)在开区间I内可导。 对于任一,都对应着f(x)的一个确定的导数值,这个函数叫做原来函数f(x)

的导函数,记作 注意: 2.导函数(瞬时变化率)是函数平均变化率的逼近函数. 导数定义例题: 例1、115页8 设函数f(x)在点x=a可导,求: (1) 【答疑编号11030101:针对该题提问】 (2) 【答疑编号11030102:针对该题提问】

三、单侧导数 1.左导数: 2.右导数: 函数f(x)在点处可导左导数和右导数都存在且相等. 例2、讨论函数f(x)=|x|在x=0处的可导性。 【答疑编号11030103:针对该题提问】 解

闭区间上可导的定义:如果f(x)在开区间(a,b)内可导,且及都存在,就说f(x)在闭区间[a,b]上可导. 由定义求导数 步骤: 例3、求函数f(x)=C(C为常数)的导数。 【答疑编号11030104:针对该题提问】 解 例4、设函数 【答疑编号11030105:针对该题提问】 解

03第三章-导数与微分

第三章 导数与微分 一、本章学习要求与内容提要 (一)学习要求 1. 理解导数和微分的概念及其几何意义,会用导数(变化率)描述一些简单的实际问题. 2.熟练掌握导数和微分的四则运算法则和基本初等函数的求导公式. 3.熟练掌握复合函数、隐函数以及由参数方程所确定的函数的一阶导数的求法. 4.了解高阶导数的概念,熟练掌握初等函数的二阶导数的求法. 5.了解可导、可微、连续之间的关系. 重点 导数的概念及其几何意义,计算导数的方法,初等函数的二阶导数的求法. 难点 求复合函数和隐函数的导数的方法. (二) 内容提要 1.导数的概念 ⑴导数 设函数)(x f y =在点0 x 的某一邻域内有定义,当自变量x 在点0 x 处有增量)0(≠??x x ,x x ?+0 仍在该邻域内时,相应地,函数有增量)()(0 x f x x f y -?+=?,若极限 000 0()()lim lim x x f x x f x y x x ?→?→+?-?=?? 存在,则称)(x f 在点0 x 处可导,并称此极限值为)(x f 在点0 x 处的导数,记为)(0 x f ',也可记为0 00 0d d d d , ,)(x x x f x x x y x x y x y ===' '或,即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000. 若极限不存在,则称)(x f y =在点0 x 处不可导. 若固定0 x ,令x x x =?+0 ,则当0→?x 时,有0x x →,所以函数)(x f 在 点0 x 处的导数)(0 x f '也可表示为 00 ) ()(lim )(x x x f x f x f x --='→.

第三章导数与微分习题解答

P61 习题3-1 1、根据定义求导数: (1)cos y x = 00000cos()cos lim 2sin sin 22lim sin()sin 22lim 2 sin 2lim sin()lim 22 sin x x x x x x x x y x x x x x x x x x x x x x x x x ?→?→?→?→?→+?-'=?+?++?--=???+=-???=-+?=- 12 (2)y x = 112 2 012()lim lim lim 12x x x x x x y x x ?→?→?→-+?-'=?==== (3)y = 033 223 2 2 2(lim lim lim lim x x x x x x y x ?→?→?→?→+?'=?==== =(4)x y a = 001lim lim x x x x x x x a a a y a x x +???→?→--'==?? 设t x =?,则 01 lim t x t a y a t →-'= 再设t s a =,则log a t s =,于是 11 1 1 110 1 1lim log 1lim log 1 lim log [1(1)] 1log ln x s a x s s a x s s a x a x s y a s a s a s a e a a →→--→--'===+-== 2、

0000000()()(1)lim [(()]() lim () x x f x x f x x f x x f x x f x ?→-?→-?-?+-?-=--?'=- 00000000000000000000000()()(2)lim ()()()()lim ()()()()lim lim ()()()()lim lim ()[()]2() x x x x x x f x x f x x x f x x f x f x f x x x f x x f x f x f x x x x f x x f x f x x f x x x f x f x f x ?→?→?→?→?→?→+?--??+?-+--?=?+?---?=+??+?--?-=-??''=--'= 000()(3)lim ()lim (0)(0)lim (0) x x x f x x f x x f x f x f →?→?→?=?+?-=?'= 00001001 (4)lim [()()]1 ()() lim 1() n n n f x f x n f x f x n n f x →∞→+-+-='= 3、证: ()f x 为偶函数且(0)0f =,则 00000(0)(0)(0)lim ()(0) lim ()(0) lim ()(0) lim ()(0) lim (0)x x x x x f x f f x f x f x f x f x f x f x f x f x f - - - - + -?→?→?→?→-?→++?-'=??-=?-?-=?-?-=--?-?-=--?'=- 又()f x 在0x =处可导,则 (0)(0)f f -+''= 即(0)(0)f f ++''=- 所以(0)0f +'= 故(0)0f '=。 4、证: (1)设()f x 为可导的奇函数,则: 0000()()()lim ()()lim ()() lim [()]() lim ()x x x x f x x f x f x x f x x f x x f x x f x x f x x f x x f x ?→?→?→-?→-+?--'-=?--?+=?-?-=-?+-?-=-?'= 所以()f x '为偶函数。 (2)设()f x 为可导的偶函数,则:

高等数学导数与微分练习题

作业习题 1、求下列函数的导数。 (1)223)1(-=x x y ; (2)x x y sin = ; (3)bx e y ax sin =; (4))ln(22a x x y ++=;(5)11arctan -+=x x y ;(6)x x x y )1(+=。 2、求下列隐函数的导数。 (1)0)cos(sin =+-y x x y ;(2)已知,e xy e y =+求)0(y ''。 3、求参数方程???-=-=) cos 1()sin (t a y t t a x )0(>a 所确定函数的一阶导数dx dy 与二阶导数 2 2dx y d 。 4、求下列函数的高阶导数。 (1),αx y =求)(n y ; (2),2sin 2x x y =求)50(y 。 5、求下列函数的微分。 (1))0(,>=x x y x ; (2)2 1arcsin x x y -= 。 6、求双曲线122 22=-b y a x ,在点)3,2(b a 处的切线方程与法线方程。 7、用定义求)0(f ',其中?????=, 0,1sin )(2 x x x f .0, 0=≠x x 并讨论导函数的连续性。 作业习题参考答案: 1、(1)解:])1[()1()(])1([23223223'-+-'='-='x x x x x x y ]))(1(2[)1(3223222'-+-=x x x x x x x x x x 2)1(2)1(323222?-+-= )37)(1(222--=x x x 。 (2)解:2sin cos )sin ( x x x x x x y -='='。 (3)解:bx be bx ae bx e y ax ax ax cos sin )sin (+='=' )cos sin (bx b bx a e ax +=。

第三章 导数与微分 习题及答案

第三章 导数与微分 同步练习 一、填空 1、若[]1cos 1)0()(lim =--→x f x f x x ,则)0(f '= 。 2、设)100()3)(2)(1()(----=x x x x x x f ,则)0(f '= 。 3、若)(x e f y -=,且x x x f ln )(=',则 1 =x dx dy = 。 4、若)()(x f x f =-,且3)1(=-'f ,则)1(f '= 。 5、设某商品的需求函数是Q=10-0.2p ,则当价格p=10时,降价10%,需求量将 。 6、设某商品的需求函数为:Q=100-2p ,则当Q=50时,其边际收益为 。 7、已知x x y ln =,则)10(y = 。 8、已知2arcsin )(),232 3( x x f x x f y ='+-=,则:0 =x dx dy = 。 9、设1 111ln 2 2++-+=x x y ,则y '= 。 10、设方程y y x =确定y 是x 的函数,则dy = 。 11、已知()x ke x f =',其中k 为常数,求()x f 的反函数的二阶导数=22dy x d 。 二、选择 1、设f 可微,则=---→1 ) 1()2(lim 1 x f x f x ( ) A 、)1(-'-x f B 、)1(-'f C 、)1(f '- D 、)2(f ' 2、若2)(0-='x f ,则=--→) ()2(lim 000 x f x x f x x ( ) A 、 41 B 、4 1 - C 、1 D 、-1 3、设?? ???=≠=0001arctan )(x x x x x f ,则)(x f 在0=x 处( ) A 、不连续 B 、极限不存在 C、连续且可导 D、连续但不可导 4、下列函数在[]1,1-上可微的有( ) A、x x y sin 3 2+= B、x x y sin =

高等数学考研大总结之四导数与微分知识讲解

第四章 导数与微分 第一讲 导数 一,导数的定义: 1函数在某一点0x 处的导数:设()x f y = 在某个()δ,0x U 内有定义,如果极限 ()()0 lim 00→??-?+x x x f x x f (其中()() x x f x x f ?-?+00称为函数()x f 在(0x ,0x +x ?)上的平均变化率(或差商)称此极限值为函数()x f 在0x 处的变化率)存在则称函数()x f 在0x 点可导.并称该极限值为()x f 在0x 点的导数记为()0/ x f ,若记()()00,x f x f y x x x -=?-=?则 ()0/ x f =()()0 00lim x x x x x f x f →--=0lim →???x x y 解析:⑴导数的实质是两个无穷小的比。 即:函数相对于自变量变化快慢的程度,其绝对值 越大,则函数在该点附近变化的速度越快。 ⑵导数就是平均变化率(或差商)的极限,常用记法: ()0/ x f ,0/x x y =,0x x dx dy =。 ⑶函数()x f 在某一点0x 处的导数是研究函数()x f 在点0x 处函数的性质。 ⑷导数定义给出了求函数()x f 在点0x 处的导数的具体方法,即:①对于点0x 处的自变量增量x ?,求出函数的增量(差分)y ?=()()00x f x x f -?+②求函数增量y ?与自变量增 量x ?之比x y ??③求极限0 lim →???x x y 若存在,则极限值就是函数()x f 在点0x 处的导数,若极限不 存在,则称函数()x f 在0x 处不可导。 ⑸在求极限的过程中, 0x 是常数, x ?是变量, 求出的极限值一般依赖于0x ⑹导数是由极限定义的但两者仍有不同,我们称当极限值为∞时通常叫做极限不存在,而导数则不同,因其具有实在的几何意义,故当在某点处左,右导数存在且为同一个广义实数值时我们称函数在某点可导。实质是给导数的定义做了一个推广。 ⑺注意: 若函数()x f 在点0x 处无定义,则函数在0x 点处必无导数,但若函数在点0x 处有定义,则函数在点0x 处未必可导。 2 单侧导数:设函数()x f 在某个(]00,x x δ-(或[)δ+00,x x )有定义,并且极限

经济数学(导数与微分习题及答案)

第三章 函数的导数与微分 习题 3-1 1. 根据定义求下列函数的导数: (1) x y 1 = (2)x y cos = (3)b ax y +=(a ,b 为常数) (4)x y = 解 (1) 因为 00()()'lim lim x x y f x x f x y x x ?→?→?+?-==?? =x x x x x ?-?+→?1 1lim 0=01lim ()x x x x ?→-+?=2 1 x - 所以 21 y x '=- . (2) 因为 00cos()cos 'lim lim x x y x x x y x x ?→?→?+?-==?? 02sin()sin 22 lim sin x x x x x x ?→??-+==-? 所以 sin y x '=- (3) 因为 00[()][]'lim lim x x y a x x b ax b y x x ?→?→?+?+-+==?? =x x a x ??→?0lim =a 所以 y a '= (4) 因为 00'lim lim x x y y x ?→?→?==? = )(lim 0x x x x x x +?+??→? lim x ?→== 所以 y '= . 2. 下列各题中假定)(0'x f 存在, 按照导数的定义观察下列极限, 指出A 表示什么? (1) A x x f x x f x =?-?-→?) ()(lim 000 (2) A x x f x =→)(lim 0(其中0)0(=f 且)0('f )存在) (3) A x f tx f x =-→)0()(lim 0(其中)0('f 存在)

高等数学导数与微分练习题(完整资料).doc

【最新整理,下载后即可编辑】 作业习题 1、求下列函数的导数。 (1)223)1(-=x x y ; (2)x x y sin =; (3)bx e y ax sin =; (4))ln(22a x x y ++=;(5)11arctan -+=x x y ;(6)x x x y )1( +=。 2、求下列隐函数的导数。 (1)0)cos(sin =+-y x x y ;(2)已知,e xy e y =+求)0(y ''。 3、求参数方程?? ?-=-=) cos 1() sin (t a y t t a x )0(>a 所确定函数的一阶导数dx dy 与二 阶导数22dx y d 。 4、求下列函数的高阶导数。 (1),αx y =求)(n y ; (2),2sin 2x x y =求)50(y 。 5、求下列函数的微分。 (1))0(,>=x x y x ; (2)2 1arcsin x x y -= 。 6、求双曲线122 22=-b y a x ,在点)3,2(b a 处的切线方程与法线方程。 7、用定义求)0(f ',其中?????=, 0,1sin )(2 x x x f .0, 0=≠x x 并讨论导函数的连续性。 作业习题参考答案: 1、(1)解:])1[()1()(])1([23223223'-+-'='-='x x x x x x y ]))(1(2[)1(3223222'-+-=x x x x x x x x x x 2)1(2)1(323222?-+-= )37)(1(222--=x x x 。 (2)解:2 sin cos )sin (x x x x x x y -= '='。 (3)解:bx be bx ae bx e y ax ax ax cos sin )sin (+='=' )cos sin (bx b bx a e ax +=。 (4)解:][1 ])[ln(222 222'++++= '++='a x x a x x a x x y ])(21 1[1222 222'+++++=a x a x a x x

高等数学第三章导数与微分

第三章导数与微分 一、导数概念与定义 A 、导数的概念 a 、设函数y=f (x )在点0x 处的某临域内有定义,当自变量x 在0x 处取得变量△x (△x ≠0)时,函数取得 相应增量。即△y=f (0x +△x )-f (0x ) 若△y 与△x 之比当△x →0时极限存在,即000()()lim x f x x f x x ?→+?-?存在,,则称函数在点0x 处可导,0x 为()y f x =的可导点,并称此极限为函数在点0x 处的导数。 法线的斜率为1k ,切线的斜率为k b 、若0 000()()()lim x x f x f x f x x x →-'=→不存在,则称()f x 在0x 处不可导或不存在导数,0x 为()f x 的不可导点。 ※特别是当上述极限为无穷大时,此时导数不存在,或称()f x 在点0x 处的导数无穷大。 导数()f x '也可记为0|x x dy dx =或0()|f x x x x d d = c 、函数的左导数与右导数 0000()()()lim x f x f x f x x x --→-'=→ 0000 ()()()lim x f x f x f x x x ++→-'=→ ※分段函数的分段点处考虑左导右导,其余正常求导时直接求()f x ' B 、导数的几何意义 曲线在点00(,())x f x 处的切线方程为000()()y y f x x x '-=- 曲线在点00(,())x f x 处的发现方程为0001()()y y x x f x --= -' C 、函数的可导性与连续性的关系 函数()y f x =在0x 处可导,则在0x 处连续;但函数()y f x =在0x 处连续,在点0x 不一定可导。 二、求导法则 A 、 代数和的求导法则,积的导数、商的导数 ① ()u v u v '''+=+ ② ()u v u v v u '''?=+ ③ ()cu cu ''= ④ ()au bv au bv '''±=± ⑤ ()u v w s t u vwst uv wst uvw st uvws t uvwst ''''''????=++++ 即n 个因子乘积的导数一定为n 项,且每项均为n 个因子的乘积,第i 项的第i 个因子求导,其余不变 ⑥ 2()u u v v u v v ''-'= B 、 反函数的导数

3第三章 微分中值定理与导数的应用习题解答

第三章 微分中值定理与导数的应用答案 §3.1 微分中值定理 1. 填空题 (1)函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 π π -4. (2)设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 3 个实根,分别位于区间)5,3(),3,2(),2,1(中. 2. 选择题 (1)罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( B ). A . 必要条件 B .充分条件 C . 充要条件 D . 既非充分也非必要条件 (2)下列函数在]1 ,1[-上满足罗尔定理条件的是( C ). A . x e x f =)( B. ||)(x x f = C. 2 1)(x x f -= D. ????? =≠=0 ,00 ,1sin )(x x x x x f (3)若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成 立( B ). A . ),() ()()()(2112b a f x x x f x f ∈'-=-ξξ B . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间 C . 211221)()()()(x x f x x x f x f <<'-=-ξξ D . 211212)()()()(x x f x x x f x f <<'-=-ξξ 3.证明恒等式:)(2 cot arctan ∞<<-∞= +x x arc x π . 证明: 令x arc x x f cot arctan )(+=,则011 11)(2 2=+-+='x x x f ,所以)(x f 为一常数. 设c x f =)(,又因为(1)2 f π = , 故 )(2 c o t a r c t a n ∞<<-∞=+x x arc x π . 4.若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中12a x x << 3x b <<,证明:在),(31x x 内至少有一点ξ,使得0)(=''ξf . 证明:由于)(x f 在],[21x x 上连续,在),(21x x 可导,且)()(21x f x f =,根据罗尔定理知,存在),(211x x ∈ξ, 使0)(1='ξf . 同理存在),(322x x ∈ξ,使0)(2='ξf . 又)(x f '在],[21ξξ上 符合罗尔定理的条件,故有),(31x x ∈ξ,使得0)(=''ξf .

(完整版)同济版《高等数学》稿WORD版导数与微分

第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系. 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3、 了解高阶导数的概念,会求某些简单函数的n 阶导数. 4、 会求分段函数的导数. 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数. 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数. 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数. §2. 1 导数概念 一、引例 1.直线运动的速度 设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑比值 000) ()(t t t f t f t t s s --=--, 这个比值可认为是动点在时间间隔t -t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践 中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t -t 0→0, 取

比值 0) ()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 0) ()(lim t t t f t f v t t --=→, 这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题 设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线. 设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0 000) ()(tan x x x f x f x x y y --= --= ?, 其中?为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存 在, 设为k , 即 00) ()(lim 0x x x f x f k x x --=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的 倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线. 二、导数的定义 1. 函数在一点处的导数与导函数 从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 00) ()(lim 0x x x f x f x x --→. 令?x =x -x 0, 则?y =f (x 0+?x )-f (x 0)= f (x )-f (x 0), x →x 0相当于?x →0, 于是0 0) ()(lim 0 x x x f x f x x --→ 成为 x y x ??→?0lim 或x x f x x f x ?-?+→?)()(lim 000. 定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量?x (点x 0+?x 仍在该邻域内)时, 相应地函数y 取得增量?y =f (x 0+?x )-f (x 0); 如果?y 与?x 之比当?x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000,

03第三章 导数与微分

页脚内容1 第三章 导数与微分 一、本章学习要求与内容提要 (一)学习要求 1.理解导数和微分的概念及其几何意义,会用导数(变化率)描述一些简单的实际问题. 2.熟练掌握导数和微分的四则运算法则和基本初等函数的求导公式. 3.熟练掌握复合函数、隐函数以及由参数方程所确定的函数的一阶导数的求法. 4.了解高阶导数的概念,熟练掌握初等函数的二阶导数的求法. 5.了解可导、可微、连续之间的关系. 重点导数的概念及其几何意义,计算导数的方法,初等函数的二阶导数的求法. 难点求复合函数和隐函数的导数的方法. (二)内容提要 1.导数的概念 ⑴导数 设函数)(x f y =在点0x 的某一邻域内有定义,当自变量x 在点0x 处有增量)0(≠??x x ,x x ?+0仍在该邻域内时,相应地,函数有增量)()(00x f x x f y -?+=?,若极限

页脚内容2 存在,则称)(x f 在点0x 处可导,并称此极限值为)(x f 在点0x 处的导数,记为)(0x f ',也可记为 00 0d d d d , , )(x x x f x x x y x x y x y ===' '或 ,即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000. 若极限不存在,则称)(x f y =在点0x 处不可导. 若固定0x ,令x x x =?+0,则当0→?x 时,有0x x →,所以函数)(x f 在点0x 处的导数)(0x f '也可表示为 00 0) ()(lim )(x x x f x f x f x --='→. ⑵左导数与右导数 ①函数)(x f 在点0x 处的左导数 )(0x f -'=x x f x x f x y x x ?-?+=??- - →?→?) ()(lim lim 0000 . ②函数)(x f 在点0x 处的右导数 )(0x f +'=x x f x x f x y x x ?-?+=??+ + →?→?) ()(lim lim 000 0. ③函数)(x f 在点0x 处可导的充分必要条件是)(x f 在点0x 处的左导数和右导数都存在且相等.

第三章 导数和微分答案

高等数学II 练习题 第三章 导数与微分 ________系_______专业 班级 姓名______ ____学号_______ 习题3.1 导数的概念 一.选择题 1.设()f x 在x a =的某邻域内有定义,()f x 在x a =可导的充分必要条件是 ( C ) (A )0 1lim (()())h h f a f a h →+ -存在 (B )0 (2)() lim h f a h f a h h →+-+存在 (C )0 ()() lim h f a f a h h →--存在 (D )0 ()() lim h f a h f a h h →+--存在 2.设()f x 是可导函数,且0 (1)(1) lim 12x f f x x →--=-,则曲线()y f x =在点(1,(1))f 处的切线 斜率为 ( B ) (A )1- (B )2- (C )6 (D )1 3. 设()f x 在x 处可导,,a b 为常数,则0 ()() lim x f x a x f x b x x ?→+?--?=? ( B ) (A )()f x ' (B )()()a b f x '+ (C )()()a b f x '- (D ) ()2 a b f x +' 4. 函数在点0x 处连续是在该点0x 处可导的条件 ( B ) (A )充分但不是必要(B )必要但不是充分 (C )充分必要 (D )既非充分也非必要 5.设曲线22y x x =+-在M 点处的切线斜率为3,则点M 的坐标为 ( B ) (A )(0,1) (B )(1,0) (C )(0,0) (D )(1,1) 6.设函数()|sin |f x x =,则()f x 在0x =处 ( B ) (A )不连续 (B )连续,但不可导 (C )可导,但不连续 (D )可导,且导数也连续 二.填空题 1.设()f x 在0x 处可导,000 (3)() lim h f x h f x h →+-= 。 2.设()f x 在0x =处可导,且(0)0f =,则0 ()lim x f x x →= 。 3.设0()2f x '=-,则0 00lim (2)() x x f x x f x →=-- 。 4.设()(1)(2)(2009)f x x x x x =--- ,则(0)f '= 。 5.已知物体的运动规律为2 s t t =+(米),则物体在2t =秒时的瞬时速度为 。 03()f x ' (0)f '1 42009!-5/m s

微积分第二章 导数与微分

第二章导数与微分 微分学是高等数学的重要组成部分,作为研究分析函数的工具和方法,其主要包含两个重要的基本概念导数与微分,其中导数反映了函数相对于自变量的变化的快慢程度,即变化率问题,而微分刻画了当自变量有微小变化时,函数变化的近似值。 一、教学目标与基本要求 (一)知识 1.记住导数和微分的各种术语和记号; 2.知道导函数与函数在一点的导数的区别和联系; 3.知道导数的几何意义,知道平面曲线的切线和法线的定义; 4.记住常数及基本初等函数的导数公式; 5.知道双曲函数与反双曲函数的导数公式; 6.知道高阶导数的定义; 7.知道隐函数的定义; 8.记住反函数的求导法则; 9.记住参数方程所确定的函数的一、二阶导数的求导公式; 10.知道对数求导法及其适用范围; 11.知道相关变化率的定义及其简单应用; 12.记住基本初等函数的微分公式; 13.知道微分在近似计算及误差估计中的应用; 14.记住两函数乘积高阶导数的莱布尼兹公式。 (二)领会 1.领会函数在一点的导数的三种等价定义和左、右导数的定义; 2.领会函数在某点的导数与曲线在对应点处的切线的斜率之间的关系; 3.领会导数的四则运算法则和复合函数的求导法则; 4.领会微分的定义以及导数与微分之间的区别和联系; 5.领会微分的运算法则及这些运算法则与相应的求导法则之间的联系; 6.领会微分形式的不变性; 7.领会函数在一点处可导、可微和连续之间的关系; 8.领会导数存在的充分必要条件是左、右导数存在且相等。 (三)运用 1.会用导数描述一些物理含义,如速度、加速度等; 2.会用导数的定义求一些极限,证明一些有关导数的命题,验证导数是否存在; 3.会用导数的几何意义求曲线在某点的切线方程和法线方程; 4.会用导数的定义或导数存在的充要条件讨论分段函数在分段点处的导数是否存在; 5.会用导数的四则运算法则及基本初等函数的求导公式求导数; 6.会求反函数的导数; 7.会求复合函数的导数; 8.会求隐函数的一阶、二阶导数; 9.会求参数方程所确定的函数的一阶、二阶导数; 10.会求函数的高阶导数; 11.会用莱布尼兹公式求函数乘积的高阶导数; 12.会用对数求导法求幂指函数和具有复杂乘、除、乘方、开方运算的函数的导数。 13.会用微分定义和微分法则求微分; 14.会用一阶微分形式不变性求复合函数的微分和导数; 15.会用微分求函数的近似值。 (四)分析综合 1.综合运用基本初等函数的导数公式及各种导法则求初等函数的导数; 2.综合运用函数导数的定义,左、右导数与导数之间的关系以及可导与连续的关系等讨论函数的可导性;

第三章 导数与微分

第三章 导数与微分 习题一 导数的定义 一、1、由导数定义得: 2)2(lim )(2lim ) 41(4)1(lim )1()1(lim lim )1(02 022000' =?+=??+?=?+-+?+=?-?+=??=→?→?→?→?→?x x x x x x x y x y x y y x x x x x 2、由导数定义得: 4 3 243lim 2 3 23lim ) 2()2(lim lim )2(0000'-=?+-=?- ?+=?-?+=??=→?→?→?→?x x x x y x y x y y x x x x 二、(1)求增量:因为b ax x f y +==)( b x x a x x f +?+=?+)()( 所以x a b ax b x x a x f x x f y ?=+-+?+=-?+=?)()()()( (2)算比值: a x x a x y =??=?? (3)取极限:a a x y dx dy x x ==??=→?→?0 0lim lim 三、0)1sin (lim 0 1sin lim 0)0()(lim )0(0200'==-=--=→→→x x x x x x f x f f x x x 四、011lim )0()0(lim lim )0(000' =?-=?-?+=??=---→?→?→?-x x f x f x y f x x x 11 )1(lim )0()0(lim lim )0(000'=?-+?=?-?+=??=+++→?→?→?+x x x f x f x y f x x x 因为)0()0(' '+-≠f f ,所以函数)(x f 在0=x 处的导数不存在。 五、设所求点的坐标为),(00y x ,则抛物线2 x y =在该点的切线的斜率为: 0'22|2|)(00x x x k x x x x ===== 又过该点的切线平行于所给直线,因此两直线的斜率相等, 所以有:220==x k ,解得10=x

3第三章微分中值定理与导数的应用

第三章 微分中值定理与导数的应用 【考试要求】 1.理解罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它们的几何意义,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。会用罗尔中值定理证明方程根的存在性。会用拉格朗日中值定理证明一些简单的不等式。 2.掌握洛必达(L’Hospital)法则,会用洛必达法则求“00”,“∞ ∞ ”,“∞?0”,“∞-∞”,“∞1”,“0 0”和“0∞”型未定式的极限。 3.会利用导数判定函数的单调性,会求函数的单调区间,会利用函数的单调性证明一些简单的不等式。 4.理解函数极值的概念,会求函数的极值和最值,会解决一些简单的应用问题。 5.会判定曲线的凹凸性,会求曲线的拐点。 6.会求曲线的渐近线(水平渐近线、垂直渐近线和斜渐近线)。 7.会描绘一些简单的函数的图形。 【考试内容】 一、微分中值定理 1.罗尔定理 如果函数()y f x =满足下述的三个条件: (1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)在区间端点处的函数值相等,即()()f a f b =, 那么在(,)a b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=. 说明:通常称导数等于零的点为函数的驻点(或稳定点,临界点),即若0()0f x '=,则 称点0x 为函数 ()f x 的驻点.

2.拉格朗日中值定理 如果函数()y f x =满足下述的两个条件: (1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导, 那么在(,)a b 内至少有一点ξ(a b ξ<<),使得下式(拉格朗日中值公式)成立: ()()()()f b f a f b a ξ'-=-. 说明:当 ()()f b f a =时,上式的左端为零,右端式()b a -不为零,则只能()0f ξ'=, 这就说明罗尔定理是拉格朗日中值定理的特殊情形.此外,由于拉格朗日中值定理在微分学中占有重要的地位,因此有时也称这定理为微分中值定理. 3.两个重要推论 (1)如果函数 ()f x 在区间I 上的导数恒为零,那么()f x 在区间I 上是一个常数. 证:在区间I 上任取两点1x 、2x (假定12x x <,12x x >同样可证) ,应用拉格朗日中值公式可得 2121()()()()f x f x f x x ξ'-=- (12x x ξ<<) . 由假定, ()0f ξ'=,所以 21()()0f x f x -=,即 21()()f x f x =. 因为1x 、2x 是I 上任意两点,所以上式表明 ()f x 在区间I 上的函数值总是相等的,即 ()f x 在区间I 上是一个常数. (2)如果函数 ()f x 与()g x 在区间(,)a b 内的导数恒有()()f x g x ''=,则这两个函 数在(,)a b 内至多相差一个常数,即()()f x g x C -=(C 为常数). 证:设() ()()F x f x g x =-,则()[()()]()()0F x f x g x f x g x ''''=-=-=, 根据上面的推论(1)可得,() F x C =,即()()f x g x C -=,故()()f x g x C -=. 二、洛必达法则 1.x a →时“ ”型未定式的洛必达法则

高数导数与微分的知识点总结

2015考研数学:导数与微分的知识点总结 来源:文都教育 导数与微分是考研数学的基础,占据至关重要的地位。基本概念、基本公式一定要掌握牢固,常规方法和做题思路要非常熟练。下面都教授给出该章的知识点总结,供广大考生参考。 第一节 导数 1.基本概念 (1)定义 0000000000 ()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x y f x dx dx x x x x ==?→?→→+?--?====??-或 注:可导必连续,连续不一定可导. 注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数 0'000000 ()()()()()lim lim x x x f x x f x f x f x f x x x x ---?→→+?--==?-. 0'00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x +++?→→+?--==?-. 0'()f x 存在''00()()f x f x -+?=. (3)导数的几何应用 曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-. 法线方程:0001()()'()y f x x x f x -=- -. 2.基本公式 (1)'0C = (2)'1()a a x ax -= (3)()'ln x x a a a =(特例()'x x e e =)(4)1(log )'(0,1)ln a x a a x a =>≠ (5)(sin )'cos x x = (6)(cos )'sin x x =- (7)2(tan )'sec x x = (8)2(cot )'csc x x =- (9)(sec )'sec tan x x x = (10)(csc )'csc cot x x x =- (11)21 (arcsin )'1x x =- (12)21(arccos )'1x x =-- (13)21(arctan )'1x x =+ (14)21(arccot )'1x x =-+

相关文档
最新文档