2020年内蒙古赤峰市中考数学试卷(含答案解析)
赤峰市中考数学试卷及答案(Word解析版)

内蒙古赤峰市中考数学试卷一、选择题(共8小题,每小题3分,共24分)1.(3分)(•赤峰)有理数﹣3的相反数是()A.3B.﹣3 C.D.﹣考点:相反数.专题:计算题;压轴题.分析:根据相反数的意义,只有符号不同的数为相反数.解答:解:﹣3的相反数是3.故选A.点评:本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.2.(3分)(•赤峰)下面的几何体中,主(正)视图为三角形的是()A.B.C.D.考点:简单几何体的三视图分析:主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.解答:解:A、主视图是长方形,故此选项错误;B、主视图是长方形,故此选项错误;C、主视图是三角形,故此选项正确;D、主视图是正方形,中间还有一条线,故此选项错误;故选:C.点评:此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.3.(3分)(•赤峰)赤峰市开放以来经济建设取得巨大成就,全市GDP总值为1686.15亿元,将1686.15亿元用科学记数法表示应为()A.168615×102元B.16.8615×104元C.1.68615×108元D.1.68615×1011元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:1686.15亿=1686 1500 0000=1.68615×1011,故选:D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•赤峰)下面是扬帆中学九年八班43名同学家庭人口的统计表:家庭人口数(人) 3 4 5 6 2学生人数(人)15 10 8 7 3这43个家庭人口的众数和中位数分别是()A.5,6 B.3,4 C.3,5 D.4,6考点:众数;中位数分析:利用众数及中位数的定义解答即可.解答:解:数据3出现了15次,故众数为3;43人的中位数应该是排序后的第22个学生的家庭人数,、故中位数为家庭人数为4人,故选B.点评:本题考查了众数及中位数的知识,解题的关键是了解其定义,难度较小.5.(3分)(•赤峰)如图,把一块含有30°角(∠A=30°)的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么∠AFE=()A.50°B.40°C.20°D.10°考点:平行线的性质;三角形的外角性质专题:计算题.分析:由四边形CDEF为矩形,得到EF与DC平行,利用两直线平行同位角相等求出∠AGE 的度数,根据∠AGE为三角形AGF的外角,利用外角性质求出∠AFE的度数即可.解答:解:∵四边形CDEF为矩形,∴EF∥DC,∴∠AGE=∠1=40°,∵∠AGE为△AGF的外角,且∠A=30°,∴∠AFE=∠AGE﹣∠A=10°.故选D.点评:此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.6.(3分)(•赤峰)如图,AB是⊙O的直径,C,D是⊙O上两点,CD⊥AB.若∠DAB=65°,则∠BOC=()A.25°B.50°C.130°D.155°考点:圆周角定理;垂径定理分析:由CD⊥AB.若∠DAB=65°,可求得∠D的度数,又由圆周角定理,即可求得∠AOC 的度数,继而求得答案.解答:解:∵CD⊥AB.∠DAB=65°,∴∠ADC=90°﹣∠DAB=25°,∴∠AOC=2∠ADC=50°,∴∠BOC=180°﹣∠AOC=130°.故C.点评:此题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.7.(3分)(•赤峰)化简结果正确的是()A.a b B.﹣ab C.a2﹣b2D.b2﹣a2考点:约分.分析:首先将分式的分子因式分解,进而约分求出即可.解答:解:==﹣ab.故选:B.点评:此题主要考查了约分,正确分解因式是解题关键.8.(3分)(•赤峰)如图,一根长5米的竹杆AB斜立于墙AC的右侧,底端B与墙角C的距离为3米,当竹杆顶端A下滑x米时,底端B便随着向右滑行y米,反映y与x变化关系的大致图象是()A.B.C.D.考点:动点问题的函数图象.分析:利用勾股定理列式求出AC,再根据勾股定理列式表示出y与x的函数关系式,然后判断出函数图象即可得解.解答:解:由勾股定理得,AC===4m,竹杆顶端A下滑x米时,底端B便随着向右滑行y米后,AC=4﹣x,BC=3+y,所以,y+3==,所以,y=﹣3,当x=0时,y=0,当A下滑到点C时,x=4,y=2,由函数解析式可知y与x的变化不是直线变化.故选A.点评:本题考查了动点问题的函数图象,主要利用了勾股定理,列出y与x的函数关系式是解题的关键,难点在于正确区分A、B选项.二、填空题(共8小题,每小题3分,共24分)9.(3分)(•赤峰)化简:2x﹣x=x.考点:合并同类项.分析:利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,直接得出答案.解答:解:2x﹣x=x.故答案为:x.点评:此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.10.(3分)(•赤峰)一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是.考点:几何概率分析:根据矩形的性质求出阴影部分占整个面积的,进而得出答案.解答:解:由题意可得出:图中阴影部分占整个面积的,∴一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是:.故答案为:.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.11.(3分)(•赤峰)下列四个汽车图标中,既是中心对称图形又是轴对称图形的图标有1个.考点:中心对称图形;轴对称图形.分析:根据中心对称图形定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,可分析出答案.解答:解:第一个图不是轴对称图形,不是中心对称图形,故不合题意;第二个图形是中心对称图形,也是轴对称图形,故符合题意;第三个图形不是中心对称图形,是轴对称图形,故不合题意;第三个图形不是中心对称图形,是轴对称图形,故不合题意.故答案为:1.点评:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.(3分)(•赤峰)如图,E的矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AEF,F在矩形ABCD内部,延长AF交DC于G点.若∠AEB=55°,求∠DAF=20°.考点:翻折变换(折叠问题)分析::由△ABE沿AE折叠到△AEF,得出∠BAE=∠FAE,由∠AEB=55°,∠ABE=90°,求出∠BAE,利用∠DAF=∠BAD﹣∠BAE﹣∠FAE求解.解答:解:∵△ABE沿AE折叠到△AEF,∴∠BAE=∠FAE,∵∠AEB=55°,∠ABE=90°,∴∠BAE=90°﹣55°=35°,∴∠DAF=∠BAD﹣∠BAE﹣∠FAE=90°﹣35°﹣35°=20°.故答案为:20点评:本题主要考查了折叠问题,解题的关键是利用折叠图形的角相等求解.13.(3分)(•赤峰)如图,反比例函数y=(k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于.(结果保留π)考点:反比例函数图象的对称性;扇形面积的计算分析:根据反比例函数的图象关于坐标原点对称,是中心对称图形可得:图中两个阴影面积的和等于扇形OAB的面积,又知A(1,),即可求出圆的半径.解答:解:如图,∵A(1,),∴∠AOD=60°,OA=2.又∵点A、B关于直线y=x对称,∴∠AOB=2(60°﹣45°)=30°.又∵反比例函数的图象关于坐标原点对称,是中心对称图形,∴S阴影=S扇形AOB==.故答案是:.点评:本题主要考查反比例函数图象的对称性的知识点,解决本题的关键是利用反比例函数的对称性得到阴影部分与圆之间的关系.14.(3分)(•赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标(﹣2,3).考点:坐标确定位置分析:以“马”的位置向左2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出兵的坐标即可.解答:解:建立平面直角坐标系如图,兵的坐标为(﹣2,3).故答案为:(﹣2,3).点评:本题考查了坐标确定位置,确定出原点的位置并建立平面直角坐标系是解题的关键.15.(3分)(•赤峰)直线l过点M(﹣2,0),该直线的解析式可以写为y=x+2.(只写出一个即可)考点:一次函数的性质.专题:开放型.分析:设该直线方程为y=kx+b(k≠0).令k=1,然后把点M的坐标代入求得b的值.解答:解:设该直线方程为y=kx+b(k≠0).令k=1,把点M(﹣2,0)代入,得0=﹣2+b=0,解得b=2,则该直线方程为:y=x+2.故答案是:y=x+2(答案不唯一,符合条件即可).点评:本题考查了一次函数的性质.一次函数图象上所有点的坐标都满足直线方程.16.(3分)(2014•赤峰)平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是800个.考点:规律型:图形的变化类.分析:仔细观察图形发现第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;由此规律得到通项公式,然后代入n=20即可求得答案.解答:解:第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;…第n个图形有2n2个小菱形;第20个图形有2×202=800个小菱形;故答案为:800.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形的变化,并找到图形的变化规律.三、解答题(共10小题,满分102分)17.(6分)(•赤峰)计算:(π﹣)0+﹣8sin45°﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项化为最简二次根式,第三项利用特殊角的三角函数值计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=1+4﹣8×﹣4=﹣3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(•赤峰)求不等式组的正整数解.考点:一元一次不等式组的整数解.分析:先解每一个不等式,求出不等式组的解集,再求出正整数解即可.解答:解:由①得4x+4+3>x解得x>﹣,由②得3x﹣12≤2x﹣10,解得x≤2,∴不等式组的解集为﹣<x≤2.∴正整数解是1、2.点评:此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.19.(10分)(•赤峰)如图,已知△ABC中AB=AC.(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠E=∠ACF.考点:全等三角形的判定与性质;等腰三角形的性质;作图—复杂作图专题:作图题;证明题.分析:(1)以A为圆心,以AB长为半径画弧,与BD的延长线的交点即为点E,再以点A 为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠E=∠ACF.解答:(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF.点评:本题考查了全等三角形的判断与性质,等腰三角形的性质,作一条线段等于已知线段,角平分线的作法,确定出全等三角形的条件是解题的关键.20.(10分)(•赤峰)自从公布“八项规定”以来,光明中学积极开展“厉行节约,反对浪费”活动,为此,学校学生会对九年八班某日午饭浪费饭菜情况进行调查,调查内容分为四种:A.饭和菜全部吃光;B.有剩饭但菜吃光;C.饭吃光但菜有剩;D.饭和菜都有剩.学生会根据统计结果,绘制了如图两个统计图,根据统计图提供的信息回答下列问题:(1)九年八班共有多少名学生?(2)计算图2中B所在扇形的圆心角的度数,并补全条形统计图;(3)光明中学有学生2000名,请估计这顿午饭有剩饭的学生人数,按每人平均剩10克米饭计算,这顿午饭将浪费多少千克米饭?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用A的人数除以相对应的百分比就是总学生数;(2)B的人数=总人数﹣A的人数﹣C的人数﹣D的人数,B所在扇形的圆心角的度数为:×360°=72°,再根据B的人数为10,补全条形统计图;(3)先求出这顿午饭有剩饭的学生人数为:2000×=600(人),再用人数乘每人平均剩10克米饭,把结果化为千克.解答:解:(1)九年八班共有学生数为:30÷60%=50(人);(2)B有剩饭但菜吃光的人数为:50﹣30﹣5﹣5=10(人),B所在扇形的圆心角的度数为:×360°=72°,补全条形统计图如图1:(3)这顿午饭有剩饭的学生人数为:2000×=600(人),600×10=6000(克)=6(千克).点评:本题主要考查了条形统计图,扇形统计图及样本估计总数,解题的关键是能把条形统计图和扇形统计图结合起来解决问题.21.(10分)(•赤峰)位于赤峰市宁城的“大明塔”是我国辽代的佛塔,距今已有1千多年的历史.如图,王强同学为测量大明塔的高度,在地面的点E处测得塔基BC上端C的仰角为30°,他又沿BE方向走了26米,到达点F处,测得塔顶端A飞仰角为52°,已知塔基是以OB为半径的圆内接正八边形,B点在正八边形的一个顶点上,塔基半径OB=18米,塔基高BC=11米,求大明塔的高OA(结果保留到整数,≈1.73,tan52°≈1.28).考点:解直角三角形的应用-仰角俯角问题分析:在直角△CBE中利用三角函数首先求得EC的长,则OF即可求解,然后在直角△AOF 中,利用三角函数即可求解.解答:解:∵在直角△CBE中,∠CEB=30°,BC=11,∴EC=22,则EB==11≈19,∵在直角△AOF中,∠AFO=52°,OF=18+19+26=63,∴OA=OF•tan∠AFO≈63×1.28=81(米).答:大明塔高约81米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.22.(10分)(•赤峰)某养殖专业户计划购买甲、乙两种牲畜,已知乙种牲畜的单价是甲种牲畜单价的2倍多200元,买3头甲种牲畜和1头乙种牲畜共需5700元.(1)甲、乙两种牲畜的单价各是多少元?(2)若购买以上两种牲畜50头,共需资金9.4万元,求甲、乙两种牲畜各购买多少头?(3)相关资料表明:甲、乙两种牲畜的成活率分别为95%和99%,若使这50头牲畜的成活率不低于97%且购买的总费用最低,应如何购买?考点:一次函数的应用;一元一次方程的应用分析:(1)设甲种牲畜的单价是x元,列方程3x+2x+200=5700,求出甲种牲畜的单价,再求出乙种牲畜的单价即可.(2)设购买甲种牲畜y头,列方程1100y+(50﹣y)=94000求出甲种牲畜购买20头,乙种牲畜购买30头,(3)设费用为m,购买甲种牲畜n头,则m=1100n+240(50﹣n)=﹣1300n+120000依题意得:n+(50﹣n)≥×50,据m随n的增大而减小,求得n=25时,费用最低.解答:解:(1)设甲种牲畜的单价是x元,依题意得,3x+2x+200=5700解得:x=1100乙种牲畜的单价是:2x+200=2400元,即甲种牲畜的单价是1100元,乙种牲畜的单价是2400元.(2)设购买甲种牲畜y头,依题意得,1100y+(50﹣y)=94000解得y=20,50﹣20=30,即甲种牲畜购买20头,乙种牲畜购买30头.(3)设费用为m,购买甲种牲畜n头,则m=1100n+240(50﹣n)=﹣1300n+120000依题意得:n+(50﹣n)≥×50,解得:n≤25,k=﹣1300<0,m随n的增大而减小,∵当n=25时,费用最低,所以各购买25头时满足条件.点评:本题主要考查了一次函数的应用,理解题意,抓住题目蕴含的数量关系是解决问题的关键.23.(12分)(•赤峰)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(﹣4,6),双曲线y=(x<0)的图象经过BC的中点D,且于AB交于点E.(1)求反比例函数解析式和E点坐标;(2)若F是OC上一点,且以∠OAF和∠CFD为对应角的△FDC、△AFO相似,求F点的坐标.考点:反比例函数综合题.专题:综合题.分析:(1)由ABCD为矩形,D为BC中点,根据B坐标确定出D坐标,代入反比例解析式求出中k的值,确定出反比例解析式,将x=﹣4代入反比例解析式求出y的值,确定出E坐标即可;(2)如图所示,设F(0,y),根据以∠OAF和∠CFD为对应角的△FDC、△AFO 相似,列出比例式,求出y的值,即可确定出F坐标.解答:解:(1)∵四边形ABCD为矩形,D为BC中点,B(﹣4,6),∴D(﹣2,6),设反比例函数解析式为y=,将D(﹣2,6)代入得:k=﹣12,∴反比例解析式为y=﹣,将x=﹣4代入反比例解析式得:y=3,则E(﹣4,3);(2)设F(0,y),如图所示,连接DF,AF,∵∠OAF=∠DFC,△AOF∽△FDC,∴=,即=,整理得:y2﹣6y+8=0,即(y﹣2)(y﹣4)=0,解得:y1=2,y2=4,则F坐标为(0,2)或(0,4).点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,相似三角形的性质,以及一元二次方程的解法,熟练掌握待定系数法是解本题的关键.24.(12分)(•赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).考点:平行线的性质专题:阅读型;分类讨论.分析:(1)①根据图形猜想得出所求角度数即可;②根据图形猜想得出所求角度数即可;③猜想得到三角关系,理由为:延长AE与DC交于F点,由AB与DC平行,利用两直线平行内错角相等得到一对角相等,再利用外角性质及等量代换即可得证;(2)分四个区域分别找出三个角关系即可.解答:解:(1)①∠AED=70°;②∠AED=80°;③猜想:∠AED=∠EAB+∠EDC,证明:延长AE交DC于点F,∵AB∥DC,∴∠EAB=∠EFD,∵∠AED为△EDF的外角,∴∠AED=∠EDF+∠EFD=∠EAB+∠EDC;(2)根据题意得:点P在区域①时,∠EPF=360°﹣(∠PEB+∠PFC);点P在区域②时,∠EPF=∠PEB+∠PFC;点P在区域③时,∠EPF=∠PEB﹣∠PFC;点P在区域④时,∠EPF=∠PFC﹣∠PEB.点评:此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.25.(12分)(•赤峰)阅读下列材料:如图1,圆的概念:在平面内,线段PA绕它固定的一个端点P旋转一周,另一个端点A所形成的图形叫做圆.就是说,到某个定点等于定长的所有点在同一个圆上,圆心在P(a,b),半径为r的圆的方程可以写为:(x﹣a)2+(y﹣b)2=r2,如:圆心在P(2,﹣1),半径为5的圆方程为:(x﹣2)2+(y+1)2=25(1)填空:①以A(3,0)为圆心,1为半径的圆的方程为(x﹣3)2+y2=1;②以B(﹣1,﹣2)为圆心,为半径的圆的方程为(x+1)2+(y+2)2=3.(2)根据以上材料解决下列问题:如图2,以B(﹣6,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC 垂足为D,延长BD交y轴于点E,已知sin∠AOC=.①连接EC,证明EC是⊙B的切线;②在BE上是否存在一点P,使PB=PC=PE=PO?若存在,求P点坐标,并写出以P为圆心,以PB为半径的⊙P的方程;若不存在,说明理由.考点:圆的综合题分析:(1)根据阅读材料中的定义求解;(2)①根据垂径定理由BD⊥OC得到CD=OD,则BE垂直平分OC,再根据线段垂直平分线的性质得EO=EC,则∠EOC=∠ECO,加上∠BOC=∠BCO,易得∠BOE=∠BCE=90°,然后根据切线的判定定理得到EC是⊙B的切线;②由∠BOE=∠BCE=90°,根据圆周角定理得点C和点O偶在以BE为直径的圆上,即当P点为BE的中点时,满足PB=PC=PE=PO,利用同角的余角相等得∠BOE=∠AOC,则sin∠BOE=sin∠AOC=,在Rt△BOE中,利用正弦的定义计算出BE=10,利用勾股定理计算出OE=8,则E点坐标为(0,8),于是得到线段AB的中点P的坐标为(﹣3,4),PB=5,然后写出以P(﹣3,4)为圆心,以5为半径的⊙P的方程.解答:(1)解:①以A(3,0)为圆心,1为半径的圆的方程为(x﹣3)2+y2=1;②以B(﹣1,﹣2)为圆心,为半径的圆的方程为(x+1)2+(y+2)2=3;故答案为(x﹣3)2+y2=1;(x+1)2+(y+2)2=3;(1)①证明:∵BD⊥OC,∴CD=OD,∴BE垂直平分OC,∴EO=EC,∴∠EOC=∠ECO,∵BO=BC,∴∠BOC=∠BCO,∴∠EOC+∠BOC=∠ECO+∠BCO,∴∠BOE=∠BCE=90°,∴BC⊥CE,∴EC是⊙B的切线;②存在.∵∠BOE=∠BCE=90°,∴点C和点O偶在以BE为直径的圆上,∴当P点为BE的中点时,满足PB=PC=PE=PO,∵B点坐标为(﹣6,0),∴OB=6,∵∠AOC+∠DOE=90°,∠DOE+∠BEO=90°,∴∠BOE=∠AOC,∴sin∠BOE=sin∠AOC=,在Rt△BOE中,sin∠BOE=,∴=,∴BE=10,∴OE==8,∴E点坐标为(0,8),∴线段AB的中点P的坐标为(﹣3,4),PB=5,∴以P(﹣3,4)为圆心,以5为半径的⊙P的方程为(x+3)2+(y﹣4)2=25.点评:本题了圆的综合题:熟练掌握垂径定理、切线的判定定理、圆周角定理和等腰三角形的性质;阅读理解能力也是本题考查的重点;会运用锐角三角函数的定义和勾股定理进行几何计算.26.(14分)(2014•赤峰)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B (3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M坐标;(2)求△BCM面积与△ABC面积的比;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.考点:二次函数综合题分析:(1)有抛物线与x轴交于点A(﹣1,0),B(3,0)两点,则可设抛物线解析式为y=a(x+1)(x﹣3).由与y轴交于点C(0,﹣3),则代入易得解析式,顶点易知.(2)求△BCM面积与△ABC面积的比,由两三角形不为同高或同底,所以考虑求解求出两三角形面积再作比即可.因为S△BCM=S梯形OCMD+S△BMD﹣S△BOC,S△ABC=•AB•OC,则结论易得.(3)由四边形为平行四边形,则对边PQ、AC平行且相等,过Q点作x轴的垂线易得Q到x轴的距离=OC=3,又(1)得抛物线解析式,代入即得Q点横坐标,则Q点可求.解答:解:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线过点(0,3),∴﹣3=a(0+1)(0﹣3),∴a=1,∴抛物线解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴M(1,4).(2)如图1,连接BC、BM、CM,作MD⊥x轴于D,∵S△BCM=S梯形OCMD+S△BMD﹣S△BOC=•(3+4)•1+•2﹣4﹣•3•3=+﹣=3S△ABC=•AB•OC=•4•3=6,∴S△BCM:S△ABC=3:6=1:2.(3)存在,理由如下:①如图2,当Q在x轴下方时,作QE⊥x轴于E,∵四边形ACQP为平行四边形,∴PQ平行且相等AC,∴△PEQ≌△AOC,∴EQ=OC=3,∴﹣3=x2﹣2x﹣3,解得x=2或x=0(与C点重合,舍去),∴Q(2,﹣3).②如图3,当Q在x轴上方时,作QF⊥x轴于F,∵四边形ACPQ为平行四边形,∴QP平行且相等AC,∴△PFQ≌△AOC,∴FQ=OC=3,∴3=x2﹣2x﹣3,解得x=1+或x=1﹣,∴Q(1+,3)或(1﹣,3).综上所述,Q点为(2,﹣3)或(1+,3)或(1﹣,3)点评:本题考查了二次函数图象与性质、平行四边形及坐标系中求不规则图形面积等基础考点,难度适中,适合学生练习.。
2020年内蒙古赤峰市中考数学试卷(有详细解析)

2020年内蒙古赤峰市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共14小题,共42.0分)1.实数|−5|,−3,0,√4中,最小的数是()A. |−5|B. −3C. 0D. √42.2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A. 99×10−10B. 9.9×10−10C. 9.9×10−9D. 0.99×10−83.下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()A. 等边三角形B. 平行四边形C. 正八边形D. 圆及其一条弦4.学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是()A. 平均数B. 中位数C. 众数D. 方差5.下列计算正确的是()A. a2+a3=a5B. 3√2−2√2=1C. (x2)3=x5D. m5÷m3=m26.不等式组{x+2>0−2x+4≥0的解集在数轴上表示正确的是()A. B.C. D.7.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=3,把Rt△ABC沿直线BC向右平移3个单位长度得到△A′B′C′,则四边形ABC′A′的面积是()A. 15B. 18C. 20D. 228.如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=8,BC=14,则EF的长是()A. 2B. 3C. 4D. 59.估计(2√3+3√2)×√13的值应在()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间10.如图,△ABC中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA=3,则△ABC外接圆的面积为()A. 3πB. 4πC. 6πD. 9π11.如图,⊙A经过平面直角坐标系的原点O,交x轴于点B(−4,0),交y轴于点C(0,3),点D为第二象限内圆上一点.则∠CDO的正弦值是()A. 35B. −34C. 34D. 4512.某几何体的三视图及相关数据(单位:cm)如图所示,则该几何体的侧面积是()A. 652πcm2B. 60πcm2C. 65πcm2D. 130πcm213.如图,点B在反比例函数y=6x(x>0)的图象上,点C在反比例函数y=−2x(x>0)的图象上,且BC//y轴,AC⊥BC,垂足为点C,交y轴于点A.则△ABC的面积为()A. 3B. 4C. 5D. 614.如图,在菱形ABCD中,∠B=60°,AB=2.动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一点也随之停止.设△APQ的面积为y,运动时间为x秒.则下列图象能大致反映y与x之间函数关系的是()A. B.C. D.二、填空题(本大题共4小题,共12.0分)15.一个正n边形的内角和是它外角和的4倍,则n=______.16.如图,航拍无人机从A处测得一幢建筑物顶部C的仰角是30°,测得底部B的俯角是60°,此时无人机与该建筑物的水平距离AD是9米,那么该建筑物的高度BC为______米(结果保留根号).17.某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30b合格915%不合格35%合计6060100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为______人.18.一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为______.三、解答题(本大题共8小题,共96.0分)19.先化简,再求值:m−m2−1m2+2m+1÷m−1m,其中m满足:m2−m−1=0.20.小琪同学和爸爸妈妈一起回老家给奶奶过生日,他们为奶奶准备了一个如图所示的正方形蛋糕,蛋糕的每条边上均匀镶嵌着4颗巧克力.爸爸要求小琪只切两刀把蛋糕平均分成4份,使每个人分得的蛋糕和巧克力数都相等.(1)请你在图1中画出一种分法(无需尺规作图);(2)如图2,小琪同学过正方形的中心切了一刀,请你用尺规作图帮她作出第2刀所在的直线.(不写作法,保留作图痕迹)21.如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC的三个顶点处各有一个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率为______;(2)丫丫和甲甲一起玩跳图游戏:丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A为胜者.这个游戏规则公平吗?请说明理由.22.甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?23.如图,AB是⊙O的直径,AC是⊙O的一条弦,点P是⊙O上一点,且PA=PC,PD//AC,与BA的延长线交于点D.(1)求证:PD是⊙O的切线;(2)若tan∠PAC=2,AC=12,求直径AB的长.324.阅读理解:材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三数组”.材料二:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2=−ba ,x1⋅x2=ca.问题解决:(1)请你写出三个能构成“和谐三数组”的实数______;(2)若x1,x2是关于x的方程ax2+bx+c=0(a,b,c均不为0)的两根,x3是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;(3)若A(m,y1),B(m+1,y2),C(m+3,y3)三个点均在反比例函数y=4x的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.25.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,直线y=−12x+2经过B,C两点.(1)直接写出二次函数的解析式______;(2)平移直线BC,当直线BC与抛物线有唯一公共点Q时,求此时点Q的坐标;(3)过(2)中的点Q作QE//y轴,交x轴于点E.若点M是抛物线上一个动点,点N是x轴上一个动点,是否存在以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似?如果存在,请直接写出满足条件的点M的个数和其中一个符合条件的点M的坐标;如果不存在,请说明理由.26.如图,矩形ABCD中,点P为对角线AC所在直线上的一个动点,连接PD,过点P作PE⊥PD,交直线AB于点E,过点P作MN⊥AB,交直线CD于点M,交直线AB于点N.AB=4√3,AD=4.(1)如图1,①当点P在线段AC上时,∠PDM和∠EPN的数量关系为:∠PDM______∠EPN;②DP的值是______;PE(2)如图2,当点P在CA延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;(3)如图3,以线段PD,PE为邻边作矩形PEFD.设PM的长为x,矩形PEFD的面积为y.请直接写出y与x之间的函数关系式及y的最小值.答案和解析1.B解:∵|−5|=5,√4=2,−3<0<2<5,∴−3是最小的数,2.C解:0.0000000099=9.9×10−9,3.C解:A、最小旋转角度=360°3=120°;B、最小旋转角度=360°2=180°;C、最小旋转角度=360°8=45°;D、最小旋转角度=360°;综上可得:旋转一定角度后,能与原图形完全重合,且旋转角度最小的是C.4.B解:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分7个有效评分与9个原始评分相比,不变的数字特征是中位数.5.D解:A、a2+a3,无法计算,故此选项错误;B、3√2−2√2=√2,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.6.C解:解不等式x+2>0,得:x>−2,解不等式−2x+4≥0,得:x≤2,则不等式组的解集为−2<x≤2,7.A解:∵把Rt△ABC沿直线BC向右平移3个单位长度得到△A′B′C′,∴A′B′=AB=5,A′C′=AC=3,∠A′C′B′=∠ACB=90°,A′A=CC′=3,∴B′C′=√52−32=4,AC//A′C′,∴四边形ACC′A′是矩形,∴四边形ABC′A′的面积=12(AA′+BC′)⋅AC=12×(3+4+3)×3=15,8.B解:∵点D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∵BC=14,∴DE=12BC=7,∵∠AFB=90°,AB=8,∴DF=12AB=4,∴EF=DE−DF=7−4=3,9.A解:原式=2+√6,∵2<√6<3,∴4<2+√6<5,10.D解:∵AB=AC,AD是∠BAC的平分线,∴BD=CD,AD⊥BC,∵EF是AC的垂直平分线,∴点O是△ABC外接圆的圆心,∵OA=3,∴△ABC外接圆的面积为9π.11.A解:连接BC,如图,∵B(−4,0),C(0,3),∴OB=4,OC=3,∴BC=√32+42=5,∴sin∠OBC=OCBC =35,∵∠ODC=∠OBC,∴sin∠CDO=sin∠OBC=35.12.C解:观察图形可知:圆锥母线长为:√52+122=13,所以圆锥侧面积为:πrl=5×13×π=65π(cm2).答:该几何体的侧面积是65πcm2.13.B解:过B点作BH⊥y轴于H点,BC交x轴于D,如图,∵BC//y轴,AC⊥BC,∴四边形ACDO和四边形ODBH都是矩形,∴S矩形OACD=|−2|=2,S矩形ODBH=|6|=6,∴S矩形ACBD=2+6=8,∴△ABC的面积=12S矩形ACBD=4.14.A解:当0≤x≤2时,如图1,过点Q作QH⊥AB于H,由题意可得BP=AQ=x,∵在菱形ABCD中,∠B=60°,AB=2,∴AB=BC=AD=CD,∠B=∠D=60°,∴△ABC和△ADC都是等边三角形,∴AC=AB=2,∠BAC=60°=∠ACD,∵sin∠BAC=HQAQ,∴HQ=AQ⋅sin60°=√32x,∴△APQ的面积=y=12(2−x)×√32x=−√34(x−1)2+√34;当2<x≤4时,如图2,过点Q作QN⊥AC于N,由题意可得AP=CQ=x−2,∵sin∠ACD=NQCQ =√32,∴NQ=√32(x−2),∴△APQ 的面积=y =12(x −2)×√32(x −2)=√34(x −2)2,∴该图象开口向上,对称轴为直线x =2,∴在2<x ≤4时,y 随x 的增大而增大, ∴当x =4时,y 有最大值为√3,15. 10解:多边形的外角和是360°,根据题意得: 180°⋅(n −2)=360°×4, 解得n =10.16. 12√3解:根据题意可知:在Rt △ADC 中,∠CAD =30°,AD =9, ∴CD =AD ⋅tan30°=9×√33=3√3,在Rt △ADB 中,∠BAD =60°,AD =9, ∴BD =AD ⋅tan60°=9√3,∴BC =CD +BD =3√3+9√3=12√3(米). 答;该建筑物的高度BC 为12√3米.17. 240解:根据频数分布表可知: 9÷15%=60,∴a =60×30%=18,b =1−30%−15%−5%=50%, ∴300×(30%+50%)=240(人).答:估计该校七年级学生身体素质良好及以上的人数为240人.18. 122019解:第一次落点为A 1处,点A 1表示的数为1; 第二次落点为OA 1的中点A 2,点A 2表示的数为12; 第三次落点为OA 2的中点A 3,点A 3表示的数为(12)2;…则点A 2020表示的数为(12)2019,即点A 2020表示的数为122019;19. 解:原式=m −(m+1)(m−1)(m+1)2⋅mm−1=m −mm+1=m2m+1,∵m2−m−1=0,∴m2=m+1,∴原式=m+1m+1=1.20.解:(1)如图,直线a,直线b即为所求.(2)如图,直线c即为所求.21.14解:(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率=14;(2)这个游戏规则不公平.理由如下:画树状图为:共有16种等可能的结果,其中甲甲随机投掷两次骰子,最终落回到圈A的结果数为5,所以甲甲随机投掷两次骰子,最终落回到圈A的概率=516,因为14<516,所以这个游戏规则不公平.22.解:(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,依题意,得:500x −5002x=5,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天修路100米,乙工程队每天修路50米.(2)设安排乙工程队施工m天,则安排甲工程队施工3600−50m100=(36−0.5m)天,依题意,得:0.5m+1.2(36−0.5m)≤40,解得:m≥32.答:至少安排乙工程队施工32天.23.解:(1)连接PO,交AC于H,∵PA=PC,∴∠PAC=∠PCA,∵∠PCA=∠PBA,∴∠PAC=∠PCA=∠PBA,∵DP//AC,∴∠DPA=∠PAC=∠PCA=∠PBA,∵OA=OP,∴∠PAO=∠OPA,∵AB是直径,∴∠APB=90°,∴∠PAB+∠ABP=90°,∴∠OPA+∠DPA=90°,∴∠DPO=90°,又∵OP是半径,∴DP是⊙O的切线;(2)∵DP//AC,∠DPO=90°,∴∠DPO=∠AHO=90°,又∵PA=PC,∴AH=HC=12AC=6,∵tan∠PAC=PHAH =23,∴PH=23×AH=4,∵AO2=AH2+OH2,∴AO2=36+(OA−4)2,∴OA=132,∴AB=2OA=13.24.如12,1 3 ,15解:(1)根据题意得,能构成“和谐三数组”的实数有,12,13,15; 理由:12的倒数为2,13的倒数为3,15的倒数为5,而2+3=5, ∴12,13,15能过程“和谐三数组”, 故答案为:如∴12,13,15;(2)证明:∵x 1,x 2是关于x 的方程ax 2+bx +c =0(a,b ,c 均不为0)的两根, ∴x 1+x 2=−ba ,x 1⋅x 2=ca ,∴1x 1+1x 2=x 1+x 2x 1x 2=−bc,∵x 3是关于x 的方程bx +c =0(b,c 均不为0)的解, ∴x 3=−cb ,∴1x 3=−bc,∴1x 1+1x 2=1x 3,∴x 1,x 2,x 3可以构成“和谐三数组”;(3)A(m,y 1),B(m +1,y 2),C(m +3,y 3)三点的纵坐标恰好构成“和谐三数组”, ∵A(m,y 1),B(m +1,y 2),C(m +3,y 3)三个点均在反比例函数y =4x 的图象上, ∴y 1=4m ,y 2=4m+1,y 3=4m+3, ∴1y 1=m 4,1y 2=m+14,1y 3=m+34,∵A(m,y 1),B(m +1,y 2),C(m +3,y 3)三点的纵坐标恰好构成“和谐三数组”, ∴①1y 1+1y 2=1y 3, ∴m 4+m+14=m+34,∴m =2, ②1y 2+1y 3=1y 1,∴m+14+m+34=m4,∴m =−4, ③1y 3+1y 1=1y 2,∴m+34+m 4=m+14,∴m =−2,即满足条件的实数m 的值为2或−4或−2.25. y =12x 2−52x +2解:(1)∵直线y =−12x +2经过B ,C 两点.∴点C(0,2),∵二次函数y =ax 2+bx +c(a ≠0)的图象经过A(1,0),B(4,0),点C(0,2), ∴{0=a +b +c0=16a +4b +c c =2, 解得:{a =12b =−52c =2,∴抛物线解析式为y =12x 2−52x +2, 故答案为:y =12x 2−52x +2;(2)∵B(4,0),点C(0,2),∴直线BC 解析式为:y =−12x +2, ∴设平移后的解析式为:y =−12x +2+m , ∵平移后直线BC 与抛物线有唯一公共点Q ∴12x 2−52x +2=−12x +2+m , ∴△=4−4×12×(−m)=0,∴m =−2,∴设平移后的解析式为:y =−12x , 联立方程组得:{y =−12xy =12x 2−52x +2, ∴{x =2y =−1, ∴点Q(2,−1);(3)设点M 的坐标为(m,12m 2−52m +2),∵以E ,M ,N 三点为顶点的直角三角形(其中M 为直角顶点)与△BOC 相似, ∴①当△MEN∽△OBC 时, ∴∠MEN =∠OBC ,过点M 作MH ⊥x 轴于H , ∴∠EHM =90°=∠BOC , ∴△EHM∽△BOC ,∴EH MH =OBOC ,∴MH =|12m 2−52m +2|,EH =|m −2|,∵OB =4,OC =2. ∴|m−2||12m 2−52m+2|=2,∴m =3±√3或m =2±√2,当m =3+√3时,12m 2−52m +2=√3+12,∴M(3+√3,√3+12), 当m =3−√3时,12m 2−52m +2=1−√32,∴M(3−√3,1−√32),当m =2+√2时,12m 2−52m +2=−√22,∴M(2+√2,−√22), 当m =2−√2时,12m 2−52m +2=√22,∴M(2−√2,√22), ②当△NEM∽△OBC 时, 同①的方法得,|m−2||12m 2−52m+2|=12,∴m =9±√332或m =1±√172, 当m =9+√332时,12m 2−52m +2=5+√33, ∴M(9+√332,5+√33),当m =9−√332时,12m 2−52m +2=5−√33, ∴M(9−√332,5−√33),当m =1+√172时,12m 2−52m +2=3−√17,∴M(1+√172,3−√17),当m =1−√172时,12m 2−52m +2=3+√17,∴M(1−√172,3+√17),即满足条件的点M 共有8个,其点的坐标为(3+√3,√3+12)或(3−√3,1−√32)或(2+√2,−√22)或(2−√2,√22)或(9+√332,5+√33)或(9−√332,5−√33)或(1+√172,3−√17)或(1−√172,3+√17).26.=√3解:(1)①如图1中,∵四边形ABCD是矩形,∴AB//CD,∵NM⊥AB,∴NM⊥CD,∵DP⊥PE,∴∠PMD=∠PNE=∠DPE=90°,∴∠PDM+∠DPM=90°,∠DPM+∠EPN=90°,∴∠PDM=∠EPN.故答案为=.②连接DE.∵四边形ABCD是矩形,∴∠DAE=∠B=90°,AD=BC=4.∴tan∠CAB=BCAB =√33,∴∠CAB=30°,∵∠DAE+∠DPE=180°,∴A,D,P,E四点共圆,∴∠EDP=∠PAB=30°,∴PEPD =tan30°=√33,∴PDPE=√3.(2)如图2中,结论成立.理由:连接DE.∵∠DPE=∠DAE=90°,∴A,D,E,P四点共圆,∴∠PDE=∠EAP=∠CAB=30°,∴DPPE =1tan30∘=√3.(3)如图3中,由题意PM=x,MN=4−x,∵∠PDM=∠EPN,∠DMP=∠PNE=90°,∴△DMP∽△PND,∴DMPN =PMEN=PDPE=√3,∴DM4−x =xEN=√3,∴DM=√3(4−x),EN=√33x,∴PD=√DM2+PM2=√[√3(4−x)]2+x2=2√x2−6x+12,PE=√33PD=2√33⋅√x2−6x+12,∴y=PD⋅PE=4√33(x2−6x+12)=4√33x2−8√3x+16√3(x>0),∵y=4√33(x−3)2+4√3,∵4√33>0,∴当x=3时,y有最小值,最小值为4√3.。
2020年内蒙古赤峰市中考数学试卷

2020年内蒙古赤峰市中考数学试卷一、选择题(每小题给出的选项中只有一个符合题意,请将符合题的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1.(3分)实数|﹣5|,﹣3,0,中,最小的数是()A.|﹣5|B.﹣3C.0D.2.(3分)2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A.99×10﹣10B.9.9×10﹣10C.9.9×10﹣9D.0.99×10﹣8 3.(3分)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()A.等边三角形B.平行四边形C.正八边形D.圆及其一条弦4.(3分)学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是()A.平均数B.中位数C.众数D.方差5.(3分)下列计算正确的是()A.a2+a3=a5B.3﹣2=1C.(x2)3=x5D.m5÷m3=m2 6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,Rt△ABC中,∠ACB=90°,AB=5,AC=3,把Rt△ABC沿直线BC向右平移3个单位长度得到△A'B'C',则四边形ABC'A'的面积是()A.15B.18C.20D.228.(3分)如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=8,BC=14,则EF的长是()A.2B.3C.4D.59.(3分)估计(2+3)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间10.(3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA=3,则△ABC外接圆的面积为()A.3πB.4πC.6πD.9π11.(3分)如图,⊙A经过平面直角坐标系的原点O,交x轴于点B(﹣4,0),交y轴于点C(0,3),点D为第二象限内圆上一点.则∠CDO的正弦值是()A.B.﹣C.D.12.(3分)某几何体的三视图及相关数据(单位:cm)如图所示,则该几何体的侧面积是()A.πcm2B.60πcm2C.65πcm2D.130πcm2 13.(3分)如图,点B在反比例函数y=(x>0)的图象上,点C在反比例函数y=﹣(x>0)的图象上,且BC∥y轴,AC⊥BC,垂足为点C,交y轴于点A.则△ABC的面积为()A.3B.4C.5D.614.(3分)如图,在菱形ABCD中,∠B=60°,AB=2.动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一点也随之停止.设△APQ的面积为y,运动时间为x秒.则下列图象能大致反映y与x之间函数关系的是()A.B.C.D.二、填空题(请把答案填写在答题卡相应的横线上.每小题3分,满分12分)15.(3分)一个正n边形的内角和是它外角和的4倍,则n=.16.(3分)如图,航拍无人机从A处测得一幢建筑物顶部C的仰角是30°,测得底部B的俯角是60°,此时无人机与该建筑物的水平距离AD是9米,那么该建筑物的高度BC 为米(结果保留根号).17.(3分)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30b合格915%不合格35%合计6060100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为人.18.(3分)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.(10分)先化简,再求值:m﹣÷,其中m满足:m2﹣m﹣1=0.20.(10分)小琪同学和爸爸妈妈一起回老家给奶奶过生日,他们为奶奶准备了一个如图所示的正方形蛋糕,蛋糕的每条边上均匀镶嵌着4颗巧克力.爸爸要求小琪只切两刀把蛋糕平均分成4份,使每个人分得的蛋糕和巧克力数都相等.(1)请你在图1中画出一种分法(无需尺规作图);(2)如图2,小琪同学过正方形的中心切了一刀,请你用尺规作图帮她作出第2刀所在的直线.(不写作法,保留作图痕迹)21.(12分)如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC的三个顶点处各有一个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率为;(2)丫丫和甲甲一起玩跳圈游戏:丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A为胜者.这个游戏规则公平吗?请说明理由.22.(12分)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?23.(12分)如图,AB是⊙O的直径,AC是⊙O的一条弦,点P是⊙O上一点,且P A=PC,PD∥AC,与BA的延长线交于点D.(1)求证:PD是⊙O的切线;(2)若tan∠P AC=,AC=12,求直径AB的长.24.(12分)阅读理解:材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三数组”.材料二:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2=﹣,x1•x2=.问题解决:(1)请你写出三个能构成“和谐三数组”的实数;(2)若x1,x2是关于x的方程ax2+bx+c=0(a,b,c均不为0)的两根,x3是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;(3)若A(m,y1),B(m+1,y2),C(m+3,y3)三个点均在反比例函数y=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.25.(14分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,直线y=﹣x+2经过B,C两点.(1)直接写出二次函数的解析式;(2)平移直线BC,当直线BC与抛物线有唯一公共点Q时,求此时点Q的坐标;(3)过(2)中的点Q作QE∥y轴,交x轴于点E.若点M是抛物线上一个动点,点N 是x轴上一个动点,是否存在以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似?如果存在,请直接写出满足条件的点M的个数和其中一个符合条件的点M的坐标;如果不存在,请说明理由.26.(14分)如图,矩形ABCD中,点P为对角线AC所在直线上的一个动点,连接PD,过点P作PE⊥PD,交直线AB于点E,过点P作MN⊥AB,交直线CD于点M,交直线AB于点N.AB=4,AD=4.(1)如图1,①当点P在线段AC上时,∠PDM和∠EPN的数量关系为:∠PDM∠EPN;②的值是;(2)如图2,当点P在CA延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;(3)如图3,以线段PD,PE为邻边作矩形PEFD.设PM的长为x,矩形PEFD的面积为y.请直接写出y与x之间的函数关系式及y的最小值.。
2020中考数学-含答案-内蒙古赤峰

2020年赤峰市初中毕业、升学统一考试试卷数学第Ⅰ卷(共60分)一、选择题(每小题给出的选项中只有一个符合愿意,请将符合题章的选项序号,在答题卡的对应.位上按要求涂黑.每小题3分,共42分)1.实数|5|-,-3,0中,最小的数是( )A. |5|-B. -3C. 0D.【答案】B【解析】【分析】去掉A 、D 选项中的绝对值和根式符号,再将四个选项的实数进行对比,即可求出答案.【详解】解:A 选项:|-5|=5,D =2,∵-3<0<2<5,∴-3<0<|-5|,其中的最小值为-3,故选:B .【点睛】根据实数的大小比较法则,可得:负数<0<正数,两负数相比,绝对值大的反而小,两正数相比,绝对值大的大.2.2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.000 000 009 9秒.数据“0. 000 000 009 9”用科学记数法表示为 ( )A. 109910-⨯B. 109.910-⨯C. 99.910-⨯D. 89.910-⨯ 【答案】C【解析】【分析】根据科学记数法的表示方法解答即可.【详解】解:0. 000 000 009 9用科学记数法表示为99.910-⨯.故答案为:C .【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()A. 等边三角形B. 平行四边形C. 正八边形D. 圆及其一条弦【答案】C【解析】【分析】根据旋转的定义和各图形的性质找出各图形的旋转角,由此即可得.∠,是一个钝角【详解】如图1,等边三角形的旋转角为1如图2,平行四边形的旋转角为180︒,是一个平角如图3,正八边形的旋转角为2∠,是一个锐角如图4,圆及一条弦的旋转角为360︒由此可知,旋转角度最小的是正八边形故选:C.【点睛】本题考查了旋转的定义,正确找出各图的旋转角是解题关键.4.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成续时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A. 平均数 B. 中位数 C. 众数 D. 方差【答案】B【解析】【分析】根据题意,由数据的数字特征的定义,分析可得答案.【详解】根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变,故选B.【点睛】此题考查中位数的定义,解题关键在于掌握其定义5.下列计算正确的是( )A. a 2+a 3=a 5B. 3221-=C. (x 2)3=x 5D. m 5÷m 3=m 2 【答案】D【解析】 分析:直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案. 详解:A 、a 2与a 3不是同类项,无法计算,故此选项错误;B 、32-2=22,故此选项错误;C 、(x 2)3=x 6,故此选项错误;D 、m 5÷m 3=m 2,正确.故选D .点睛:此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.不等式组20240x x +>⎧⎨-+≥⎩的解集在数轴上表示正确的是 ( ) A. B. C.D.【答案】C【解析】【分析】 本题分别求解两个不等式解集,继而求其公共解集,最后在数轴上表示即可.【详解】∵2x +>0,∴x >2-.∵240x -+≥,∴24x -≥-,∴2x ≤,故综上公共解集:2-<2x ≤,在数轴上表示C 选项符合题意.故选:C .【点睛】本题考查不等式组的求解以及解集在数轴上的表示方法,按照移项、合并同类项、变号等原则求解不等式,数轴标注时注意实心与空心的区别.7.如图,Rt △ABC 中,∠ACB = 90°,AB = 5,AC = 3,把Rt △ABC 沿直线BC 向右平移3个单位长度得到△A 'B 'C ' ,则四边形ABC 'A '的面积是 ( )A. 15B. 18C. 20D. 22【答案】A【解析】【分析】 在直角三角形ACB 中,可用勾股定理求出BC 边的长度,四边形ABC’A’的面积为平行四边形ABB’A’和直角三角形A’C’B’面积之和,分别求出平行四边形ABB’A’和直角三角形A’C’B’的面积,即可得出答案.【详解】解:在Rt △ACB 中,∠ACB=90°,AB=5,AC=3, 由勾股定理可得:2222BC=AB AC =53=4--,∵Rt △A’C’B’是由Rt △ACB 平移得来,A’C’=AC=3,B’C’=BC=4, ∴A'C'B 11S =A'C'B'C'=34622⋅⋅⨯⨯=△, 又∵BB’=3,A’C’= 3,∴ABB'A'S BB'A 'C'339=⨯=⨯=四边形,∴A'C'B'ABC'A'ABB'A'S S S =96=15=++△四边形四边形,故选:A .【点睛】本题主要考察了勾股定理、平移的概念、平行四边形与直角三角形面积的计算,解题的关键在于判断出所求面积为平行四边形与直角三角形的面积之和,且掌握平行四边形的面积为底⨯高.8.如图,在△ABC 中,点D ,E 分别是边AB ,AC 的中点,点F 是线段DE 上的一点连接AF ,BF ,∠AFB =90°,且AB=8,BC= 14,则EF 的长是 ( )A. 2B. 3C. 4D. 5【答案】B【解析】【分析】 根据直角三角形的性质得到DF=4,根据BC= 14,由三角形中位线定理得到DE=7,解答即可.【详解】解:∵∠AFB=90°,点D 是AB 的中点,∴DF= 12AB=4, ∵BC= 14,D 、E 分别是AB ,AC 的中点, ∴DE=12BC=7, ∴EF=DE-DF=3,故选:B【点睛】本题考查了直角三角形的性质和中位线性质,掌握定理是解题的关键.9.估计(12323 ( ) A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间 【答案】A【解析】【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小. 【详解】(13323=11332336,∵4<6<6.25,∵6<2.5,∴4<2+6<5,故选:A .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.10.如图,ABC 中,AB =AC ,AD 是∠BAC 的平分线,EF 是AC 的垂直平分线,交AD 于点O .若OA =3,则ABC 外接圆的面积为( )A. 3πB. 4πC. 6πD. 9π【答案】D【解析】【分析】 先根据等腰三角形的三线合一可得AD 是BC 的垂直平分线,从而可得点O 即为ABC 外接圆的圆心,再利用圆的面积公式即可得.【详解】AB AC =,AD 是BAC ∠的平分线AD BC ∴⊥,且AD 是BC 边上的中线(等腰三角形的三线合一)AD ∴是BC 的垂直平分线EF 是AC 的垂直平分线∴点O 为ABC 外接圆的圆心,OA 为外接圆的半径3OA =ABC ∴外接圆的面积为29OA ππ=故选:D .【点睛】本题考查了等腰三角形的三线合一、三角形外接圆,正确找出三角形外接圆的圆心是解题关键. 11.如图,A 经过平面直角坐标系的原点O ,交x 轴于点B (-4,0),交y 轴于点C (0,3),点D 为第二象限内圆上一点.则∠CDO 的正弦值是( )A. 35B.34-C. 34D.45【答案】A【解析】【分析】连接BC,且∠BOC=90°,用勾股定理求出BC的长度,∠CDO与∠OBC均为OC所对圆周角,所以sin∠CDO=sin∠OBC,即∠CDO的正弦值可求.【详解】解:如下图所示,连接BC,∵⊙A过原点O,且∠BOC=90°,OB=4,OC=3,∴根据勾股定理可得:2222BC=OB OC=43++,又∵同弧所对圆周角相等,∠CDO与∠OBC均为OC所对圆周角,∴∠CDO=∠OBC,故sin∠CDO=sin∠OBC=OC3=BC5,故选:A.【点睛】本题考察了勾股定理、同弧所对圆周角相等以及求角的正弦值,解题的关键在于找出∠CDO与∠OBC均为OC所对圆周角,求出∠OBC的正弦值即可得到答案.12.某几何体的三视图及相关数据(单位:cm)如图所示,则该几何体的侧面积是()A. 2652cm πB. 260cm πC. 265cm πD. 2130cm π【答案】C【解析】【分析】首先根据三视图判断出该几何体为圆锥,圆锥的高为12cm ,底部圆的半径为5cm ,可用勾股定理求出圆锥母线的长度,且圆锥侧面积的计算公式为S =R l π⋅⋅圆锥侧,其中R 为圆锥底部圆的半径,l 为母线的长度,将其值代入公式,即可求出答案.【详解】解:由三视图可判断出该几何体为圆锥,圆锥的高为12cm ,底部圆的半径为5cm ,∴圆锥母线长为:22=512=13l +cm ,又∵S =R l π⋅⋅圆锥侧,将R=5cm ,=13l cm 代入,∴2S ==65()R l cm ππ⋅⋅圆锥侧,故选:C .【点睛】本题考察了用三视图判断几何体形状、勾股定理、圆锥侧面积计算,解题的关键在于通过题目中已给出的三视图判断出几何体的形状.13.如图,点B 在反比例函数6y x =(0x >)的图象上,点C 在反比例函数2y x=-(0x >)的图象上,且//BC y 轴,AC BC ⊥,垂足为点C ,交y 轴于点A ,则ABC 的面积为 ( )A. 3B. 4C. 5D. 6【答案】B【解析】【分析】作BD ⊥BC 交y 轴于D ,可证四边形ACBD 是矩形,根据反比例函数k 的几何意义求出矩形ACBD 的面积,进而由矩形的性质可求ABC 的面积.【详解】作BD ⊥BC 交y 轴于D ,∵//BC y 轴,AC BC ⊥,∴四边形ACBD 是矩形,∴S 矩形ACBD =6+2=8,∴ABC 的面积为4.故选B .【点睛】本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数k y x =(k 为常数,k ≠0)图象上任一点P ,向x 轴和y 轴作垂线你,以点P 及点P 的两个垂足和坐标原点为顶点的矩形的面积等于常数k ,以点P 及点P 的一个垂足和坐标原点为顶点的三角形的面积等于12k .也考查了矩形的性质. 14.如图,在菱形ABCD 中,∠B =60°,AB =2,动点P 从点B 出发,以每秒1个单位长度的速度沿折线BA →AC 运动到点C ,同时动点Q 从点A 出发,以相同速度沿折线AC →CD 运动到点D ,当一个点停止运动时,另一个点也随之停止.设△APQ 的面积为y ,运动时间为x 秒,则下列图象能大致反映y 与x 之间函数关系的是( )A. B. C. D.【答案】B【解析】【分析】当P 、Q 分别在AB 、AC 上运动时,y=12AP×QH=12(2-t )×tsin60°;当P 、Q 分别在AC 、DC 上运动时,同理可得:23(2)y t =-,即可求解. 【详解】解:(1)当P 、Q 分别在AB 、AC 上运动时,ABCD 是菱形,60B ∠=︒,则ABC ∆、ACD ∆为边长为2的等边三角形, 过点Q 作QH AB ⊥于点H ,21133(2)sin 6022y AP QH t t =⨯=-⨯︒=, 3A 、B 、D ; (2)当P 、Q 分别在AC 、DC 上运动时,同理可得:232)y t -, 符合条件的有B ;故选B .【点睛】此题考查动点问题的函数图象,解题关键在于分情况讨论.第Ⅱ卷(共90分)二、填空题(请把箐案填写在答题卡相应的横线上.每小题3分,共12分)15.一个n 边形的内角和是它外角和的4倍,则n =______. 【答案】10 【解析】 【分析】利用多边形的内角和公式与外角和公式,根据一个n 边形的内角和是其外角和的4倍列出方程求解即可. 【详解】多边形的外角和是360°,根据题意得:()180?23604n ︒-=︒⨯,解得:10n =. 故答案为:10.【点睛】本题主要考查了多边形内角和公式及外角的性质.求多边形的边数,可以转化为方程的问题来解决.16.如图,航拍无人机从A 处测得一幢建筑物顶部C 的仰角是30°,测得底部B 的俯角是60° ,此时无人机与该建筑物的水平距离AD 是9米,那么该建筑物的高度BC 为__________米(结果保留根号).【答案】123【解析】 【分析】由题意可得∠CAD=30°,∠BAD=60°,然后分别解Rt △ADC 和Rt △ADB ,求出CD 和BD 的长,进一步即可求得结果.【详解】解:由题意,得∠CAD=30°,∠BAD=60°,则在Rt △ADC 中,tan 9tan 3033CD AD CAD =⋅∠=⨯︒= 在Rt △ADB 中,tan 9tan 6093BD AD BAD =⋅∠=⨯︒= ∴3393123BC == 故答案为:123【点睛】本题考查了解直角三角形的应用,属于常考题型,正确理解题意、熟练掌握解直角三角形的知识是解题关键.17.某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀 a 30%良好30 b合格9 15%不合格 3 5%合计60 60 100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为__________人.【答案】240【解析】【分析】根据表中的已知信息,分别补全a、b的值,并计算出样本中身体素质良好及以上的人数所占百分比为80%,故七年级全体学生体素质良好及以上的人数=总人数⨯80%.【详解】解:根据已知样本人数60人,可得成绩优秀的人数为60-30-9-3=18人,且良好人数对应的百分比应为b=30100%=50%60⨯,样本中身体素质良好及以上的人数所占百分比为30%+50%=80%,七年级共有300名学生,故其身体素质良好及以上的人数为30080%=240⨯(人),故答案为:240.【点睛】本题主要考察了用样本的频数估计总体的频数,解题的关键在于根据已知条件补充完整频数分布表,根据样本中身体素质良好及以上的频数推测七年级全体学生身体素质良好及以上的频数.18.一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2;第三次从A2点起跳,落点为0A2的中点A3;如此跳跃下去……最后落点为OA 2019的中点A 2020.则点A 2020表示的数为__________.【答案】201912【解析】 【分析】先根据数轴的定义、线段中点的定义分别求出点1234,,,A A A A 表示的数,再归纳类推出一般规律,由此即可得.【详解】由题意得:点1A 表示的数为0112=点2A 表示的数为11111222OA == 点3A 表示的数为22111242OA ==点4A 表示的数为33111282OA ==归纳类推得:点n A 表示的数为112n -(n 为正整数) 则点2020A 表示的数为2020120191122-=故答案为:201912.【点睛】本题考查了数轴的定义、线段中点的定义,根据点1234,,,A A A A 表示的数,正确归纳类推出一般规律是解题关键.三、解答题(在答题卡上解答,箐在本试卷上无效,解箸时妻写出必要的文字说明、证明过程或演算步骤.共8题,满分96分) .19.先化简,再求值:221121m m m m m m---÷++,其中m 满足:210m m --=. 【答案】2m m+1,1. 【解析】 【分析】将分式运用完全平方公式及平方差公式进行化简,并根据m 所满足的条件得出2m =m+1,将其代入化简后的公式,即可求得答案.【详解】解:原式为22m -1m-1m-m +2m+1m÷=2(m+1)(m-1)mm-(m+1)m-1⨯ =m m-m+1=2m m m -m+1m+1+ =2m m+1, 又∵m 满足2m -m-1=0,即2m =m+1,将2m 代入上式化简的结果,∴原式=2m m+1==1m+1m+1.【点睛】本题主要考察了分式的化简求值、分式的混合运算、完全平方公式及平方差公式的应用,该题属于基础题,计算上的错误应避免.20.小琪同学和爸爸妈妈一起回老家给奶奶过生日,他们为奶奶准备了一个如图所示的正方形蛋糕,蛋糕的每条边上均匀镶嵌着4颗巧克力.爸爸要求小琪只切两刀把蛋糕平均分成4份,使每个人分得的蛋糕和巧克力数都相等.(1)请你在图1中画出一种分法(无需尺规作图);(2)如图2,小琪同学过正方形的中心切了一刀,请你用尺规作图帮她作出第2刀所在的直线,(不写作法,保留作图痕迹)【答案】(1)画图见解析;(2)画图见解析【解析】【分析】(1)顺着正方形蛋糕的对角线切出两刀,即可把蛋糕和巧克力均分成四份;(2)要将正方形蛋糕均分成四份,第一刀必须保证过蛋糕的中心,第二刀为第一刀的中垂线即可,保留尺规作图中垂线的痕迹.【详解】解:(1)如下图所示,顺着正方形蛋糕的对角线切出两刀,即可把蛋糕和巧克力均分成四份:(2)要将正方形蛋糕均分成四份,第一刀必须保证过蛋糕的中心,第二刀为第一刀的中垂线即可,如下图所示,设第一刀与蛋糕边线的交点为A、B,分别以A、B为圆心,任一半径(比AB的一半长即可),画圆弧,圆弧交点的连线即为第二刀:【点睛】本题主要考察了尺规作图—作中垂线,以线段端点为圆心,做两个半径相等的圆(半径大于线段长度的一半),圆弧交点的连线即为中垂线.21.如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC的三个顶点处各有-个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圜A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)丫丫随机掷一次骰子,她跳跃后落回到圈A 的概率为 ;(2) 丫丫和甲甲一起玩眺圈游戏: 丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A 为胜者.这个游戏规则公平吗?请说明理由.【答案】(1)13;(2)公平,理由见详解 【解析】 【分析】(1)分别计算投掷点数为1、2、3、4时,丫丫跳跃后回到圈A 的次数,再按概率公式计算求解; (2)分别计算投掷点数为1、2、3、4时,丫丫和甲甲跳跃后回到圈A 的次数,再按概率公式计算求解; 【详解】解:(1)当投掷点为1时,丫丫跳跃后到圈B ;当投掷点为2时,丫丫跳跃后到圈C ;当投掷点为3时,丫丫跳跃后到圈A ;当投掷点为4时,丫丫跳跃后到圈B ; 如图,,共3种等可能的结果,丫丫跳跃后到圈A 只有一次,13P ∴=丫丫故答案为:13. (2)由(1)知丫丫随机投掷一次骰子,跳跃后回到圈A 的概率为13; 甲甲随机投掷两次骰子,如图共有等可能的情况有9种,其中甲甲跳跃后到圈A共3次,∴P甲甲=31 93 =P=P∴甲甲丫丫∴这个游戏公平.【点睛】此题考查了列表法或树状图法求概率.注意根据题意画树状图,然后利用概率=所求情况数与总情况数之比求解是关键.22.甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600 m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0. 5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?【答案】(1)甲工程队每天修路100米,乙工程队每天修路50米;(2)至少安排乙队施工32天.【解析】【分析】(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,根据甲工程队修500米公路需要的天数=乙工程队修500米公路需要的天数-5即可列出分式方程,解方程并检验后即得答案;(2)设安排乙队施工y天,根据甲工程队施工费用+乙工程队施工费用≤40万元即可列出不等式,解不等式即可求出y的范围,进而可得结果.【详解】解:(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,根据题意,得5005005 2x x=-,解得:x=50,经检验:x=50是所列方程的根,2x=100.答:甲工程队每天修路100米,乙工程队每天修路50米.(2)设安排乙队施工y天,根据题意,得3600501.20.540100yy-⨯+≤,解得:32y≥,所以y最小为32.答:至少安排乙队施工32天.【点睛】本题考查了分式方程的应用和一元一次不等式的应用,属于常考题型,正确理解题意、找准相等和不等关系是解题的关键.23.如图,AB是O的直径,AC是O的一条弦,点P是O上一点,且P A=PC,PD//AC,与BA的延长线交于点D.(1)求证:PD是O的切线;(2)若tan∠P AC=23,AC = 12.求直径AB的长.【答案】(1)证明过程见解析;(2)AB=13,过程见解析【解析】【分析】(1)连接OP,因为PD//AC,两直线平行内错角相等,且PA=PC,可得∠DPA =∠PAC=∠PCA=∠PBA,又因为直径所对圆周角为直角,故∠APO+∠OPB=90°,其中∠OPB=∠OBP,即可证得∠DPO=90°,即PD 为⊙O的切线;(2)作PE⊥AC,在等腰PAC中,三线合一,PE既为高线,也为AC边的中垂线,已知tan∠PAC=23,AC=12,用勾股定理可得AP的长度,且∠PAC=∠PBA,故PB的长度也可算得,再用勾股定理即可求得AB的长度.【详解】解:(1)如图所示,连接OP,∵PD//AC,∴∠DPA =∠PAC(两直线平行,内错角相等),又∵PA=PC,故PAC为等腰三角形,∠PAC=∠PCA,∠PAC是PC所对圆周角,∠PCA是PA所对圆周角,∴PC=PA,且∠PBA是PA所对圆周角,故∠PAC=∠PCA=∠PBA,∵AB是⊙O的直径,直径所对圆周角为直角,∴∠APB=90°,故∠APO+∠OPB=90°,又∵OP=OB,故OPB为等腰三角形,∠OPB=∠OBP,∴∠APO+∠DPA=90°,即∠DPO=90°,∴PD为⊙O的切线;(2)如下图所示,作PE⊥AC,∵PA=PC,故PAC为等腰三角形,等腰三角形三线合一,PE既为高线,也为AC边的中垂线,已知AC=12,∴AE=6,且tan∠PAC=23=PEAE,故PE=4,由勾股定理可得:2222AP=AE PE=64=213++由(1)已证得∠PAC=∠PCA=∠PBA,故tan∠PBA=23,∴PA2=PB3,故BP=313由勾股定理可得:.【点睛】本题考查了等边对等角、等腰三角形三线合一、平行线间的性质、同弧所对圆周角相等、勾股定理,解题的关键在于应用等边对等角及平行线性质,证得图形中的相等角,利用角的代换来做题.24.阅读理解:材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实教x,y,z构成“和谐三数组”.材料二:若关于x的一元二次方程ax2+bx +c= 0(a≠0)的两根分别为1x,2x,则有12bx xa+=-,12cx xa⋅=.问题解决:(1)请你写出三个能构成“和谐三数组”的实数;(2)若1x,2x是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,3x是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;(3)若A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数4yx=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.【答案】(1)65,2,3(答案不唯一);(2)见解析;(3)m=﹣4或﹣2或2.【解析】【分析】(1)根据“和谐三数组”的定义可以先写出后2个数,取倒数求和后即可写出第一个数,进而可得答案;(2)根据一元二次方程根与系数的关系求出1211+x x,然后再求出31x,只要满足1211+x x=31x即可;(3)先求出三点的纵坐标y1,y2,y3,然后由“和谐三数组”可得y1,y2,y3之间的关系,进而可得关于m 的方程,解方程即得结果.【详解】解:(1)∵115236+=,∴65,2,3是“和谐三数组”;故答案为:65,2,3(答案不唯一);(2)证明:∵1x,2x是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,∴12bx xa+=-,12cx xa⋅=,∴12121211bx x b a c x x x x ca -++===-⋅, ∵3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解, ∴3c x b=-,∴31b x c =-, ∴1211+x x =31x , ∴x 1 ,x 2,x 3可以构成“和谐三数组”;(3)∵A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x =的图象上, ∴14y m =,241y m =+,343y m =+, ∵三点的纵坐标y 1,y 2,y 3恰好构成“和谐三数组”, ∴123111y y y =+或213111y y y =+或312111y y y =+, 即13444m m m ++=+或13444m m m ++=+或31444m m m ++=+, 解得:m =﹣4或﹣2或2.【点睛】本题是新定义试题,主要考查了一元二次方程根与系数的关系、反比例函数图象上点的坐标特征和对新知“和谐三数组”的理解与运用,正确理解题意、熟练掌握一元二次方程根与系数的关系与反比例函数的图象与性质是解题的关键.25.如图,巳知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A (1 ,0) ,B (4,0)两点,与y 轴交于点C ,直线122y x =-+经过B ,C 两点. (1)直接写出二次函数的解析式 ;(2)平移直线BC ,当直线BC 与抛物线有唯一公共点Q 时,求此时点Q 的坐标;(3)过(2)中的点Q 作QE // y 轴,交x 轴于点E .若点M 是抛物线上一个动点,点N 是x 轴上一个动点.是否存在以E ,M ,N 三点为顶点的直角三角形(其中M 为直角顶点)与△BOC 相似?如果存在,请直接写出满足条件的点M 的个数和其中一个符合条件的点M 的坐标;如果不存在,请说明理由.【答案】(1)抛物线解析式为215222y x x =-+,(2)点Q (2,-1),(3)存在,满足条件的点M 有8个,M (33,13【解析】【分析】 (1)求出点C 坐标,将A 、B 、C 坐标代入抛物线,即可求解.(2)设出直线BC 平移后的函数,令直线与抛物线函数相等,Δ等于零,求出Q 坐标即可.(3)利用△OBC ∽△EMN ,得到两种情况∠MEN=∠OCB ,∠MEN=∠OBC ;利用tan tan 2MEN OCB ,1tan tan 2MEN OBC ,得到M 的横坐标的方程,解方程即可. 【详解】(1)由题意知:直线122y x =-+经过B ,C 两点 ∴将x=0代入直线,解得y=2∴C (0,2) 由题意知:A (1 ,0) ,B (4,0),C (0,2)代入抛物线,可得016402a b c a b c c解得12a = ,52b =- ,2c = ∴抛物线解析式215222y x x =-+. (2)由题意知:设直线BC 平移后的函数为122yx m ∵直线BC 平移后与抛物线有唯一公共点Q ,∴215122222x x x m化简得21202x x m 21444()02b ac m 即2m =-∴直线BC 平移后的函数为12y x =- 令21512222x x x 解得2x =,1y =-∴点Q (2,-1).(3)如图所示,过点M 作MP ⊥EN ,设M 点坐标为(m ,n ).由题意知:△OBC ∽△EMN分两种情况讨论:第一种,∠MEN=∠OCB在Rt △OBC 中,∵OC=2,OB=4∴4tan 22OCB∴tan tan 2MEN OCB又∵点Q (2,-1),QE ⊥AB∴点E (2,0)∴tan 22n MPMEN EP m代入抛物线可得21522422m m m化简1(1)(4)242m m m如图所示,有4个交点第二种,∠MEN=∠OBC在△RtOBC 中,∵OC=2,OB=4 ∴21tan 42OBC ∴1tan tan 2MEN OBC又∵点Q (2,-1),QE ⊥AB∴点E (2,0) ∴1tan 22n MPMEN EPm 代入抛物线可得2542m m m 化简(1)(4)2m m m 如图所示,有4个交点综上所述,有8个交点.由上述可知M 只要满足下列任意一个函数即可; (1)(4)2m m m 1(1)(4)242m m m ∴令(1)(4)2m m m (m>4),解得33=+m ,33=-m (舍).∴M (33+,13+).【点睛】本题主要考查了一次函数平移与二次函数的综合问题,以及一次函数平移与二次函数的交点问题,正确掌握一次函数平移与二次函数的综合问题,以及一次函数平移与二次函数的交点问题的解法是解题的关键.26.如图,矩形ABCD 中,点P 为对角线AC 所在直线上的一个动点,连接 PD ,过点P 作PE ⊥PD ,交直线AB 于点E ,过点P 作MN ⊥AB ,交直线CD 于点M ,交直线AB 于点N .43AB =AD =4.(1)如图1,①当点P 在线段AC 上时,∠PDM 和∠EPN 的数关系为:∠PDM ___ ∠EPN ;②DP PE的值是 ; (2)如图2,当点P 在CA 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由; (3)如图3,以线段PD ,PE 为邻边作矩形PEFD .设PM 的长为x ,矩形PEFD 的面积为y .请直接写出y 与x 之间的函数关系式及y 的最小值.【答案】(1)①=3(2)成立,证明见解析;(3)243(3)433y x =-+3【解析】【分析】 (1)①根据PE ⊥PD , MN ⊥AB 得到∠DPE=90°,∠PMD=∠PNE=90°,即可得到∠PDM=∠EPN ;②根据CD=3AB =AD =4,∠ADC=90°,得到∠ACD=30°,设MP=x ,则NP=4-x ,得到33x ,DM=43334-x ),证明△PDM ∽△EPN ,得到答案;(2)设NP=a ,则MP=4+a ,证明△PDM ∽△EPN ,即可得到结论成立;(3)利用勾股定理求出22222234(4)()81633PE PN EN x x x x =+=-+=-+,再根据矩形的面积公式计算得到函数关系式.【详解】(1)①∵PE ⊥PD ,∴∠DPE=90°,∴∠DPM+∠EPN=90°,∵MN ⊥AB ,∴∠PMD=∠PNE=90°,∴∠PDM+∠DPM=90°,∴∠PDM=∠EPN ;故答案为:=;②∵CD=AB =AD =4,∠ADC=90°,∴tan ∠ACD=AD CD ==∴∠ACD=30°,设MP=x ,则NP=4-x ,∴,DM=4-x ),∵∠PDM=∠EPN ,∠PMD=∠PNE=90°,∴△PDM ∽△EPN ,∴DP PE =)4DM x PN x-=-(2)成立,设NP=a ,则MP=4+a ,∵∠ACD=30°,∴(4+a ),∴a ,由(1)同理得∠PDM=∠EPN ,∠PMD=∠PNE=90°,∴△PDM ∽△EPN ,∴DP PE =MD NP a== (3)∵PM=x ,∴PN=4-x ,x ,∴2222224(4))8163PE PN EN x x x =+=-+=-+,∴PE =PD =∴矩形PEFD 面积为y=224(816)3)33PE PD x x x ⋅=-+=-+>0,∵3∴当x=3时,y有最小值为【点睛】此题考查矩形的性质,锐角三角函数,相似三角形的判定及性质,勾股定理,利用面积公式得到函数关系式及最小值,解答此题中运用类比思想.。
2020年内蒙古赤峰市中考数学试卷

2020年内蒙古赤峰市中考数学试卷一、选择题(每小题给出的选项中只有一个符合题意,请将符合题的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分) 1.(3分)实数|5|-,3-,0,4中,最小的数是( ) A .|5|-B .3-C .0D .42.(3分)2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A .109910-⨯B .109.910-⨯C .99.910-⨯D .80.9910-⨯3.(3分)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()A . 等边三角形B . 平行四边形C . 正八边形D . 圆及其一条弦4.(3分)学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是( ) A .平均数B .中位数C .众数D .方差5.(3分)下列计算正确的是( ) A .235a a a +=B .32221-=C .235()x x =D .532m m m ÷=6.(3分)不等式组20240x x +>⎧⎨-+⎩的解集在数轴上表示正确的是( )A .B .C .D .7.(3分)如图,Rt ABC ∆中,90ACB ∠=︒,5AB =,3AC =,把Rt ABC ∆沿直线BC 向右平移3个单位长度得到△A B C ''',则四边形ABC A ''的面积是( )A .15B .18C .20D .228.(3分)如图,在ABC ∆中,点D ,E 分别是边AB ,AC 的中点,点F 是线段DE 上的一点.连接AF ,BF ,90AFB ∠=︒,且8AB =,14BC =,则EF 的长是( )A .2B .3C .4D .59.(3分)估计1(2332)3+⨯的值应在( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间10.(3分)如图,ABC ∆中,AB AC =,AD 是BAC ∠的平分线,EF 是AC 的垂直平分线,交AD 于点O .若3OA =,则ABC ∆外接圆的面积为( )A .3πB .4πC .6πD .9π11.(3分)如图,A 经过平面直角坐标系的原点O ,交x 轴于点(4,0)B -,交y 轴于点(0,3)C ,点D 为第二象限内圆上一点.则CDO ∠的正弦值是( )A .35B .34-C .34D .4512.(3分)某几何体的三视图及相关数据(单位:)cm 如图所示,则该几何体的侧面积是()A .2652cm π B .260cm π C .265cm π D .2130cm π13.(3分)如图,点B 在反比例函数6(0)y x x =>的图象上,点C 在反比例函数2(0)y x x=->的图象上,且//BC y 轴,AC BC ⊥,垂足为点C ,交y 轴于点A .则ABC ∆的面积为()A .3B .4C .5D .614.(3分)如图,在菱形ABCD 中,60B ∠=︒,2AB =.动点P 从点B 出发,以每秒1个单位长度的速度沿折线BA AC→运动到点C,同时动点Q从点A出发,以相同速度沿折线∆的面积为y,AC CD→运动到点D,当一个点停止运动时,另一点也随之停止.设APQ运动时间为x秒.则下列图象能大致反映y与x之间函数关系的是()A.B.C.D.二、填空题(请把答案填写在答题卡相应的横线上.每小题3分,满分12分)15.(3分)一个正n边形的内角和是它外角和的4倍,则n=.16.(3分)如图,航拍无人机从A处测得一幢建筑物顶部C的仰角是30︒,测得底部B的俯角是60︒,此时无人机与该建筑物的水平距离AD是9米,那么该建筑物的高度BC为米(结果保留根号).17.(3分)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩 划记 频数 百分比 优秀a30% 良好30 b合格 9 15% 不合格3 5% 合计6060100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为 人.18.(3分)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为1A ,点1A 表示的数为1;第二次从点1A 起跳,落点为1OA 的中点2A ,第三次从2A 点起跳,落点为2OA 的中点3A ;如此跳跃下去⋯最后落点为2019OA 的中点2020A ,则点2020A 表示的数为 .三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.(10分)先化简,再求值:221121m m m m m m---÷++,其中m 满足:210m m --=. 20.(10分)小琪同学和爸爸妈妈一起回老家给奶奶过生日,他们为奶奶准备了一个如图所示的正方形蛋糕,蛋糕的每条边上均匀镶嵌着4颗巧克力.爸爸要求小琪只切两刀把蛋糕平均分成4份,使每个人分得的蛋糕和巧克力数都相等. (1)请你在图1中画出一种分法(无需尺规作图);(2)如图2,小琪同学过正方形的中心切了一刀,请你用尺规作图帮她作出第2刀所在的直线.(不写作法,保留作图痕迹)21.(12分)如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC的三个顶点处各有一个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率为;(2)丫丫和甲甲一起玩跳圈游戏:丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A为胜者.这个游戏规则公平吗?请说明理由.22.(12分)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?23.(12分)如图,AB是O的直径,AC是O的一条弦,点P是O上一点,且PA PC,PD AC,与BA的延长线交于点D.//(1)求证:PD是O的切线;(2)若2tan 3PAC ∠=,12AC =,求直径AB 的长.24.(12分)阅读理解:材料一:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.材料二:若关于x 的一元二次方程20(0)ax bx c a ++=≠的两根分别为1x ,2x ,则有12b x x a +=-,12c x x a=.问题解决:(1)请你写出三个能构成“和谐三数组”的实数 ;(2)若1x ,2x 是关于x 的方程20(ax bx c a ++=,b ,c 均不为0)的两根,3x 是关于x 的方程0(bx c b +=,c 均不为0)的解.求证:1x ,2x ,3x 可以构成“和谐三数组”; (3)若1(,)A m y ,2(1,)B m y +,3(3,)C m y +三个点均在反比例函数4y x=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m 的值.25.(14分)如图,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于(1,0)A ,(4,0)B 两点,与y 轴交于点C ,直线122y x =-+经过B ,C 两点.(1)直接写出二次函数的解析式 ;(2)平移直线BC ,当直线BC 与抛物线有唯一公共点Q 时,求此时点Q 的坐标; (3)过(2)中的点Q 作//QE y 轴,交x 轴于点E .若点M 是抛物线上一个动点,点N 是x 轴上一个动点,是否存在以E ,M ,N 三点为顶点的直角三角形(其中M 为直角顶点)与BOC ∆相似?如果存在,请直接写出满足条件的点M 的个数和其中一个符合条件的点M 的坐标;如果不存在,请说明理由.26.(14分)如图,矩形ABCD 中,点P 为对角线AC 所在直线上的一个动点,连接PD ,过点P 作PE PD ⊥,交直线AB 于点E ,过点P 作MN AB ⊥,交直线CD 于点M ,交直线AB 于点N .43AB =,4AD =.(1)如图1,①当点P 在线段AC 上时,PDM ∠和EPN ∠的数量关系为:PDM ∠ EPN ∠; ②DPPE的值是 ; (2)如图2,当点P 在CA 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;(3)如图3,以线段PD ,PE 为邻边作矩形PEFD .设PM 的长为x ,矩形PEFD 的面积为y .请直接写出y 与x 之间的函数关系式及y 的最小值.2020年内蒙古赤峰市中考数学试卷参考答案与试题解析一、选择题(每小题给出的选项中只有一个符合题意,请将符合题的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分) 1.(3分)实数|5|-,3-,0,4中,最小的数是( ) A .|5|-B .3-C .0D .4【解答】解:|5|5-=,42=,3025-<<<, 3∴-是最小的数,故选:B .2.(3分)2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A .109910-⨯B .109.910-⨯C .99.910-⨯D .80.9910-⨯【解答】解:90.00000000999.910-=⨯, 故选:C .3.(3分)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()A . 等边三角形B . 平行四边形C . 正八边形D . 圆及其一条弦【解答】解:A 、最小旋转角度3601203︒==︒; B 、最小旋转角度3601802︒==︒;C 、最小旋转角度360458︒==︒; D 、不是旋转对称图形;综上可得:旋转一定角度后,能与原图形完全重合,且旋转角度最小的是C . 故选:C .4.(3分)学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是( ) A .平均数B .中位数C .众数D .方差【解答】解:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分7个有效评分与9个原始评分相比,不变的数字特征是中位数. 故选:B .5.(3分)下列计算正确的是( ) A .235a a a +=B .32221-=C .235()x x =D .532m m m ÷=【解答】解:A 、23a a +,无法计算,故此选项错误;B 、32222-=,故此选项错误;C 、236()x x =,故此选项错误;D 、532m m m ÷=,正确.故选:D .6.(3分)不等式组20240x x +>⎧⎨-+⎩的解集在数轴上表示正确的是( )A .B .C .D .【解答】解:解不等式20x +>,得:2x >-, 解不等式240x -+,得:2x , 则不等式组的解集为22x -<, 故选:C .7.(3分)如图,Rt ABC ∆中,90ACB ∠=︒,5AB =,3AC =,把Rt ABC ∆沿直线BC 向右平移3个单位长度得到△A B C ''',则四边形ABC A ''的面积是( )A .15B .18C .20D .22【解答】解:把Rt ABC ∆沿直线BC 向右平移3个单位长度得到△A B C ''', 5A B AB ∴''==,3AC AC ''==,90AC B ACB ∠'''=∠=︒,3A A CC '='=,22534B C ∴''=-=,//AC AC '', ∴四边形ACC A ''是矩形, ∴四边形ABC A ''的面积11()(343)31522AA BC AC ='+'=⨯++⨯=, 故选:A .8.(3分)如图,在ABC ∆中,点D ,E 分别是边AB ,AC 的中点,点F 是线段DE 上的一点.连接AF ,BF ,90AFB ∠=︒,且8AB =,14BC =,则EF 的长是( )A .2B .3C .4D .5【解答】解:点D ,E 分别是边AB ,AC 的中点,DE ∴是ABC ∆的中位线,14BC =,172DE BC ∴==, 90AFB ∠=︒,8AB =,142DF AB ∴==, 743EF DE DF ∴=-=-=,故选:B .9.(3分)估计1(2332)3+⨯的值应在( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间【解答】解:原式26=+, 263<<, ∴4265<+<,故选:A .10.(3分)如图,ABC ∆中,AB AC =,AD 是BAC ∠的平分线,EF 是AC 的垂直平分线,交AD 于点O .若3OA =,则ABC ∆外接圆的面积为( )A .3πB .4πC .6πD .9π【解答】解:AB AC =,AD 是BAC ∠的平分线,BD CD ∴=,AD BC ⊥,EF 是AC 的垂直平分线,∴点O 是ABC ∆外接圆的圆心,3OA =,ABC ∴∆外接圆的面积2239r πππ==⨯=.故选:D .11.(3分)如图,A 经过平面直角坐标系的原点O ,交x 轴于点(4,0)B -,交y 轴于点(0,3)C ,点D 为第二象限内圆上一点.则CDO ∠的正弦值是( )A .35B .34-C .34D .45【解答】解:连接BC ,如图,(4,0)B -,(0,3)C ,4OB ∴=,3OC =,22345BC ∴=+=, 3sin 5OC OBC BC ∴∠==, ODC OBC ∠=∠,3sin sin 5CDO OBC ∴∠=∠=. 故选:A .12.(3分)某几何体的三视图及相关数据(单位:)cm 如图所示,则该几何体的侧面积是()A .2652cm π B .260cm π C .265cm π D .2130cm π【解答】解:观察图形可知: 圆锥母线长为:2251213+=,所以圆锥侧面积为:251365()rl cm πππ=⨯⨯=. 答:该几何体的侧面积是265cm π. 故选:C .13.(3分)如图,点B 在反比例函数6(0)y x x =>的图象上,点C 在反比例函数2(0)y x x=->的图象上,且//BC y 轴,AC BC ⊥,垂足为点C ,交y 轴于点A .则ABC ∆的面积为()A .3B .4C .5D .6【解答】解:过B 点作BH y ⊥轴于H 点,BC 交x 轴于D ,如图,//BC y 轴,AC BC ⊥,∴四边形ACDO 和四边形ODBH 都是矩形,22OACD S ∴=-=矩形, 66ODBH S ==矩形, 268ACBH S ∴=+=矩形, ABC ∴∆的面积142ACBH S ==矩形. 故选:B .14.(3分)如图,在菱形ABCD 中,60B ∠=︒,2AB =.动点P 从点B 出发,以每秒1个单位长度的速度沿折线BA AC →运动到点C ,同时动点Q 从点A 出发,以相同速度沿折线AC CD →运动到点D ,当一个点停止运动时,另一点也随之停止.设APQ ∆的面积为y ,运动时间为x 秒.则下列图象能大致反映y 与x 之间函数关系的是( )A .B .C .D .【解答】解:当02x 时,如图1,过点Q 作QH AB ⊥于H ,由题意可得BP AQ x ==,在菱形ABCD 中,60B ∠=︒,2AB =, AB BC AD CD ∴===,60B D ∠=∠=︒, ABC ∴∆和ADC ∆都是等边三角形, 2AC AB ∴==,60BAC ACD ∠=︒=∠,sin HQBAC AQ∠=, 3sin 60HQ AQ x ∴=︒=, APQ ∴∆的面积21333(2)(1)2y x x x ==-⨯=--+; 当24x <时,如图2,过点Q 作QN AC ⊥于N ,由题意可得2AP CQ x ==-, 3sin NQ ACD CQ ∠== 32)NQ x ∴=-, APQ ∴∆的面积2133(2)2)2)2y x x x ==--=-,∴该图象开口向上,对称轴为直线2x =,∴在24x <时,y 随x 的增大而增大, ∴当4x =时,y 3故选:A .二、填空题(请把答案填写在答题卡相应的横线上.每小题3分,满分12分) 15.(3分)一个正n 边形的内角和是它外角和的4倍,则n = 10 . 【解答】解:多边形的外角和是360︒,根据题意得:180(2)3604n ︒-=︒⨯,解得10n =.故答案为:10.16.(3分)如图,航拍无人机从A 处测得一幢建筑物顶部C 的仰角是30︒,测得底部B 的俯角是60︒,此时无人机与该建筑物的水平距离AD 是9米,那么该建筑物的高度BC 为 123 米(结果保留根号).【解答】解:根据题意可知:在Rt ADC ∆中,30CAD ∠=︒,9AD =, 3tan309333CD AD ∴=︒=⨯=, 在Rt ADB ∆中,60BAD ∠=︒,9AD =, tan 6093BD AD ∴=︒=,3393123BC CD BD ∴=+=+=(米).答;该建筑物的高度BC 为123米. 故答案为:123.17.(3分)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表: 某校60名学生体育测试成绩频数分布表 成绩 划记频数 百分比 优秀a30% 良好30 b合格 9 15% 不合格35%合计 60 60 100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为 240 人.【解答】解:根据频数分布表可知: 915%60÷=, 6030%18a ∴=⨯=,130%15%5%50%b =---=,300(30%50%)240∴⨯+=(人).答:估计该校七年级学生身体素质良好及以上的人数为240人. 故答案为:240.18.(3分)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为1A ,点1A 表示的数为1;第二次从点1A 起跳,落点为1OA 的中点2A ,第三次从2A 点起跳,落点为2OA 的中点3A ;如此跳跃下去⋯最后落点为2019OA 的中点2020A ,则点2020A 表示的数为201912.【解答】解:第一次落点为1A 处,点1A 表示的数为1; 第二次落点为1OA 的中点2A ,点2A 表示的数为12; 第三次落点为2OA 的中点3A ,点3A 表示的数为21()2;⋯则点2020A 表示的数为20191()2,即点2020A 表示的数为201912;故答案为:201912.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.(10分)先化简,再求值:221121m m m m m m---÷++,其中m 满足:210m m --=. 【解答】解:原式2(1)(1)(1)1m m mm m m +-=-+-1mm m =-+ 21m m =+, 210m m --=, 21m m ∴=+,∴原式111m m +==+. 20.(10分)小琪同学和爸爸妈妈一起回老家给奶奶过生日,他们为奶奶准备了一个如图所示的正方形蛋糕,蛋糕的每条边上均匀镶嵌着4颗巧克力.爸爸要求小琪只切两刀把蛋糕平均分成4份,使每个人分得的蛋糕和巧克力数都相等. (1)请你在图1中画出一种分法(无需尺规作图);(2)如图2,小琪同学过正方形的中心切了一刀,请你用尺规作图帮她作出第2刀所在的直线.(不写作法,保留作图痕迹)【解答】解:(1)如图,直线a ,直线b 即为所求. (2)如图,直线c 即为所求.21.(12分)如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC 的三个顶点处各有一个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圈A 起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率为14;(2)丫丫和甲甲一起玩跳圈游戏:丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A为胜者.这个游戏规则公平吗?请说明理由.【解答】解:(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率14 =;(2)这个游戏规则不公平.理由如下:画树状图为:共有16种等可能的结果,其中甲甲随机投掷两次骰子,最终落回到圈A的结果数为5,所以甲甲随机投掷两次骰子,最终落回到圈A的概率516 =,因为15 416 <,所以这个游戏规则不公平.22.(12分)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?【解答】解:(1)设乙工程队每天修路x 米,则甲工程队每天修路2x 米, 依题意,得:50050052x x-=, 解得:50x =,经检验,50x =是原方程的解,且符合题意, 2100x ∴=.答:甲工程队每天修路100米,乙工程队每天修路50米. (2)设安排乙工程队施工m 天,则安排甲工程队施工360050(360.5)100mm -=-天,依题意,得:0.5 1.2(360.5)40m m +-, 解得:32m .答:至少安排乙工程队施工32天.23.(12分)如图,AB 是O 的直径,AC 是O 的一条弦,点P 是O 上一点,且PA PC =,//PD AC ,与BA 的延长线交于点D .(1)求证:PD 是O 的切线; (2)若2tan 3PAC ∠=,12AC =,求直径AB 的长.【解答】解:(1)连接PO ,交AC 于H ,PA PC =, PAC PCA ∴∠=∠, PCA PBA ∠=∠, PAC PCA PBA ∴∠=∠=∠,//DP AC ,DPA PAC PCA PBA ∴∠=∠=∠=∠, OA OP =, PAO OPA ∴∠=∠,AB 是直径,90APB ∴∠=︒, 90PAB ABP ∴∠+∠=︒, 90OPA DPA ∴∠+∠=︒, 90DPO ∴∠=︒,又OP 是半径,DP ∴是O 的切线;(2)//DP AC ,90DPO ∠=︒,90DPO AHO ∴∠=∠=︒,又PA PC =, 162AH HC AC ∴===, 2tan 3PH PAC AH ∠==, 243PH AH ∴=⨯=,222AO AH OH =+,2236(4)AO OA ∴=+-, 132OA ∴=, 213AB OA ∴==.24.(12分)阅读理解:材料一:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.材料二:若关于x 的一元二次方程20(0)ax bx c a ++=≠的两根分别为1x ,2x ,则有12b x x a +=-,12c x x a=.问题解决:(1)请你写出三个能构成“和谐三数组”的实数 如111,,235;(2)若1x ,2x 是关于x 的方程20(ax bx c a ++=,b ,c 均不为0)的两根,3x 是关于x 的方程0(bx c b +=,c 均不为0)的解.求证:1x ,2x ,3x 可以构成“和谐三数组”; (3)若1(,)A m y ,2(1,)B m y +,3(3,)C m y +三个点均在反比例函数4y x=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m 的值.【解答】解:(1)根据题意得,能构成“和谐三数组”的实数有,12,13,15; 理由:12的倒数为2,13的倒数为3,15的倒数为5,而235+=,∴111,,235能过程“和谐三数组”, 故答案为:如∴111,,235;(2)证明:1x ,2x 是关于x 的方程20(ax bx c a ++=,b ,c 均不为0)的两根, 12b x x a ∴+=-,12c x x a=, ∴12121211x x b x x x x c ++==-, 3x 是关于x 的方程0(bx c b +=,c 均不为0)的解,3c x b ∴=-,∴31b x c =-, ∴123111x x x +=, 1x ∴,2x ,3x 可以构成“和谐三数组”;(3)1(,)A m y ,2(1,)B m y +,3(3,)C m y +三点的纵坐标恰好构成“和谐三数组”, 1(,)A m y ,2(1,)B m y +,3(3,)C m y +三个点均在反比例函数4y x=的图象上, 14y m ∴=,241y m =+,343y m =+, ∴114m y =,2114m y +=,3134m y +=,1(,)A m y ,2(1,)B m y +,3(3,)C m y +三点的纵坐标恰好构成“和谐三数组”, ∴①123111y y y +=, ∴13444m m m +++=, 2m ∴=,②231111y y y +=, ∴13444m m m+++=, 4m ∴=-,③312111y y y +=, ∴31444m m m +++=, 2m ∴=-,即满足条件的实数m 的值为2或4-或2-.25.(14分)如图,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于(1,0)A ,(4,0)B 两点,与y 轴交于点C ,直线122y x =-+经过B ,C 两点.(1)直接写出二次函数的解析式 215222y x x =-+ ; (2)平移直线BC ,当直线BC 与抛物线有唯一公共点Q 时,求此时点Q 的坐标; (3)过(2)中的点Q 作//QE y 轴,交x 轴于点E .若点M 是抛物线上一个动点,点N 是x 轴上一个动点,是否存在以E ,M ,N 三点为顶点的直角三角形(其中M 为直角顶点)与BOC ∆相似?如果存在,请直接写出满足条件的点M 的个数和其中一个符合条件的点M 的坐标;如果不存在,请说明理由.【解答】解:(1)直线122y x =-+经过B ,C 两点.∴点(0,2)C ,二次函数2(0)y ax bx c a =++≠的图象经过(1,0)A ,(4,0)B ,点(0,2)C , ∴001642a b c a b c c =++⎧⎪=++⎨⎪=⎩, 解得:12522a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴抛物线解析式为215222y x x =-+, 故答案为:215222y x x =-+;(2)(4,0)B ,点(0,2)C , ∴直线BC 解析式为:122y x =-+, ∴设平移后的解析式为:122y x m =-++,平移后直线BC 与抛物线有唯一公共点Q ∴215122222x x x m -+=-++, ∴△144()02m =-⨯⨯-=,2m ∴=-,∴设平移后的解析式为:12y x =-,联立方程组得:21215222y x y x x ⎧=-⎪⎪⎨⎪=-+⎪⎩,∴21x y =⎧⎨=-⎩,∴点(2,1)Q -;(3)设点M 的坐标为215(,2)22m m m -+,以E ,M ,N 三点为顶点的直角三角形(其中M 为直角顶点)与BOC ∆相似, ∴①当MEN OBC ∆∆∽时,MEN OBC ∴∠=∠,过点M 作MH x ⊥轴于H , 90EHM BOC ∴∠=︒=∠, EHM BOC ∴∆∆∽, ∴EH OBMH OC=, 215|2|22MH m m ∴=-+,|2|EH m =-,4OB =,2OC =. ∴2|2|215|2|22m m m -=-+,3m ∴=或2m =当3m =215222m m -+=,(3M ∴+,当3m =215222m m -+=,(3M ∴-,当2m =215222m m -+=,(2M ∴,当2m =215222m m -+(2M ∴, ②当NEM OBC ∆∆∽时, 同①的方法得,2|2|1152|2|22m m m -=-+,m ∴=或m =当933m +=时,215253322m m -+=+, 933(M +∴,533)+, 当933m -=时,215253322m m -+=-, 933(M -∴,533)-, 当117m +=时,215231722m m -+=-, 117(M +∴,317)-, 当117m -=时,215231722m m -+=+, 117(M -∴,317)+, 即满足条件的点M 共有8个,其点的坐标为(33+,31)+或(33-,13)-或(22+,2)-或(22-,2)或933(+,533)+或933(-,533)-或117(+,317)-或117(-,317)+.26.(14分)如图,矩形ABCD 中,点P 为对角线AC 所在直线上的一个动点,连接PD ,过点P 作PE PD ⊥,交直线AB 于点E ,过点P 作MN AB ⊥,交直线CD 于点M ,交直线AB 于点N .43AB =4AD =.(1)如图1,①当点P 在线段AC 上时,PDM ∠和EPN ∠的数量关系为:PDM ∠ = EPN ∠;②DPPE的值是 ; (2)如图2,当点P 在CA 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;(3)如图3,以线段PD ,PE 为邻边作矩形PEFD .设PM 的长为x ,矩形PEFD 的面积为y .请直接写出y 与x 之间的函数关系式及y 的最小值.【解答】解:(1)①如图1中,四边形ABCD 是矩形, //AB CD ∴, NM AB ⊥, NM CD ∴⊥,DP PE ⊥,90PMD PNE DPE ∴∠=∠=∠=︒,90PDM DPM ∴∠+∠=︒,90DPM EPN ∠+∠=︒, PDM EPN ∴∠=∠.故答案为=.②连接DE .四边形ABCD 是矩形, 90DAE B ∴∠=∠=︒,4AD BC ==.3tan BC CAB AB ∴∠==30CAB ∴∠=︒,180DAE DPE ∠+∠=︒,A ∴,D ,P ,E 四点共圆,30EDP PAB ∴∠=∠=︒,∴3tan 303PE PD =︒=, ∴3PD PE =.(2)如图2中,结论成立.理由:连接DE . 90DPE DAE ∠=∠=︒,A ∴,D ,E ,P 四点共圆,30PDE EAP CAB ∴∠=∠=∠=︒, ∴13tan30DP PE ==︒.(3)如图3中,由题意PM x =,4MN x =-,PDM EPN ∠=∠,90DMP PNE ∠=∠=︒, DMP PNE ∴∆∆∽, ∴3DM PM PDPN EN PE === ∴34DM xx EN==- 3(4)DM x ∴=-,3EN x , 22222[3(4)]2612PD DM PM x x x x ∴+-+-+26PE x x =-+2243612)0)y PD PE x x x ∴==-+=-+>,2433)y x =-+0>,∴当3x =时,y 有最小值,最小值为。
2020年内蒙古赤峰市初中毕业升学统一考试初中数学

2020年内蒙古赤峰市初中毕业升学统一考试初中数学数学试卷本卷须知:本试卷共150分,考试时刻120分钟.一、选择题〔每题给出的四个选项中,只有一个正确选项,请将正确选项的标号填入题后的括号内.每题3分,共30分〕1.假如a a -=-,以下成立的是〔 〕 A .0a <B .0a ≤C .0a >D .0a ≥2.把23x x c ++分解因式得:23(1)(2)x x c x x ++=++,那么c 的值为〔 〕A .2B .3C .2-D .3-3.分不剪一些边长相同的①正三角形,②正方形,③正五边形,④正六边形,假如用其中一种正多边形镶嵌,能够镶嵌成一个平面图案的有〔 〕 A .①②③B .②③④C .①②④D .①②③④都能够4.用表示三种不同的物体,现放在天平上比较两次,情形如下图,那么这三种物体按质量从大到小的顺序排列应为〔 〕A .B .C .D .5.下面的图表是护士统计的一位病人一天的体温变化情形:时刻 6:00 10:00 14:00 18:00 22:00 体温/℃37.638.338.039.137.9通过图表,估量那个病人下午16:00时的体温是〔 〕 A .38.0℃B .39.1℃C .37.6℃D .38.6℃6.给定一列按规律排列的数:111113579,,,,,它的第10个数是〔 〕A .115B .117C .119D .1217.如图,⊙O 1,⊙O 2,⊙O 3两两相外切,⊙O 1的半径11r =,⊙O 2的半径22r =,⊙O 3的半径33r =,那么321O O O ∆是〔 〕A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形8.如图是光明中学乒乓球队队员年龄分布的条形图.这些年龄的众数、中位数依次分不是〔 〕A .15,15B .15,15.5C .14.5,15D .14.5,14.59.由棱长为1的小正方体组成新的大正方体,假如不承诺切割,至少要几个小正方体〔 〕 A .4个B .8个C .16个D .27个10.在Rt ABC △中,90C ∠=, 5=BC ,15AC =,那么A ∠=〔 〕A .90B .60C .45D .30二、填空题〔本大题共8个小题,每题4分,共32分.请把答案填在题中横线上〕 11.如以下图,是一块三角形木板的残余部分,量得100A ∠=,40B ∠=,这块三角形木板另外一个角是 度.12.足球联赛得分规定如以下图,大地足球队在足球联赛的5场竞赛中得8分,那么那个队竞赛的胜、平、负的情形是 .13.星期天小华去书店买书时,从镜子内看到背后墙上一般时钟的时针〔粗〕与分针〔细〕的位置如下图,现在时针表示的时刻是 .〔按12小时制填写〕14.一次函数的图象过点(03),与(21),,那么那个一次函数y 随x 的增大而 .15.上小学五年级的小丽看见上初中的哥哥小勇用测树的影长和自己的影长的方法来测树高,她也学着哥哥的模样在同一时刻测得树的影长为5米,自己的影长为1米.要求得树高,还应测得 .16.如以下图,AC 平分BAD ∠,12∠=∠,3AB DC ==,那么BC = .17.如以下图,一块长方体大理石板的A B C ,,三个面上的边长如下图,假如大理石板的A 面向下放在地上时地面所受压强为m 帕,那么把大理石板B 面向下放在地下上,地面所受压强是 帕.18.九年级三班共有学生54人,学习委员调查了班级学生参加课外活动情形〔每人只参加一项活动〕,其中:参加读书活动的18人,参加科技活动的占全班总人数的16,参加艺术活动的比参加科技活动的多3人,其他同学参加体育活动.那么在扇形图中表示参加体育活动人数的扇形的圆心角是 度.三、解答题〔本大题共7个题,总分值88分,解答时应写出文字讲明、证明过程或演算步骤〕19.〔此题总分值16分〕 〔1〕解分式方程:1321322=+--x x x〔2〕假如1-是一元二次方程230x bx +-=的一个根,求它的另一根. 20.〔此题总分值10分〕如以下图,用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD 是菱形吗?假如是菱形请给出证明,假如不是菱形请讲明理由.21.〔此题总分值10分〕下面三张卡片上分不写有一个整式,把它的背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取一张,用列表或树形图求抽取的两张卡片上的整式的积能够化为二次三项式的概率是多少?22〔此题总分值12分〕天骄超市和金帝超市以同样的价格出售同样的商品,为了吸引顾客,两家超市都实行会员卡制度,在天骄超市累计购买500元商品后,发给天骄会员卡,再购买的商品按原价85%收费;在金帝超市购买300元的商品后,发给金帝会员卡,再购买的商品按原价90%收费,讨论顾客如何样选择商店购物能获得更大优待? 23.〔此题总分值12分〕如以下图,在海岸边有一港⊙O .:小岛A 在港⊙O 北偏东30的方向,小岛B 在小岛A 正南方向,60OA =海里,203OB =海里.运算: 〔1〕小岛B 在港⊙O 的什么方向? 〔2〕求两小岛A B ,的距离.24.〔此题总分值14分〕如以下图〔1〕,两半径为r 的等圆⊙O 1和⊙O 2相交于M N ,两点,且⊙O 2过点1O .过M 点作直线AB 垂直于MN ,分不交⊙O 1和⊙O 2于A B ,两点,连结NA NB ,. 〔1〕猜想点2O 与⊙O 1有什么位置关系,并给出证明; 〔2〕猜想NAB △的形状,并给出证明;〔3〕如图〔2〕,假设过M 的点所在的直线AB 不垂直于MN ,且点A B ,在点M 的两侧,那么〔2〕中的结论是否成立,假设成立请给出证明.25.〔此题总分值14分〕在平面直角坐标系中给定以下五个点17(30)(14)(03)(10)24A B C D E ⎛⎫-- ⎪⎝⎭,,,,,,,,,. 〔1〕请从五点中任选三点,求一条以平行于y 轴的直线为对称轴的抛物线的解析式; 〔2〕求该抛物线的顶点坐标和对称轴,并画出草图; 〔3〕点⎪⎭⎫ ⎝⎛-415,1F 在抛物线的对称轴上,直线174y =过点1714G ⎛⎫- ⎪⎝⎭,且垂直于对称轴.验证:以(10)E ,为圆心,EF 为半径的圆与直线174y =相切.请你进一步验证,以抛物线上的点1724D ⎛⎫⎪⎝⎭,为圆心DF 为半径的圆也与直线174y =相切.由此你能猜想到如何样的结论.。
2020年内蒙古赤峰市中考数学试卷

2020年内蒙古赤峰市中考数学试卷一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共计36分)1.(3分)|(﹣3)﹣5|等于()A.﹣8 B.﹣2 C.2 D.82.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C. D.3.(3分)风景秀美的赤峰有“草原明珠”的美称,赤峰市全域总面积为90021平方公里.90021用科学记数法表示为()A.9.0021×105 B.9.0021×104 C.90.021×103 D.900.21×1024.(3分)下列运算正确的是()A.3x+2y=5(x+y)B.x+x3=x4C.x2•x3=x6D.(x2)3=x65.(3分)直线a∥b,Rt△ABC的直角顶点C在直线a上,若∠1=35°,则∠2等于()A.65°B.50°C.55°D.60°6.(3分)能使式子+成立的x的取值范围是()A.x≥1 B.x≥2 C.1≤x≤2 D.x≤27.(3分)小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.B.C.D.8.(3分)下面几何体的主视图为()A.B.C.D.9.(3分)点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定10.(3分)如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF=2,则∠A=()A.120°B.100°C.60°D.30°11.(3分)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5 B.y=2x+5 C.y=2x+8 D.y=2x﹣812.(3分)正整数x、y满足(2x﹣5)(2y﹣5)=25,则x+y等于()A.18或10 B.18 C.10 D.26二、填空题(请把答案填写在答题卡相应的横线上,每小题3分,共12分)13.(3分)分解因式:xy2+8xy+16x=.14.(3分)如果关于x的方程x2﹣4x+2m=0有两个不相等的实数根,则m的取值范围是.15.(3分)数据5,6,5,4,10的众数、中位数、平均数的和是.16.(3分)在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标为(2,0),则点P2020的坐标为.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤,共10题,满分102分)17.(6分)(﹣)÷,其中a=2020°+(﹣)﹣1+tan30°.18.(6分)已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.19.(10分)为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A喜欢吃苹果的学生;B喜欢吃桔子的学生;C.喜欢吃梨的学生;D.喜欢吃香蕉的学生;E喜欢吃西瓜的学生,并将调查结果绘制成图1和图2 的统计图(不完整).请根据图中提供的数据解答下列问题:(1)求此次抽查的学生人数;(2)将图2补充完整,并求图1中的x;(3)现有5名学生,其中A类型3名,B类型2名,从中任选2名学生参加体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)20.(10分)王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)21.(10分)如图,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△ABC.(1)若点C在反比例函数y=的图象上,求该反比例函数的解析式;(2)点P(2,m)在第一象限,过点P作x轴的垂线,垂足为D,当△PAD 与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请加以说明.22.(10分)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.23.(12分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).24.(12分)如图1,在△ABC中,设∠A、∠B、∠C的对边分别为a,b,c,过点A作AD⊥BC,垂足为D,会有sin∠C=,则S△ABC=BC×AD=×BC×ACsin∠C=absin∠C,=absin∠C即S△ABC同理S=bcsin∠A△ABCS△ABC=acsin∠B通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:如图2,在△ABC中,若∠A、∠B、∠C的对边分别为a,b,c,则a2=b2+c2﹣2bccos∠Ab2=a2+c2﹣2accos∠Bc2=a2+b2﹣2abcos∠C用上面的三角形面积公式和余弦定理解决问题:(1)如图3,在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8.求S△DEF和DE2.=EF×DFsin∠F=;解:S△DEFDE2=EF2+DF2﹣2EF×DFcos∠F=.(2)如图4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分别是以AB、BC、AC为边长的等边三角形,设△ABC、△ABC'、△BCA'、△ACB'的面积分别为S1、S2、S3、S4,求证:S1+S2=S3+S4.25.(12分)△OPA和△OQB分别是以OP、OQ为直角边的等腰直角三角形,点C、D、E分别是OA、OB、AB的中点.(1)当∠AOB=90°时如图1,连接PE、QE,直接写出EP与EQ的大小关系;(2)将△OQB绕点O逆时针方向旋转,当∠AOB是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB绕点O旋转,当∠AOB为钝角时,延长PC、QD交于点G,使△ABG为等边三角形如图3,求∠AOB的度数.26.(14分)如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.2020年内蒙古赤峰市中考数学试卷参考答案与试题解析一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共计36分)1.(3分)(2020•赤峰)|(﹣3)﹣5|等于()A.﹣8 B.﹣2 C.2 D.8【分析】根据分式的减法和绝对值可以解答本题.【解答】解:|(﹣3)﹣5|=|﹣3﹣5|=|﹣8|=8,故选D.【点评】本题考查有理数的减法和绝对值,解答本题的关键是明确有理数减法的计算方法.2.(3分)(2020•赤峰)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C. D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2020•赤峰)风景秀美的赤峰有“草原明珠”的美称,赤峰市全域总面积为90021平方公里.90021用科学记数法表示为()A.9.0021×105 B.9.0021×104 C.90.021×103 D.900.21×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:90021用科学记数法表示为9.0021×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2020•赤峰)下列运算正确的是()A.3x+2y=5(x+y)B.x+x3=x4C.x2•x3=x6D.(x2)3=x6【分析】根据合并同类项、同底数幂的乘法、幂的乘方的计算法则计算,对各选项分析判断后利用排除法求解.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、x2•x3=x5,故C错误;D、(x2)3=x6,故D正确.故选:D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.5.(3分)(2020•赤峰)直线a∥b,Rt△ABC的直角顶点C在直线a上,若∠1=35°,则∠2等于()A.65°B.50°C.55°D.60°【分析】先根据直角为90°,即可得到∠3的度数,再根据平行线的性质,即可得出∠2的度数.【解答】解:∵Rt△ABC的直角顶点C在直线a上,∠1=35°,∴∠3=90°﹣35°=55°,又∵a∥b,∴∠2=∠3=55°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行同位角相等.6.(3分)(2020•赤峰)能使式子+成立的x的取值范围是()A.x≥1 B.x≥2 C.1≤x≤2 D.x≤2【分析】根据二次根式的意义:被开方数大于等于0,就可以求解.【解答】解:根据题意得:,解得:1≤x≤2.故选:C.【点评】本题考查了函数自变量的取值范围,涉及的知识点为:二次根式的被开方数是非负数.7.(3分)(2020•赤峰)小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.B.C.D.,进而得【分析】直接利用正方形的性质结合转化思想得出阴影部分面积=S△CEB出答案.【解答】解:如图所示:连接BE,可得,AE=BE,∠AEB=90°,=S△BEC=S正方形ABCD,且阴影部分面积=S△CEB故小明投掷飞镖一次,则飞镖落在阴影部分的概率为:.故选:B.【点评】此题主要考查了几何概率,正确利用正方形性质得出阴影部分面积=S△是解题关键.CEB8.(3分)(2020•赤峰)下面几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.【点评】本题考查了简单主题的三视图,从正面看得到的图形是主视图.9.(3分)(2020•赤峰)点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定【分析】根据反比例函数图象的增减性进行填空.【解答】解:∵反比例函数y=中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y1)、B(3,y2)都位于第一象限,且1<3,∴y1>y2,故选A.【点评】本题考查了反比例函数图象上点的坐标特征,熟记反比例函数图象与系数的关系以及函数图象的性质是解题的关键.10.(3分)(2020•赤峰)如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF=2,则∠A=()A.120°B.100°C.60°D.30°【分析】连接AC,根据菱形的性质得出AC⊥BD,根据折叠得出EF⊥AC,EF平分AO,得出EF∥BD,得出EF为△ABD的中位线,根据三角形中位线定理求出BD的长,进而可得到BO的长,由勾股定理可求出AO的长,则∠ABO可求出,继而∠BAO的度数也可求出,再由菱形的性质可得∠A=2∠BAO.【解答】解:连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴E、F分别为AB、AD的中点,∴EF为△ABD的中位线,∴EF=BD,∴BD=2EF=4,∴BO=2,∴AO==2,∴AO=AB,∴∠ABO=30°,∴∠BAO=60°,∴∠BAD=120°.故选A.【点评】本题考查了折叠的性质、菱形的性质、三角形中位线定理以及勾股定理的运用;熟练掌握菱形的性质和翻折变换的性质,并能进行推理论证与计算是解决问题的关键.11.(3分)(2020•赤峰)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5 B.y=2x+5 C.y=2x+8 D.y=2x﹣8【分析】根据函数图象上加下减,可得答案.【解答】解:由题意,得y=2x﹣3+8,即y=2x+5,故选:B.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律是解题关键.12.(3分)(2020•赤峰)正整数x、y满足(2x﹣5)(2y﹣5)=25,则x+y等于()A.18或10 B.18 C.10 D.26【分析】易得(2x﹣5)、(2y﹣5)均为整数,分类讨论即可求得x、y的值即可解题.【解答】解:∵x、y是正整数,且最小的正整数为1,∴2x﹣5是整数且最小整数为﹣3,2y﹣5是整数且最小的整数为﹣3∵25=1×25,或25=5×5,∴存在两种情况:①2x﹣5=1,2y﹣5=25,解得:x=3,y=15,;②2x﹣5=2y﹣5=5,解得:x=y=5;∴x+y=18或10,故选A.【点评】本题考查了整数的乘法,本题中根据25=1×25或25=5×5分类讨论是解题的关键.二、填空题(请把答案填写在答题卡相应的横线上,每小题3分,共12分)13.(3分)(2020•赤峰)分解因式:xy2+8xy+16x=x(y+4)2.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:xy2+8xy+16x=x(y2+8y+16)=x(y+4)2.故答案为:x(y+4)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.(3分)(2020•赤峰)如果关于x的方程x2﹣4x+2m=0有两个不相等的实数根,则m的取值范围是m<2.【分析】根据方程的系数结合根的判别式,即可得出△=16﹣8m>0,解之即可得出m的取值范围.【解答】解:∵关于x的方程x2﹣4x+2m=0有两个不相等的实数根,∴△=(﹣4)2﹣4×2m=16﹣8m>0,解得:m<2.故答案为:m<2.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.15.(3分)(2020•赤峰)数据5,6,5,4,10的众数、中位数、平均数的和是16.【分析】根据众数、中位数和平均数的概念分别求出这组数据的众数、中位数和平均数,再相加即可.【解答】解:数据5出现了2次,次数最多,所以众数是5;数据按从小到大排列为4,5,5,6,10,中位数为5;平均数=(5+6+5+4+10)÷5=6;5+5+6=16.故答案为16.【点评】本题考查了平均数,中位数,众数的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.16.(3分)(2020•赤峰)在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标为(2,0),则点P2020的坐标为(2,0).【分析】求得点P2、P3、P4、P5的值,即可发现其中规律,即可解题.【解答】解:P1坐标为(2,0),则P2坐标为(1,4),P3坐标为(﹣3,3),P4坐标为(﹣2,﹣1),P5坐标为(2,0),∴P n的坐标为(2,0),(1,4),(﹣3,3),(﹣2,﹣1)循环,∵2020=2016+1=4×504+1,∴P2020坐标与P1点重合,故答案为(2,0).【点评】本题考查了学生发现点的规律的能力,本题中找到P n坐标得规律是解题的关键.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤,共10题,满分102分)17.(6分)(2020•赤峰)(﹣)÷,其中a=2020°+(﹣)﹣1+tan30°.【分析】先化简分式,然后再化简a的值,从而可求出原式的值.【解答】解:原式=×﹣×=﹣=由于a=2020°+(﹣)﹣1+tan30°,∴a=1﹣5+3=﹣1∴原式=﹣=﹣2【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.(6分)(2020•赤峰)已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.【分析】(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠4.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠4,据此可得出结论.【解答】解:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.19.(10分)(2020•赤峰)为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A喜欢吃苹果的学生;B喜欢吃桔子的学生;C.喜欢吃梨的学生;D.喜欢吃香蕉的学生;E喜欢吃西瓜的学生,并将调查结果绘制成图1和图2 的统计图(不完整).请根据图中提供的数据解答下列问题:(1)求此次抽查的学生人数;(2)将图2补充完整,并求图1中的x;(3)现有5名学生,其中A类型3名,B类型2名,从中任选2名学生参加体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)【分析】(1)根据百分比=计算即可;(2)求出B、C的人数画出条形图即可;(3)利用树状图,即可解决问题;【解答】解:(1)此次抽查的学生人数为16÷40%=40人.(2)C占40×10%=4人,B占20%,有40×20%=8人,条形图如图所示,(3)由树状图可知:两名学生为同一类型的概率为=.【点评】本题考查列表法、树状图法、扇形统计图、条形统计图等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(10分)(2020•赤峰)王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)【分析】根据题意作出合适的辅助线,可以求得AD和CD的长,进而可以求得DB的长,然后根据勾股定理即可得到AB的长,然后与17比较大小,即可解答本题.【解答】解:王浩同学能将手机放入卡槽AB内.理由:作AD⊥BC于点D,∵∠C=50°,AC=20cm,∴AD=AC•sin50°=20×0.8=16cm,CD=AC•cos50°=20×0.6=12cm,∵BC=18cm,∴DB=BC﹣CD=18﹣12=6cm,∴AB==,∵17=<,∴王浩同学能将手机放入卡槽AB内.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用直角三角形的相关知识解答.21.(10分)(2020•赤峰)如图,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△ABC.(1)若点C在反比例函数y=的图象上,求该反比例函数的解析式;(2)点P(2,m)在第一象限,过点P作x轴的垂线,垂足为D,当△PAD 与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请加以说明.【分析】(1)由直线解析式可求得A、B坐标,在Rt△AOB中,利用三角函数定义可求得∠BAO=30°,且可求得AB的长,从而可求得CA⊥OA,则可求得C点坐标,利用待定系数法可求得反比例函数解析式;(2)分△PAD∽△ABO和△PAD∽△BAO两种情况,分别利用相似三角形的性质可求得m的值,可求得P点坐标,代入反比例函数解析式进行验证即可.【解答】解:(1)在y=﹣x+1中,令y=0可解得x=,令x=0可得y=1,∴A(,0),B(0,1),∴tan∠BAO===,∴∠BAO=30°,∵△ABC是等边三角形,∴∠BAC=60°,∴∠CAO=90°,在Rt△BOA中,由勾股定理可得AB=2,∴AC=2,∴C(,2),∵点C在反比例函数y=的图象上,∴k=2×=2,∴反比例函数解析式为y=;(2)∵P(2,m)在第一象限,∴AD=OD﹣OA=2﹣=,PD=m,当△ADP∽△AOB时,则有=,即=,解得m=1,此时P点坐标为(2,1);当△PDA∽△AOB时,则有=,即=,解得m=3,此时P点坐标为(2,3);把P(2,3)代入y=可得3≠,∴P(2,3)不在反比例函数图象上,把P(2,1)代入反比例函数解析式得1=,∴P(2,1)在反比例函数图象上;综上可知P点坐标为(2,1).【点评】本题为反比例函数的综合应用,涉及待定系数法、等边三角形的性质、三角函数、勾股定理、相似三角形的性质及分类讨论思想等知识.在(1)中求得C点坐标是解题的关键,在(2)中利用相似三角形的性质得到m的方程是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度适中.22.(10分)(2020•赤峰)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.【分析】(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;(2)设购买梨树苗种树苗a棵,苹果树苗则购买(1100﹣a)棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,依题意得:=,解得x=5.经检验x=5是原方程的解,且符合题意.答:梨树苗的单价是5元;(2)设购买梨树苗种树苗a棵,苹果树苗则购买(1100﹣a)棵,依题意得:(5+2)(1100﹣a)+5a≤6000,解得a≥850.答:梨树苗至少购买850棵.【点评】本题考查了列分式方程解实际问题的运用,一元一次不等式解实际问题的运用,解答时由方程求出两种树苗的单价是关键.23.(12分)(2020•赤峰)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).【分析】(1)由已知条件得到△BOC是等边三角形,根据等边三角形的性质得到∠1=∠2=60°,由角平分线的性质得到∠1=∠3,根据平行线的性质得到∠OAM=90°,于是得到结论;(2)根据等边三角形的性质得到∠OAC=60°,根据三角形的内角和得到∠CAD=30°,根据勾股定理得到AD=2,于是得到结论.【解答】解:(1)∵∠B=60°,∴△BOC是等边三角形,∴∠1=∠2=60°,∵OC平分∠AOB,∴∠1=∠3,∴∠2=∠3,∴OA∥BD,∴∠BDM=90°,∴∠OAM=90°,∴AM是⊙O的切线;(2)∵∠3=60°,OA=OC,∴△AOC是等边三角形,∴∠OAC=60°,∵∠OAM=90°,∴∠CAD=30°,∵CD=2,∴AC=2CD=4,∴AD=2,∴S阴影=S梯形OADC﹣S扇形OAC=(4+2)×2﹣=6﹣.【点评】本题考查了切线的判定和性质,等边三角形的性质和判定,平行线的性质,正确的作出辅助线是解题的关键.24.(12分)(2020•赤峰)如图1,在△ABC中,设∠A、∠B、∠C的对边分别为a,b,c,过点A作AD⊥BC,垂足为D,会有sin∠C=,则S△ABC=BC×AD=×BC×ACsin∠C=absin∠C,即S=absin∠C△ABC=bcsin∠A同理S△ABCS△ABC=acsin∠B通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:如图2,在△ABC中,若∠A、∠B、∠C的对边分别为a,b,c,则a2=b2+c2﹣2bccos∠Ab2=a2+c2﹣2accos∠Bc2=a2+b2﹣2abcos∠C用上面的三角形面积公式和余弦定理解决问题:(1)如图3,在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8.求S△DEF 和DE2.解:S=EF×DFsin∠F=6;△DEFDE2=EF2+DF2﹣2EF×DFcos∠F=49.(2)如图4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分别是以AB、BC、AC为边长的等边三角形,设△ABC、△ABC'、△BCA'、△ACB'的面积分别为S1、S2、S3、S4,求证:S1+S2=S3+S4.【分析】(1)直接利用正弦定理和余弦定理即可得出结论;(2)方法1、利用正弦定理得出三角形的面积公式,再利用等边三角形的性质即可得出结论;方法2、先用正弦定理得出S1,S2,S3,S4,最后用余弦定理即可得出结论.【解答】解:(1)在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8,∴EF=3,DF=8,=EF×DFsin∠F=×3×8×sin60°=6,∴S△DEFDE2=EF2+DF2﹣2EF×DFcos∠F=32+82﹣2×3×8×cos60°=49,故答案为:6,49;(2)证明:方法1,∵∠ACB=60°,∴AB2=AC2+BC2﹣2AC•BCcos60°=AC2+BC2﹣AC•BC,两边同时乘以sin60°得,AB2sin60°=AC2sin60°+BC2sin60°﹣AC•BCsin60°,∵△ABC',△BCA',△ACB'是等边三角形,∴S1=AC•BCsin60°,S2=AB2sin60°,S3=BC2sin60°,S4=AC2sin60°,∴S2=S4+S3﹣S1,∴S1+S2=S3+S4,方法2、令∠A,∠B,∠C的对边分别为a,b,c,∴S1=absin∠C=absin60°=ab∵△ABC',△BCA',△ACB'是等边三角形,∴S2=c•c•sin60°=c2,S3=a•a•sin60°=a2,S4=b•b•sin60°=b2,∴S1+S2=(ab+c2),S3+S4=(a2+b2),∵c2=a2+b2﹣2ab•cos∠C=a2+b2﹣2ab•cos60°,∴a2+b2=c2+ab,∴S1+S2=S3+S4.【点评】此题是三角形综合题,主要考查了新定义的理解和应用,解本题的关键是理解新定义,会用新定义解决问题.25.(12分)(2020•赤峰)△OPA和△OQB分别是以OP、OQ为直角边的等腰直角三角形,点C、D、E分别是OA、OB、AB的中点.(1)当∠AOB=90°时如图1,连接PE、QE,直接写出EP与EQ的大小关系;(2)将△OQB绕点O逆时针方向旋转,当∠AOB是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB绕点O旋转,当∠AOB为钝角时,延长PC、QD交于点G,使△ABG为等边三角形如图3,求∠AOB的度数.【分析】(1)先判断出点P,O,Q在同一条直线上,再判断出△APE≌△BFE,最后用直角三角形的斜边的中线等于斜边的一半即可得出结论;(2)先判断出CE=DQ,PC=DE,进而判断出△EPC≌△QED即可得出结论;(3)先判断出CQ,GP分别是OB,OA的垂直平分线,进而得出∠GBO=∠GOB,∠GOA=∠GAO,即可得出结论.【解答】解:(1)如图1,延长PE,QB交于点F,∵△APO和△BQO是等腰直角三角形,∴∠APO=∠BQO=90°,∠AOP=∠BOQ=45°,∵∠AOB=90°,∴∠AOP+∠AOB+∠BOQ=180°,∴点P,O,Q在同一条直线上,∵∠APO=∠BQO=90°,∴AP∥BQ,∴∠PAE=∠FBE,∵点E是AB中点,∴AE=BE,∵∠AEP=∠BEF,∴△APE≌△BFE,∴PE=EF,∴点E是Rt△PQF的斜边PF的中点,∴EP=EQ;(2)成立,证明:∵点C,E分别是OA,AB的中点,∴CE∥OB,CE=OB,∴∠DOC=∠ECA,∵点D是Rt△OQB斜边中点,∴DQ=OB,∴CE=DQ,同理:PC=DE,∠DOC=∠BDE,∴∠ECA=∠BDE,∵∠PCE=∠EDQ,∴△EPC≌△QED,∴EP=EQ;(3)如图2连接GO,∵点D,C分别是OB,OA的中点,△APO与△QBO都是等腰直角三角形,∴CQ,GP分别是OB,OA的垂直平分线,∴GB=GO=GA,∴∠GBO=∠GOB,∠GOA=∠GAO,设∠GOB=x,∠GOA=y,∴x+x+y+y+60°=360°∴x+y=150°,∴∠AOB=150°.【点评】此题是几何变换综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,直角三角形的性质,线段的垂直平分线的性质,解(1)的关键是构造全等三角形,解(2)的关键是判断出CE=DQ,解(3)的关键是判断出CQ,GP分别是OB,OA的垂直平分线,是一道中等难度的题目.26.(14分)(2020•赤峰)如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.【分析】(1)可设抛物线解析式为顶点式,由B点坐标可求得抛物线的解析式,则可求得D点坐标,利用待定系数法可求得直线BD解析式;(2)设出P点坐标,从而可表示出PM的长度,利用二次函数的性质可求得其最大值;(3)过Q作QG∥y轴,交BD于点G,过Q和QH⊥BD于H,可设出Q点坐标,表示出QG的长度,由条件可证得△DHG为等腰直角三角形,则可得到关于Q 点坐标的方程,可求得Q点坐标.【解答】解:(1)∵抛物线的顶点C的坐标为(1,4),∴可设抛物线解析式为y=a(x﹣1)2+4,∵点B(3,0)在该抛物线的图象上,∴0=a(3﹣1)2+4,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3,∵点D在y轴上,令x=0可得y=3,∴D点坐标为(0,3),∴可设直线BD解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BD解析式为y=﹣x+3;(2)设P点横坐标为m(m>0),则P(m,﹣m+3),M(m,﹣m2+2m+3),∴PM=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,∴当m=时,PM有最大值;(3)如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设Q(x,﹣x2+2x+3),则G(x,﹣x+3),∴QG=|﹣x2+2x+3﹣(﹣x+3)|=|﹣x2+3x|,∵△BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,当△BDQ中BD边上的高为2时,即QH=HG=2,∴QG=×2=4,∴|﹣x2+3x|=4,当﹣x2+3x=4时,△=9﹣16<0,方程无实数根,当﹣x2+3x=﹣4时,解得x=﹣1或x=4,∴Q(﹣1,0)或(4,﹣5),综上可知存在满足条件的点Q,其坐标为(﹣1,0)或(4,﹣5).【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识.在(1)中主要是待定系数法的考查,注意抛物线顶点式的应用,在(2)中用P点坐标表示出PM的长是解题的关键,在(3)中构造等腰直角三角形求得QG的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2020年内蒙古赤峰中考数学试题及答案

某校60名学生体育测试成绩频数分布表
成绩
划记
频数
百分比
优秀
a
30%
良好
30
b
合格
9
15%
不合格
3
5%
合计
又∵PA=PC,故 PAC为等腰三角形,∠PAC=∠PCA,∠PAC是 所对圆周角,∠PCA是 所对圆周角,
∴ = ,且∠PBA是 所对圆周角,故∠PAC=∠PCA=∠PBA,
∵AB是⊙O的直径,直径所对圆周角为直角,
∴∠APB=90°,故∠APO+∠OPB=90°,
又∵OP=OB,故 OPB为等腰三角形,∠OPB=∠OBP,
三、解答题(在答题卡上解答,箐在本试卷上无效,解箸时妻写出必要的文字说明、证明过程或演算步骤.共8题,满分96分) .
19.先化简,再求值: ,其中m满足: .
20.小琪同学和爸爸妈妈一起回老家给奶奶过生日,他们为奶奶准备了一个如图所示的正方形蛋糕,蛋糕的每条边上均匀镶嵌着4颗巧克力.爸爸要求小琪只切两刀把蛋糕平均分成4份,使每个人分得的蛋糕和巧克力数都相等.
25.如图,巳知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,直线 经过B,C两点.
(1)直接写出二次函数的解析式;
(2)平移直线BC,当直线BC与抛物线有唯一公共点Q时,求此时点Q的坐标;
(3)过(2)中的点Q作QE//y轴,交x轴于点E.若点M是抛物线上一个动点,点N是x轴上一个动点.是否存在以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似?如果存在,请直接写出满足条件的点M的个数和其中一个符合条件的点M的坐标;如果不存在,请说明理由.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年内蒙古赤峰市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共14小题,共42.0分)1.实数|−5|,−3,0,√4中,最小的数是()A. |−5|B. −3C. 0D. √42.2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A. 99×10−10B. 9.9×10−10C. 9.9×10−9D. 0.99×10−83.下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()A. 等边三角形B. 平行四边形C. 正八边形D. 圆及其一条弦4.学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是()A. 平均数B. 中位数C. 众数D. 方差5.下列计算正确的是()A. a2+a3=a5B. 3√2−2√2=1C. (x2)3=x5D. m5÷m3=m26.不等式组{x+2>0−2x+4≥0的解集在数轴上表示正确的是()A. B.C. D.7.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=3,把Rt△ABC沿直线BC向右平移3个单位长度得到△A′B′C′,则四边形ABC′A′的面积是()A. 15B. 18C. 20D. 228.如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=8,BC=14,则EF的长是()A. 2B. 3C. 4D. 59.估计(2√3+3√2)×√1的值应在()3A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间10.如图,△ABC中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA=3,则△ABC外接圆的面积为()A. 3πB. 4πC. 6πD. 9π11.如图,⊙A经过平面直角坐标系的原点O,交x轴于点B(−4,0),交y轴于点C(0,3),点D为第二象限内圆上一点.则∠CDO的正弦值是()A. 35B. −34C. 34D. 4512.某几何体的三视图及相关数据(单位:cm)如图所示,则该几何体的侧面积是()A. 652πcm2B. 60πcm2C. 65πcm2D. 130πcm213.如图,点B在反比例函数y=6x(x>0)的图象上,点C在反比例函数y=−2x(x>0)的图象上,且BC//y轴,AC⊥BC,垂足为点C,交y轴于点A.则△ABC的面积为()A. 3B. 4C. 5D. 614.如图,在菱形ABCD中,∠B=60°,AB=2.动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一点也随之停止.设△APQ的面积为y,运动时间为x秒.则下列图象能大致反映y 与x之间函数关系的是()A. B.C. D.二、填空题(本大题共4小题,共12.0分)15.一个正n边形的内角和是它外角和的4倍,则n=______.16.如图,航拍无人机从A处测得一幢建筑物顶部C的仰角是30°,测得底部B的俯角是60°,此时无人机与该建筑物的水平距离AD是9米,那么该建筑物的高度BC为______米(结果保留根号).17.某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30b合格915%不合格35%合计6060100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为______人.18.一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为______.三、解答题(本大题共8小题,共96.0分)19.先化简,再求值:m−m2−1m2+2m+1÷m−1m,其中m满足:m2−m−1=0.20.小琪同学和爸爸妈妈一起回老家给奶奶过生日,他们为奶奶准备了一个如图所示的正方形蛋糕,蛋糕的每条边上均匀镶嵌着4颗巧克力.爸爸要求小琪只切两刀把蛋糕平均分成4份,使每个人分得的蛋糕和巧克力数都相等.(1)请你在图1中画出一种分法(无需尺规作图);(2)如图2,小琪同学过正方形的中心切了一刀,请你用尺规作图帮她作出第2刀所在的直线.(不写作法,保留作图痕迹)21.如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC的三个顶点处各有一个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率为______;(2)丫丫和甲甲一起玩跳图游戏:丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A为胜者.这个游戏规则公平吗?请说明理由.22.甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?23.如图,AB是⊙O的直径,AC是⊙O的一条弦,点P是⊙O上一点,且PA=PC,PD//AC,与BA的延长线交于点D.(1)求证:PD是⊙O的切线;(2)若tan∠PAC=23,AC=12,求直径AB的长.24.阅读理解:材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三数组”.材料二:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2=−ba ,x1⋅x2=ca.问题解决:(1)请你写出三个能构成“和谐三数组”的实数______;(2)若x1,x2是关于x的方程ax2+bx+c=0(a,b,c均不为0)的两根,x3是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;(3)若A(m,y1),B(m+1,y2),C(m+3,y3)三个点均在反比例函数y=4的图象上,x 且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.25.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(1,0),B(4,0)两x+2经过B,C两点.点,与y轴交于点C,直线y=−12(1)直接写出二次函数的解析式______;(2)平移直线BC,当直线BC与抛物线有唯一公共点Q时,求此时点Q的坐标;(3)过(2)中的点Q作QE//y轴,交x轴于点E.若点M是抛物线上一个动点,点N是x轴上一个动点,是否存在以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似?如果存在,请直接写出满足条件的点M的个数和其中一个符合条件的点M的坐标;如果不存在,请说明理由.26.如图,矩形ABCD中,点P为对角线AC所在直线上的一个动点,连接PD,过点P作PE⊥PD,交直线AB于点E,过点P作MN⊥AB,交直线CD于点M,交直线AB于点N.AB=4√3,AD=4.(1)如图1,①当点P在线段AC上时,∠PDM和∠EPN的数量关系为:∠PDM______∠EPN;②DP的值是______;PE(2)如图2,当点P在CA延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;(3)如图3,以线段PD,PE为邻边作矩形PEFD.设PM的长为x,矩形PEFD的面积为y.请直接写出y与x之间的函数关系式及y的最小值.答案和解析1.【答案】B【解析】解:∵|−5|=5,√4=2,−3<0<2<5,∴−3是最小的数,故选:B.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数比较大小,绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【答案】C【解析】解:0.0000000099=9.9×10−9,故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C=120°;【解析】解:A、最小旋转角度=360°3=180°;B、最小旋转角度=360°2=45°;C、最小旋转角度=360°8D、最小旋转角度=360°;综上可得:旋转一定角度后,能与原图形完全重合,且旋转角度最小的是C.故选:C.求出各旋转对称图形的最小旋转角度,继而可作出判断.本题考查了旋转对称图形的知识,求出各图形的最小旋转角度是解题关键.4.【答案】B【解析】解:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分7个有效评分与9个原始评分相比,不变的数字特征是中位数.故选:B.根据平均数、中位数、众数、方差的意义即可求解.本题考查了平均数、中位数、众数、方差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.5.【答案】D【解析】解:A、a2+a3,无法计算,故此选项错误;B、3√2−2√2=√2,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.【答案】C【解析】解:解不等式x+2>0,得:x>−2,解不等式−2x+4≥0,得:x≤2,则不等式组的解集为−2<x≤2,故选:C.分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.7.【答案】A【解析】解:∵把Rt△ABC沿直线BC向右平移3个单位长度得到△A′B′C′,∴A′B′=AB=5,A′C′=AC=3,∠A′C′B′=∠ACB=90°,A′A=CC′=3,∴B′C′=√52−32=4,AC//A′C′,∴四边形ACC′A′是矩形,∴四边形ABC′A′的面积=12(AA′+BC′)⋅AC=12×(3+4+3)×3=15,故选:A.根据平移的性质得到A′B′=AB=5,A′C′=AC=3,∠A′C′B′=∠ACB=90°,A′A= CC′=3,由勾股定理得到B′C′=√52−32=4,根据梯形的面积公式即可得到结论.本题考查了勾股定理,梯形的面积,平移的性质等知识点的应用,主要考查学生综合运用性质进行计算的能力,题目比较典型,但难度不大.8.【答案】B【解析】解:∵点D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∵BC=14,∴DE=12BC=7,∵∠AFB=90°,AB=8,∴DF=12AB=4,∴EF=DE−DF=7−4=3,故选:B.根据三角形中位线定理和直角三角形的性质即可得到结论.本题考查了三角形中位线定理,直角三角形的性质,熟练掌握三角形中位线定理是解题的关键.9.【答案】A【解析】解:原式=2+√6,∵2<√6<3,∴4<2+√6<5,故选:A.先根据二次根式的运算法则进行计算,再估算无理数的大小.本题主要考查了二次根式的乘法,无理数的大小估算,关键是正确掌握二次根式的摊牌法则.10.【答案】D【解析】解:∵AB=AC,AD是∠BAC的平分线,∴BD=CD,AD⊥BC,∵EF是AC的垂直平分线,∴点O是△ABC外接圆的圆心,∵OA=3,∴△ABC外接圆的面积为9π.故选:D.由等腰三角形的性质得出BD=CD,AD⊥BC,则点O是△ABC外接圆的圆心,则由圆的面积公式可得出答案.本题考查了等腰三角形的性质,三角形的外接圆与外心,线段垂直平分线的性质等知识,解题的关键是熟练掌握三角形的外接圆和外心的概念和性质.11.【答案】A【解析】解:连接BC,如图,∵B(−4,0),C(0,3),∴OB=4,OC=3,∴BC=√32+42=5,∴sin∠OBC=OCBC =35,∵∠ODC=∠OBC,∴sin∠CDO=sin∠OBC=35.故选:A.连接BC,如图,先利用勾股定理计算出BC=5,再根据正弦的定义得到sin∠OBC=35,再根据圆周角定理得到∠ODC=∠OBC,从而得到ssin∠CDO的值.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.【答案】C【解析】解:观察图形可知:圆锥母线长为:√52+122=13,所以圆锥侧面积为:πrl=5×13×π=65π(cm2).答:该几何体的侧面积是65πcm2.故选:C.根据几何体的三视图得这个几何体是圆锥,再根据圆锥的侧面是扇形即可求解.本题考查了几何体的表面积,解决本题的关键是根据几何体的三视图得几何体,再根据几何体求其侧面积.13.【答案】B【解析】解:过B点作BH⊥y轴于H点,BC交x轴于D,如图,∵BC//y轴,AC⊥BC,∴四边形ACDO和四边形ODBH都是矩形,∴S矩形OACD=|−2|=2,S矩形ODBH=|6|=6,∴S矩形ACBD=2+6=8,∴△ABC的面积=12S矩形ACBD=4.故选:B.过B点作BH⊥y轴于H点,BC交x轴于D,如图,利用反比例函数系数k的几何意义得到S矩形OACD=2,S矩形ODBH=6,则S矩形ACBD=8,然后根据矩形的性质得到△ABC的面积.本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.14.【答案】A【解析】解:当0≤x≤2时,如图1,过点Q作QH⊥AB于H,由题意可得BP=AQ=x,∵在菱形ABCD中,∠B=60°,AB=2,∴AB=BC=AD=CD,∠B=∠D=60°,∴△ABC和△ADC都是等边三角形,∴AC=AB=2,∠BAC=60°=∠ACD,∵sin∠BAC=HQAQ,∴HQ=AQ⋅sin60°=√32x,∴△APQ的面积=y=12(2−x)×√32x=−√34(x−1)2+√34;当2<x≤4时,如图2,过点Q作QN⊥AC于N,由题意可得AP=CQ=x−2,∵sin∠ACD=NQCQ =√32,∴NQ=√32(x−2),∴△APQ的面积=y=12(x−2)×√32(x−2)=√34(x−2)2,∴该图象开口向上,对称轴为直线x=2,∴在2<x≤4时,y随x的增大而增大,∴当x=4时,y有最大值为√3,故选:A.由菱形的性质可证△ABC和△ADC都是等边三角形,可得AC=AB=2,∠BAC=60°=∠ACD,分两种情况讨论,由锐角三角函数和三角形的面积公式可求y与x之间函数关系,由二次函数的性质可求解.本题考查了动点问题的函数图象,菱形的性质,等边三角形的判定和性质,锐角三角函数,二次函数的性质等知识,利用分类讨论思想解决问题是本题的关键.15.【答案】10【解析】解:多边形的外角和是360°,根据题意得:180°⋅(n−2)=360°×4,解得n=10.故答案为:10.利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的4倍列出方程求解即可.本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.16.【答案】12√3【解析】解:根据题意可知:在Rt△ADC中,∠CAD=30°,AD=9,=3√3,∴CD=AD⋅tan30°=9×√33在Rt△ADB中,∠BAD=60°,AD=9,∴BD=AD⋅tan60°=9√3,∴BC=CD+BD=3√3+9√3=12√3(米).答;该建筑物的高度BC为12√3米.故答案为:12√3.根据题意可得在Rt△ADC中,∠CAD=30°,AD=9,在Rt△ADB中,∠BAD=60°,AD=9,再根据特殊角三角函数即可分别求出CD和BD的长,进而可得该建筑物的高度BC.本题考查了解直角三角形的应用−仰角俯角问题,解决本题的关键是掌握仰角俯角定义.17.【答案】240【解析】解:根据频数分布表可知:9÷15%=60,∴a=60×30%=18,b=1−30%−15%−5%=50%,∴300×(30%+50%)=240(人).答:估计该校七年级学生身体素质良好及以上的人数为240人.故答案为:240.根据频数分布表数据可得a 和b 的值,进而可以估计该校七年级学生身体素质良好及以上的人数.本题考查了频数分布表、总体、个体、样本、样本容量、用样本估计总体,解决本题的关键是掌握统计的相关知识.18.【答案】122019【解析】解:第一次落点为A 1处,点A 1表示的数为1;第二次落点为OA 1的中点A 2,点A 2表示的数为12;第三次落点为OA 2的中点A 3,点A 3表示的数为(12)2;…则点A 2020表示的数为(12)2019,即点A 2020表示的数为122019;故答案为:122019.根据题意,得第一次跳动到A 1处,离原点为1个单位,第二次跳到OA 1的中点A 2处,即在离原点12个单位处,第三次从A 2点跳动到A 3处,即距离原点(12)2处,依此即可求解. 本题考查了数轴,是一道找规律的题目,本题注意根据线段中点的定义表示出各个点跳动的规律. 19.【答案】解:原式=m −(m+1)(m−1)(m+1)2⋅m m−1=m −m m +1=m 2m+1,∵m 2−m −1=0,∴m 2=m +1,∴原式=m+1m+1=1.【解析】根据分式乘法法则和减法法则化简原式,再将已知方程变形为m 2=m +1,最后代入求值便可.本题主要考查分式乘法法则和减法法则,求代数式的值,考查了整体代入思想,关键是熟练掌握分式混合运算的顺序和运算法则,解题技巧是将已知方程变形,巧用整体代入思想可快速求值.20.【答案】解:(1)如图,直线a,直线b即为所求.(2)如图,直线c即为所求.【解析】(1)作正方形的对角线即可.(2)连接AC交直线EF于O,过点O作直线c⊥EF即可.本题考查作图−应用与设计,正方形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.【答案】14【解析】解:(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率=14;(2)这个游戏规则不公平.理由如下:画树状图为:共有16种等可能的结果,其中甲甲随机投掷两次骰子,最终落回到圈A的结果数为5,所以甲甲随机投掷两次骰子,最终落回到圈A的概率=516,因为14<516,所以这个游戏规则不公平.(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,找出甲甲随机投掷两次骰子,最终落回到圈A的结果数,则可计算出甲甲随机投掷两次骰子,最终落回到圈A的概率,然后通过比较她们回到圈A的概率的大小可判断游戏是否公平.本题考查了游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.也考查了树状图法.22.【答案】解:(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,依题意,得:500x −5002x=5,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天修路100米,乙工程队每天修路50米.(2)设安排乙工程队施工m天,则安排甲工程队施工3600−50m100=(36−0.5m)天,依题意,得:0.5m+1.2(36−0.5m)≤40,解得:m≥32.答:至少安排乙工程队施工32天.【解析】(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,根据工作时间=工作总量÷工作效率结合两队各自修建公路500m时甲队比乙队少用5天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设安排乙工程队施工m天,则安排甲工程队施工(36−0.5m)天,根据总费用不超过40万元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.【答案】解:(1)连接PO,交AC于H,∵PA=PC,∴∠PAC=∠PCA,∵∠PCA=∠PBA,∴∠PAC=∠PCA=∠PBA,∵DP//AC,∴∠DPA=∠PAC=∠PCA=∠PBA,∵OA=OP,∴∠PAO=∠OPA,∵AB是直径,∴∠APB=90°,∴∠PAB+∠ABP=90°,∴∠OPA+∠DPA=90°,∴∠DPO=90°,又∵OP是半径,∴DP是⊙O的切线;(2)∵DP//AC,∠DPO=90°,∴∠DPO=∠AHO=90°,又∵PA=PC,∴AH=HC=12AC=6,∵tan∠PAC=PHAH =23,∴PH=23×AH=4,∵AO2=AH2+OH2,∴AO2=36+(OA−4)2,∴OA=132,∴AB=2OA=13.【解析】(1)连接PO,交AC于H,由等腰三角形的性质可得∠PAC=∠PCA,∠PAO=∠OPA,由平行线的性质和圆周角定理可得∠DPA=∠PAC=∠PCA=∠PBA,∠APB= 90°,可证∠DPO=90°,可得结论;(2)由等腰三角形的性质可求AH=HC=12AC=6,由锐角三角函数可求PH=4,由勾股定理可求AO的长,即可求解.本题考查了切线的判定和性质,圆周角定理,等腰三角形的性质,勾股定理,锐角三角函数等知识,灵活运用这些性质解决问题是本题的关键.24.【答案】如12,13,15【解析】解:(1)根据题意得,能构成“和谐三数组”的实数有,12,13,15; 理由:12的倒数为2,13的倒数为3,15的倒数为5,而2+3=5, ∴12,13,15能过程“和谐三数组”, 故答案为:如∴12,13,15;(2)证明:∵x 1,x 2是关于x 的方程ax 2+bx +c =0(a,b ,c 均不为0)的两根, ∴x 1+x 2=−b a ,x 1⋅x 2=ca , ∴1x 1+1x 2=x 1+x 2x 1x 2=−bc ,∵x 3是关于x 的方程bx +c =0(b,c 均不为0)的解, ∴x 3=−cb ,∴1x 3=−bc ,∴1x 1+1x 2=1x 3,∴x 1,x 2,x 3可以构成“和谐三数组”;(3)A(m,y 1),B(m +1,y 2),C(m +3,y 3)三点的纵坐标恰好构成“和谐三数组”, ∵A(m,y 1),B(m +1,y 2),C(m +3,y 3)三个点均在反比例函数y =4x 的图象上, ∴y 1=4m ,y 2=4m+1,y 3=4m+3, ∴1y 1=m 4,1y 2=m+14,1y 3=m+34,∵A(m,y 1),B(m +1,y 2),C(m +3,y 3)三点的纵坐标恰好构成“和谐三数组”, ∴①1y 1+1y 2=1y 3,∴m 4+m+14=m+34,∴m =2, ②1y 2+1y 3=1y 1,∴m+14+m+34=m4,∴m =−4, ③1y 3+1y 1=1y 2, ∴m+34+m 4=m+14,∴m =−2,即满足条件的实数m 的值为2或−4或−2. (1)根据“和谐三数组”写成一组即可得出结论;(2)先根据材料2,得出1x 1+1x 2=−b c ,再求出一元一次方程的解,进而得出1x 3=−bc ,即可得出结论;(3)先用m 表示出y 1,y 2,y 3,进而表示出它们的倒数,再根据“和谐三数组”分三种情况,建立方程求解即可得出结论.此题主要考查了新定义的理解和运用,反比例函数图象上点的坐标特征,利用分类讨论的思想解决问题是解本题的关键.25.【答案】y =12x 2−52x +2【解析】解:(1)∵直线y =−12x +2经过B ,C 两点. ∴点C(0,2),∵二次函数y =ax 2+bx +c(a ≠0)的图象经过A(1,0),B(4,0),点C(0,2), ∴{0=a +b +c0=16a +4b +c c =2, 解得:{a =12b =−52c =2,∴抛物线解析式为y =12x 2−52x +2, 故答案为:y =12x 2−52x +2;(2)∵B(4,0),点C(0,2),∴直线BC 解析式为:y =−12x +2, ∴设平移后的解析式为:y =−12x +2+m , ∵平移后直线BC 与抛物线有唯一公共点Q∴12x 2−52x +2=−12x +2+m ,∴△=4−4×12×(−m)=0,∴m =−2,∴设平移后的解析式为:y =−12x , 联立方程组得:{y =−12xy =12x 2−52x +2, ∴{x =2y =−1, ∴点Q(2,−1);(3)设点M 的坐标为(m,12m 2−52m +2),∵以E ,M ,N 三点为顶点的直角三角形(其中M 为直角顶点)与△BOC 相似, ∴①当△MEN∽△OBC 时, ∴∠MEN =∠OBC , 过点M 作MH ⊥x 轴于H , ∴∠EHM =90°=∠BOC , ∴△EHM∽△BOC , ∴EH MH =OBOC ,∴MH =|12m 2−52m +2|,EH =|m −2|, ∵OB =4,OC =2. ∴|m−2||12m 2−52m+2|=2,∴m =3±√3或m =2±√2, 当m =3+√3时,12m 2−52m +2=√3+12,∴M(3+√3,√3+12), 当m =3−√3时,12m 2−52m +2=1−√32,∴M(3−√3,1−√32),当m =2+√2时,12m 2−52m +2=−√22,∴M(2+√2,−√22), 当m =2−√2时,12m 2−52m +2=√22,∴M(2−√2,√22), ②当△NEM∽△OBC 时, 同①的方法得,|m−2||12m 2−52m+2|=12,∴m =9±√332或m =1±√172, 当m =9+√332时,12m 2−52m +2=5+√33, ∴M(9+√332,5+√33),当m =9−√332时,12m 2−52m +2=5−√33, ∴M(9−√332,5−√33),当m =1+√172时,12m 2−52m +2=3−√17,∴M(1+√172,3−√17),当m =1−√172时,12m 2−52m +2=3+√17,∴M(1−√172,3+√17),即满足条件的点M 共有8个,其点的坐标为(3+√3,√3+12)或(3−√3,1−√32)或(2+√2,−√22)或(2−√2,√22)或(9+√332,5+√33)或(9−√332,5−√33)或(1+√172,3−√17)或(1−√172,3+√17).(1)先求出点C 坐标,利用待定系数法可求解析式; (2)先求出直线BC 平移后的解析式,联立方程组可求解;(3)分两种情况,构造出两三角形相似,得出EHMH =OBOC 或EHMH =OCOB ,进而建立绝对值方程求解即可得出结论.此题是二次函数综合题,主要考查了待定系数法,一元二次方程的解法,相似三角形的判定和性质,解绝对值方程,用方程的思想解决问题是解本题的关键.26.【答案】= √3【解析】解:(1)①如图1中,∵四边形ABCD是矩形,∴AB//CD,∵NM⊥AB,∴NM⊥CD,∵DP⊥PE,∴∠PMD=∠PNE=∠DPE=90°,∴∠PDM+∠DPM=90°,∠DPM+∠EPN=90°,∴∠PDM=∠EPN.故答案为=.②连接DE.∵四边形ABCD是矩形,∴∠DAE=∠B=90°,AD=BC=4.∴tan∠CAB=BCAB =√33,∴∠CAB=30°,∵∠DAE+∠DPE=180°,∴A,D,P,E四点共圆,∴∠EDP=∠PAB=30°,∴PEPD =tan30°=√33,∴PDPE=√3.(2)如图2中,结论成立.理由:连接DE.∵∠DPE=∠DAE=90°,∴A,D,E,P四点共圆,∴∠PDE=∠EAP=∠CAB=30°,∴DPPE =1tan30∘=√3.(3)如图3中,由题意PM=x,MN=4−x,∵∠PDM=∠EPN,∠DMP=∠PNE=90°,∴△DMP∽△PND,∴DMPN =PMEN=PDPE=√3,∴DM4−x =xEN=√3,∴DM=√3(4−x),EN=√33x,∴PD=√DM2+PM2=√[√3(4−x)]2+x2=2√x2−6x+12,PE=√33PD=2√33⋅√x2−6x+12,∴y=PD⋅PE=4√33(x2−6x+12)=4√33x2−8√3x+16√3(x>0),∵y=4√33(x−3)2+4√3,∵4√33>0,∴当x=3时,y有最小值,最小值为4√3.(1)①利用等角的余角相等证明即可.②证明∠CAB=30°,推出∠PDE=∠CAB=30°即可.(2)结论成立.证明方法类似②.(3)利用相似三角形的性质求出DM,利用勾股定理求出PD,再利用(2)中结论.求出PE,即可解决问题.本题属于四边形综合题,考查了矩形的性质,解直角三角形,相似三角形的判定和性质,二次函数等知识,解题的关键是正确寻找相似三角形解决问题,学会构建二次函数解决最值问题,属于中考压轴题.。